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Abstract: This study explores the spatial association between social vulnerability and smoke 
plume dispersion at the census block group level for the 13 southern states in the USDA 
Forest Service’s Region 8. Using environmental justice as a conceptual basis, we use 
Exploratory Spatial Data Analysis to identify clusters or “hot spots” for the incidence of both 
higher than average socially marginal populations and plume dispersion. The larger health 
disparities and environmental justice literature suggests that lower income and minority 
populations in the U.S. face greater exposure than middle/upper income, non-minority 
populations to environmental pollutants; however, we are aware of only a few studies 
examining this relationship in the context of population exposure to wildfires or prescribed 
fires in the U.S. South, despite the high occurrence of wildfires in the region. Analyses were 
conducted across five ecoregions in the South and for winter and spring/summer seasons. 
Results by ecoregion show significant spatial clustering of high social vulnerability block 
groups in the vicinity of block groups with a high number of smoke plumes (i.e., “hot spots”). 
Overall, however, socially vulnerable communities are not exposed to more smoke than  
non-socially vulnerable communities. Data limitations and suggestions for further research 
are discussed. 
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1. Introduction 

Both wildfire and prescribed fire have been integral to the functioning of communities across the 
southern U.S. for millennia [1]. Lightning-ignited wildfires occur most frequently in pine woodlands 
and grasslands in the Piedmont and Coastal Plains and less frequently in the Southern Appalachians [1]. 
Before Native American settlement, lightning-ignited fires burned predominantly during the spring and 
summer [2,3]. The history of anthropogenic management of fire in the South can be traced from  
Native American prehistory through European settlement, industrialization, the fire suppression era, and 
current fire management policies [1]. While Native American populations and early European settlers 
primarily set low-intensity brush fires, industrialization and its accompanying timber boom encouraged 
high intensity, stand-replacing fires, often to clear logging slash [1]. 

Thus fire, whether initiated by human hands or occurring as a result of natural processes, has figured 
prominently in both the management and long-range health and balance of regional ecosystems. 
However, both types of fire can pose risks to local human communities in terms of costly medical, 
financial, and other burdens. Although prescribed fires typically proceed without negative smoke-related 
impacts [4], weather shifts or inadequate planning can make this type of controlled forest fire risky as 
well [4]. 

We examine the distribution of social vulnerability and smoke plumes across the 13 states of the 
southern U.S. to determine whether socially vulnerable communities are co-located in areas with greater 
exposure to smoke from either wildfires or prescribed fire. In addition, we compare smoke exposure for 
socially vulnerable communities and for non-socially vulnerable communities near National Forests. 
Social vulnerability refers to a generalized state of human precariousness with respect to material  
well-being, access to information and technical, medical, or legal services, for example. These and other 
absolute or relative privations result in a more or less continual state of vulnerability. As such, these 
perpetual conditions render human populations relatively unable to either anticipate, cope with, or 
recover from environmental disturbances or stresses like excessive smoke, which may occur either at a 
particular place in time or over time [5]. 

2. Socially Vulnerable Populations and Smoke Pollution 

Since the early 1980s, the broad environmental justice literature has documented the irregular 
distribution of environmental threats such as landfills and toxic waste sites across U.S. society [6–8]. 
These have been positively correlated with population-level indicators of social marginality, such as 
ethnic and racial minority status and lower income and education levels [8–10]. Specific to ambient 
pollutant exposure and socially vulnerable populations, Makri and Stilianakis’ [11] review of the health 
effects and vulnerability literature (in developed countries) indicated that children and adolescents, the 
elderly, poor people, ethnic/racial minorities, those with pre-existing diseases and lower education 
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levels, commuters, and those who spend more time outdoors in polluted environments are most 
vulnerable to air pollution. 

In contrast to the large number of studies examining human exposure to air pollutants from industrial 
and commercial activities, there exists relatively little research exploring links between socially 
vulnerable populations and smoke pollution from either prescribed or wildland fires in the southeastern 
U.S., although a number of studies focus on the relationships between information access and property 
damage from wildfires, on the one hand, and poverty in the U.S. West [12–15]. This topic is also of 
considerable concern in the southeastern U.S. given the proximity of human populations in rural and 
Wildland Urban Interface areas to forests and other wooded areas and the higher likelihood of wildfire 
and prescribed fire activities on those lands [16–19]. Indeed, there have been substantial increases in  
the number of people relocating to the Wildland Urban Interface across the South over the past  
30 years [16,20–22]. As well, these rural and peri-urban places include long-time, lower income and 
impoverished populations, particularly in rural counties adjacent to National Forests of the Deep South. 
For instance, the (mostly lower/moderate income) African American population exceeds 60 percent in 
some counties directly proximal to the Talladega National Forest in Alabama, the Chattahoochee-Oconee 
in Georgia (Oconee portion), the Homochito, Delta, and Tombigbee in Mississippi; and the Francis 
Marion in South Carolina [23]. Globally, Sunderlin [24] also found a positive association between the 
poverty rate and forest cover in seven developing countries. 

In terms of general fire exposure in the region, the 13 states of the South have the highest number of 
wildfires per year nationally, compared to other regions in the U.S. [16]. The National Interagency Fire 
Center’s (NIFC) data for 2003–2013 clarifies the relationship between wildfire risk nationally and 
wildfire risk in the southern region alone. Between 2003 and 2013, the USDA Forest Service Southern 
Region (R8) experienced 377,631 total wildfires, compared with 805,004 total wildfires nationally [25]. 
These figures are particularly compelling given that the southern states account for only about a quarter 
of total national land area [26]. During the same decade, the southern region experienced wildfires on 
14,773,858 total acres compared with 81,295,594 total acres nationally [25]. 

The southern region also has the most forestland burned in prescribed fires annually (4–6 million of 
the 200 million acres of forestland in the South are subjected to prescribed burning every year) [2]. 
According to the Southern Group of State Foresters, more than two million acres were treated with 
prescribed burning in the South in 2003 alone [16]. Such extensive prescribed fire application is 
necessary both to manage the South’s fire-adapted ecosystems and to maintain fuel reduction efforts  
in spite of the South’s long growing season [16]. Stanturf and colleagues [2] concur that three 
environmental conditions in the South may cause “problem smoke” to be particularly chronic in the 
region—again, relatively high amounts of smoke produced by both wildfires and prescribed fires, the 
relatively high numbers of people living in the Wildland Urban Interface, and regional meteorological 
conditions which produce air masses that often trap smoke close to the ground. 
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2.1. Risks Associated with Wildfire and Prescribed Fire 

2.1.1. Air pollution 

The health effects of air pollution from wildfires and prescribed fires can be analyzed in terms of 
wood smoke’s chemical composition, toxicological impacts at the individual level, and epidemiological 
impacts at the population level [27]. Wood smoke is known to contain toxic chemicals, including known 
carcinogens (and probable or possible carcinogens), respiratory irritants, and criteria air pollutants [27]. 
However, while toxicological studies have examined many of wood smoke’s single constituents, Fowler 
emphasizes that relatively few studies have evaluated the health effects of wood smoke as a whole [1]. 
At the individual level, studies indicate that this smoke can irritate the eyes, nose, and throat and 
exacerbate respiratory difficulties or other illnesses [2]. In particular, animal toxicological studies have 
indicated that wood smoke exposure can result in respiratory immune system impacts and lesions in the 
lung tissue [27]. Studies have also found associations between wood smoke exposure and particular 
physical impairments; cognitive impairments; or direct injuries (such as burns or falls), although these 
effects have been less extensively documented [1]. The existing literature on the health effects of wood 
smoke produced by wildfires and prescribed fires is equivocal due to variability in fuel conditions, fire 
behavior, fire intensity, weather patterns, and diversity across affected human populations [1]. However, 
while the health effects of smoke from wildfires and prescribed fire require further study [27], Naeher 
and colleagues sum up its potential health risks simply but effectively: “Even though wood smoke is 
natural, it is not benign” [27]. 

2.1.2. Water Contamination and Traffic Accidents 

Beyond its air pollution-related impacts, wildfires and prescribed fires—and the wood smoke they 
produce—can also threaten public health by contaminating water supplies. Such water contamination 
can occur through several pathways, including soil erosion, sedimentation, turbidity, diffusion, 
nitrification, and application of fire control techniques, among others [1]. Notably, several studies have 
found prescribed fires to be less damaging to water quality than wildfires [1]. 

Forest fires also threaten public health by decreasing visibility [28], which can increase the severity 
of car accidents [29]. In particular, Abdel-Aty and colleagues’ analysis of Florida crash data found that 
fog and smoke-related crashes tended to involve higher numbers of vehicles and to result in more severe 
injuries than crashes under clear visibility conditions [29]. The authors also noted an increase in crash 
frequency in May and attributed it to an increase in smoke-related crashes due to the increased likelihood 
of wildfires during that time of year. The South may be particularly at risk for such traffic-related impacts 
due to its relatively higher road network density [4]. 

3. Experimental Section 

The primary goal of this study was to examine the spatial overlay or correlation between an index of 
social vulnerability and the absolute number of smoke plumes at the community level. Given the 
nearness of lower income groups to National Forest lands in the South, we also looked at the proximity 
of “hot spot” communities to National Forests across the USDA Forest Service Region 8 (Southern 
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Region). Hot spots are communities that rank above average in terms of both social vulnerability and 
plume exposure (explained below). Anecdotal observations suggest that poor communities near some 
public lands may be more exposed to smoke plumes than more well-off communities because of the 
greater likelihood that the latter communities voice complaints about prescribed smoke. The plume data 
are not distinguished by type of fire (wildfire vs. prescribed) or origin, so we cannot determine if a 
community is exposed to smoke from a prescribed fire or a wildfire or what entity (if prescribed) may 
have set the fire. However, prescribed fires administered by public agencies such as the USDA Forest 
Service are more likely to occur during the winter months. The scale of analysis is the U.S. census block 
group level (CBG). The CBG is a collection of census blocks, which approximates neighborhoods. 
According to the 2010 decennial census, there were 68,927 (excluding CBGs in Miami-Dade County) 
census block group contained in the 13 states of the South—Alabama, Arkansas, Florida, Georgia, 
Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas,  
and Virginia. 

3.1. Smoke Plume Exposure 

The smoke plume data were generated from the National Oceanic and Atmospheric Administration’s 
(NOAA) Hazard Mapping System (HMS), which is an interactive processing system that allows trained 
satellite analysts to manually integrate data from a number of satellites to produce a quality-controlled 
dataset of fires and significant smoke plumes detected by meteorological satellites. Smoke detection is 
achieved exclusively with visible band imagery. When smoke is identified, the analyst draws contours 
depicting the plume’s areal extent. The different satellite products used for NOAA’s Hazard Mapping 
System (HMS) range in resolution from 4 km down to about 500 m. The automated algorithms that 
detect the fires rely on a fire being large enough and hot enough to cause the sensor to saturate. This 
precludes smaller fires from being detected. The human analyst also plays a role as all hot spot detections 
are quality controlled by the analyst, and all plumes are determined through analyst judgment. One trait 
used to distinguish plumes from vegetation fires from other types of fires is smoke color. Vegetation 
fires release significant amounts of water which result in plumes that are predominantly white in color.  

The measure of smoke plume exposure for each CBG is the number of HMS-detected plumes 
intersecting any portion of a CBG’s boundary for each month (PLUME). Smoke plumes were counted 
from 5 August 2005 to 3 November 2011. As well, because the spatial analysis was done for winter 
and spring/summer months, plumes were counted for both time periods.  For example, for the summer 
months, the total number of plumes detected in a given CBG for May, June, and July from 5 August 
2005 to 3 November 2011 were added to generate the total number of smoke plumes for that CBG. 
Similarly, the total number of plumes for each day in December, January, February, and March were 
added to arrive at the total number of winter plumes for each CBG. 

The seasonal data were further demarcated by eco-region of the southern U.S. These delineations 
formed the basis of various analyses included in the Southern Forest Futures Assessment [30] and the 
Climate Change Adaptation and Mitigation Management Options analysis [31], both south wide projects 
conducted by the U.S. Forest Service, Southern Research Station. Because of differences in chemical, 
biological, social, and climatic conditions across the South, we conducted analyses within these  
sub-areas to reveal greater nuances among the various processes impacting both present and future forest 
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conditions. Ecoregions are the Appalachian-Cumberland Plateau, Piedmont, Coastal Plain, Mississippi 
Alluvial Valley, and Mid-South (Figure 1). 

 

Figure 1. Southern ecoregions. 

Certainly, variations in the spatial patterns of smoke plume impacts are tied to variations in land type, 
climatology, and land management practices. Land use changes across the region, with forests 
dominating the eastern part of the region, transitioning to predominantly pasture toward the west. For 
most forest types in the southeast, during the dormant season, prescribed fire is more common than 
growing season prescribed fires. Most prescribed burning in the South is carried out in the Coastal Plain 
and Piedmont. The majority of the Piedmont is forested with variations in forest type due to changes in 
slope, aspect, and elevation. The Coastal Plain is largely forested with an intermix of cropland and 
pasture. The Mississippi Alluvial Valley is predominantly cropland, with pockets of forest while the 
Mid-South is comprised of coastal forests in the east, giving way to rangeland inland. 

While cropland, rangeland, and pastures can be managed with fire as well as forests, these other land 
types may not exhibit a preference for winter season burning. Table 1 shows differences in mean plume 
length and the percent of CBGs that originate plumes by season for each state. Plumes tend to be longer 
during the summer, reflecting generally drier conditions that increase fuel availability. Higher fuel 
consumption from a fire results in a plume that is easier for the HMS analyst to track over a longer 
distance. States located in the Coastal Plain and Piedmont show a higher percentage of CBGs originating 
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plumes during the winter compared to the summer, showing the influence of dormant season  
prescribed fire. 

Table 1. Comparison of percentage of census block groups in each state where a smoke 
plume originates (by season) and the average plume length for each state by season. 

State 
Winter Spring 

% CBG with 
Plume Origin 

Avg Plume 
Length (km) 

% CBG with 
Plume Origin 

Avg Plume 
Length (km) 

Alabama 6.76% 64.5 1.64% 150.7 
Arkansas 4.48% 46.3 4.18% 194.0 
Florida 2.80% 67.5 1.65% 166.0 
Georgia 6.14% 45.8 1.63% 250.7 

Kentucky 0.31% 43.3 0.40% 344.0 
Louisiana 4.92% 62.0 3.18% 151.3 

Mississippi 6.84% 50.0 3.30% 131.0 
North Carolina 1.36% 50.8 1.28% 217.3 

Oklahoma 4.38% 61.0 2.55% 201.7 
South Carolina 4.49% 49.0 1.25% 226.3 

Tennessee 0.48% 51.3 0.43% 336.3 
Texas 2.06% 73.0 1.29% 260.7 

Virginia 0.38% 64.5 0.70% 209.3 

3.2. Social Vulnerability 

Based on prior work involving social vulnerability and wildfire risk [17,19], we created a social 
vulnerability index comprised of eight socio-demographic variables from the 2010 U.S. Census of 
Population and Housing and the 2006–2010 American Community Survey [32,33]. Variables from the 
2010 decadal census include the proportion of population at the CBG scale: greater than 65 years old; 
less than 15 years old; American Indian/Alaskan Native; African American; Hispanic; and renters. 
Variables obtained from the 2006–2010 American Community Survey were poverty status and persons 
25 or over without a high school diploma. 

Young children and adolescents are more vulnerable than adults to the ill effects of air pollutants 
because of the former’s relatively undeveloped airways and lung capacities [11]. Older people face 
greater risks because their health, generally, is more compromised than that of younger adults, which 
creates a weaker immune system [11]. African Americans and Hispanics are more likely than whites to 
live near polluting sources generally but may be less likely to have access to or to use information about 
precautions associated with environmental contaminants. The same may be the case for those with lower 
income and education levels. The poverty indicator “near poverty” is the ratio of those with incomes 
ranging from 0.50–1.24 times the official poverty level to the total population for whom poverty status 
was determined [31]. A more liberal definition of poverty was used than “below poverty” because people 
with incomes hovering above poverty are likely to experience similar constraints as those who are 
officially classified as impoverished. 

The social vulnerability index (SOVU) was calculated by adding each of the proportions for the 
individual vulnerability indicators and dividing by the number of vulnerability indicators (eight). None 
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of the variables was given more weight than others because of the difficulty of attributing vulnerability 
to a single factor [34]. Cardiorespiratory illnesses such as asthma are positively associated with higher 
vulnerability to air pollution impacts. Also, those with existing illnesses such as diabetes, and those 
living in communities with poor access to medical services also face greater risks from smoke exposure; 
however, at the time of writing, we were not able to obtain appropriately-scaled data for these variables. 

4. Results and Discussion 

4.1. Descriptive Statistics 

Mean block group SOVU and PLUME score by forest ecoregion are presented in Table 2, along with 
standard deviations and maximum and minimum values for each variable. The PLUME mean is 
presented for the winter and spring/summer months. The SOVU variable ranges from 0–1.00, as it is the 
mean of the various proportions that comprise the index. Mean SOVU ranged from 0.15 in the 
Appalachian-Cumberland ecoregion to 0.21 in the Mississippi-Alluvial Valley. Maximum and minimum 
SOVU values were similar across ecoregions, with 0.54 as a maximum in the Appalachian Cumberland 
and 0.49 as the maximum in the Mississippi-Alluvial ecoregion (Table 2). In winter, the lowest CBG plume 
mean was 2.43 in the Appalachian-Cumberland area, and the highest was 18.32 in the Coastal Plain. 
During spring/summer, plume means ranged from 70.60 in the Appalachian-Cumberland to 121.97 in 
the Mississippi-Alluvial Valley. All values reported in Table 2 are raw scores. A greater mean number 
of wildland-based fires are indicated in the warmer months due to dryer weather conditions during this 
time of year, as discussed. Although prescribed fires are more common than wildfires in winter, 
meteorological conditions in the summer, such as warmer temperatures and less precipitation, increase 
the likelihood of wildfires in the spring and summer across the southern region. 

Table 2. Mean Census Block Group Values for Social Vulnerability and Number of  
Smoke Plumes. 

Ecoregion SOVU 
PLUME 

Winter Spring/Summer 
Appalachian-Cumberland 

(n = 8404) 
0.15  

(s.d. = 0.06) 
Min: 0.00 
Max: 0.54 

2.43  
(s.d. = 7.31) 

Min: 0  
Max: 53 

70.60  
(s.d. = 16.58) 

Min: 39 
Max: 108 

Piedmont  
(n = 12,103) 

0.17  
(s.d. = 0.08) 

Min: 0.0 
Max: 0.51 

5.30  
(s.d. = 7.35) 

Min: 0  
Max: 130 

75.88  
(s.d. = 12.71) 

Min: 44 
Max: 123 

Coastal Plain  
(n = 28,806) 

0.18  
(s.d. = 0.08) 

Min: 0.00 
Max: 0.51 

18.32  
(s.d. = 16.98) 

Min: 0  
Max: 244 

120.68  
(s.d. = 27.59) 

Min: 59 
Max: 510 

Mississippi Alluvial  
(n = 2492) 

0.21  
(s.d. = 0.09) 

Min: 0.00 
Max: 0.49 

11.63  
(s.d. = 7.61) 

Min: 2  
Max: 69 

121.97  
(s.d. = 11.74) 

Min: 97 
Max: 174 

Mid-South  
(n = 16,248) 

0.19  
(s.d. = 0.08) 

Min: 0.00 
Max: 0.51 

9.46  
(s.d. = 8.88) 

Min: 0  
Max: 126 

117.53  
(s.d. = 20.84) 

Min: 41 
Max: 204 
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4.2. Exploratory Spatial Data Analysis 

4.2.1. Global Moran’s I and Univariate LISA 

The ultimate aim of these analyses was to examine local-level, spatial associations between social 
vulnerability and the number of smoke plumes using Anselin’s [35] local indicator of spatial association 
(LISA). Before identifying local clusters of bivariate, spatial association between SOVU and PLUME, 
we computed the Pearson’s correlation coefficient for the two variables under the assumption of data 
stationary. Results indicate little or no correlation across the ecoregions for either season (Table 3). The 
strongest associations are for the spring/summer in the Mississippi-Alluvial and Mid-South and for the 
Mississippi-Alluvial, Coastal Plain, and Mid-South in winter, although the statistic indicates an inverse 
association. All correlations are highly significant, but this is likely due to the large sample sizes in each 
region. As well, global measures of association may obscure local clusters of positive association.  Also, 
because these data represent the entire population, rather than a sample, we can assume all differences 
are actually significant. Keeping with the conventional reporting of values significant at p ≤ 0.05, we 
present significance levels. 

Next, we examined the association between SOVU and PLUME, again at the aggregate level, looking 
for an indication of spatial autocorrelation, using the global Moran’s I statistic (software GeoDaTM 
1.6.61). Global Moran’s I is an indicator of aggregate spatial clustering (or dispersion). Values range 
between −1 (perfect dispersion) and +1 (perfect correlation). A value of zero indicates no spatial 
autocorrelation or a random spatial pattern. Table 3 shows results very similar to those for the  
r statistic for both the cooler and warmer months. All spatial analyses were conducted on z-scores for 
SOVU and PLUME. 

The univariate, global Moran’s I values were also computed for SOVU and PLUME, respectively. 
The univariate indicator provides a measure of how well a variable clusters (or disperses) with itself.  
In Table 3, the values for SOVU across all regions suggest a considerable degree of spatial lag.  
In other words, we would expect to find either high socially vulnerable CBGs clustered together or low 
socially vulnerable clusters. The Moran’s I for PLUME shows near perfect autocorrelation for all regions 
in both seasons. To illustrate, Figures 2 and 3 graph the global Moran’s I for SOVU (Mid-South) and 
PLUME (Mid-South spring/summer), respectively. In Figure 2, observations graphed in the top right 
quadrant indicate that high SOVU values in a given CBG i are surrounded by high SOVU values in 
neighboring CBGs; bottom left indicates that low SOVU observations in a CBG i are surrounded by low 
SOVU values in neighboring CBGs. The two spatial outlier quadrants are the low/high quadrant (top 
left) and bottom right (high/low). 
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Table 3. Pearson correlations and bivariate and univariate global Moran’s I for SOVU and PLUME by ecoregion and season of year. 

Ecoregion 
Pearson Correlation (r) 

Bivariate Global Moran’s I 
(SOVU and PLUME) Univariate Global 

Moran’s I (SOVU) 

Univariate Global Moran’s I  
(PLUME) 

Winter Spring/Summer Winter Spring/Summer Winter Spring/Summer 
Appalachian-Cumberland  

(n = 8404) 
0.06 *** 0.08 *** 0.07 0.09 0.59 0.91 1.00 

Piedmont  
(n = 12,103) 

0.06 *** 0.19 *** 0.07 0.20 0.65 0.94 0.99 

Coastal Plain  
(n = 28,806) 

−0.14 *** −0.13 *** −0.13 −0.13 0.63 0.93 0.98 

Mississippi Alluvial  
(n = 2492) 

−0.24 *** −0.32 *** −0.23 −0.30 0.54 0.92 0.92 

Mid-South  
(n = 16,248) 

−0.14 *** −0.26 *** −0.13 −0.25 0.69 0.92 0.98 

*** p ≤ 0.0001. 
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Figure 2. Global Moran’s I for SOVU. 

 

Figure 3. Global Moran’s I for PLUME. 

4.2.2. LISA Bivariate Analysis 

While Moran’s I indicates spatial clustering generally in the data, it does not reveal where this 
clustering appears across a study site. Again, a global statistic may conceal significant clustering. To 
determine how such clustering may manifest between two variables at the “local” level, we calculated 
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the bivariate, local indicator of spatial association (LISA) statistic [35]. The analysis is based on the First 
Law of Geography which assumes that all things in space are related, but those things closer in space 
are more strongly related [30]. Therefore, we might expect certain social or biological/physical variables 
to cluster or hover together across space [24]. The null hypothesis in LISA analysis assumes that there 
is no spatial autocorrelation between the two variables examined. In other words, the relationship 
between two variables is random. However, if the null is rejected, this indicates that the relationship is 
not random, and that there is just a small chance (depending on the p-value) of obtaining the observed 
LISA statistic, if in the population the two variables are not co-located. 

Spatial associations are based on clusters or the “neighborhood” of areal units adjacent to the areal 
unit of interest, i (in our case CBGs). We specified the neighborhood of CBG i based on a first order, 
queen contiguity weight matrix, which includes CBGs adjacent to CBG i that shared a common border 
length or vertex. Bivariate LISA is calculated by the equation from Sunderlin [30]:  

𝐼𝐼𝑙𝑙 = 𝑧𝑧𝑥𝑥𝑥𝑥 � 𝑤𝑤𝑥𝑥𝑖𝑖  𝑧𝑧𝑦𝑦𝑖𝑖 
𝑁𝑁

𝑖𝑖=1,𝑖𝑖≠𝑥𝑥

 (1) 

where, Il is the LISA statistic; x is the SOVU value, and y is the PLUME value for CBG i and 
neighborhood j, respectively. Similarly, zx represents the standardized value for social vulnerability, and 
zy represents the standardized value for number of smoke plumes. The variable wij is the weight matrix 
that defines CBGs comprising neighborhood j (also generated using GeoDa™ 1.6.61). Because of 
difficulties in obtaining a LISA distribution, an ad hoc distribution is created each time the LISA analysis 
is performed. This is done by permutation of LISA values a specified number of times (e.g., 99, 999, 
9999). Critical values are then selected for pseudo-p values. The LISA for a given CBG is compared 
with the critical value at a given significance level. For our analysis, significant clusters are those at the 
0.05 level, with 999 permutations.  Again, p values are presented for illustrative purposes. 

4.2.3. Sub-Regional Results of Bivariate Analysis 

In Figures 4–13, the LISA cluster mapping shows significant values for SOVU and PLUME grouped 
into four distinct clusters. These associations are described as either: high-high (high SOVU/high 
PLUME or “hot spots”); low-low (low SOVU/low PLUME or “cold spots”); low SOVU/high PLUME; 
or high SOVU/low PLUME. The low/high (green) and high/low (yellow) clusters are spatial outliers, 
meaning that the pattern is significant but the high and low values are intermixed. The high/low 
designation for each cluster (hotspot, coldspot, outlier) is determined by comparing the observed value 
of x or y for a given CBG with the average value of the respective variable for the entire study area (e.g., 
ecoregion [35]. For example, a high/high cluster in the Piedmont region shows CBGs with a higher than 
Piedmont average SOVU value surrounded by CBGs with a higher than Piedmont average PLUME 
value. Similarly, a low/low cluster in the Mid-South indicates CBGs with a lower than Mid-South 
average SOVU value surrounded by CBGs with lower than Mid-South average PLUME values. CBG 
boundaries are not displayed in order to help presentation clarity. 
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Figure 4. Bivariate LISA mapping of social vulnerability and smoke plume in the 
Appalachian-Cumberland ecoregion—winter. 

 

Figure 5. Bivariate LISA mapping of social vulnerability and smoke plume in the 
Appalachian-Cumberland ecoregion—spring/summer. 
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Figure 6. Bivariate LISA mapping of social vulnerability and smoke plume in the Piedmont 
ecoregion—winter. 

 

Figure 7. Bivariate LISA mapping of social vulnerability and smoke plume in the Piedmont 
ecoregion—spring/summer. 
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Figure 8. Bivariate LISA mapping of social vulnerability and smoke plume in the Coastal 
Plain ecoregion—winter. 

 

Figure 9. Bivariate LISA mapping of social vulnerability and smoke plume in the Coastal 
Plain ecoregion—spring/summer. 
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Figure 10. Bivariate LISA mapping of social vulnerability and smoke plume in the 
Mississippi-Alluvial ecoregion—winter. 

 

Figure 11. Bivariate LISA mapping of social vulnerability and smoke plume in the 
Mississippi-Alluvial ecoregion—spring/summer. 
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Figure 12. Bivariate LISA mapping of social vulnerability and smoke plume in the  
Mid-South ecoregion—winter. 

 

Figure 13. Bivariate LISA mapping of social vulnerability and smoke plume in the  
Mid-South ecoregion—spring/summer. 
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Appalachian-Cumberland 

The Appalachian-Cumberland ecoregion stretches from northern Virginia to western Kentucky, 
Tennessee, and north Alabama, covering an area of 99 million square miles. Figures 4 and 5 illustrate 
bivariate LISA clusters for the Appalachian-Cumberland highlands. The winter month clusters  
(Figure 4) show hot spots occurring in northern Alabama and in the 180 mile stretch between Knoxville 
and Nashville, TN. The William B. Bankhead National Forest (NF) in Alabama overlaps a portion of 
the hot spot. The Chattahoochee NF in north Georgia and the Cherokee NF just over the border in 
Tennessee overlap with both hot spots and outlier clusters at the Georgia-Tennessee line. Further to the 
northeast, hot spots can be seen near Asheville, NC, again overlapped by or proximal to National Forest 
lands (the Pisgah in North Carolina). There is also substantial intersection between the Daniel Boone NF 
in eastern Kentucky and hot spot clusters. 

Hot and cold spots shift geographies in the spring and summer months, relative to the winter  
(Figure 5). Hot spots are seen most clearly in the extreme western part of the Appalachian-Cumberland 
region in the warm season, and cold spots are in the central and northeastern most reaches of the 
ecoregion at this time. There is extensive overlap of cold spots with National Forests in the eastern 
Appalachian-Cumberland area but only small intersections in the western part of this ecoregion. 

Piedmont 

In the Piedmont during winter months, hot spots are evident in north Alabama (overlapping with the 
Talladega and Bankhead NFs), east and west of Birmingham. Hot spots are interspersed with low social 
vulnerability/high plume counts in Georgia in an area north of Macon and Columbus. Portions of the 
Chattahoochee-Oconee NF are proximal to these hot spots. In South Carolina, hot spots are clustered 
near Greenwood and in an area interspersed with low social vulnerability/high plume counts near the 
Sumpter NF. Hot spots also cluster southeast of Charlotte, NC, overlapping with the boundaries of the 
Uwharrie NF. Cold spots in winter months lie mostly to the north of hot spots throughout the Piedmont. 
A similar distribution of hot and cold spots is seen during the spring/summer season in the Piedmont, 
although there is a larger clustering of significant hot spots in Alabama. Also, hot spots appear just north 
of Raleigh, NC during the warmer season. 

Coastal Plain 

The Coastal Plain extends from southern Virginia, through Georgia and Alabama, and into Louisiana 
and east Texas—an area of more than 79 million square miles. In winter, hot spots converge to the north 
and south of Charleston, SC, and in a swath between Columbia, SC and Savannah, GA. The Francis 
Marion NF in South Carolina abuts hot spots in both winter and spring/summer. An inverted arc of hot 
spots and low/high clusters occur in South Georgia. Larger hot spot clusters congregate throughout south 
Alabama in winter. In terms of social vulnerability, hot spot clusters in this ecoregion are consistent with 
prior mappings of southern Black Belt counties and the concomitant generational poverty pervading 
some of these counties, particularly during the winter season [36]. As expected, above average plume 
activity predominate in large areas of Florida in both winter and spring/summer. Hot spots also occur 
near the Ocala and Apalachicola, NF in Florida. Moving west, Figure 8 shows hot spots interspersed 
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with low/high clusters between Shreveport, LA and Houston, TX. In Louisiana, portions of the Kisatchie 
NF are interspersed with hot spots. 

In warmer months, hot spot activity shifts to the extreme eastern part of the region, from eastern North 
Carolina down to an area south of Jacksonville, FL. Hot spot CBGs are also prominent in South Georgia, 
north central Florida and south Florida. Sporadic hot spot scatterings also appear in southern Louisiana 
up to an area below Hot Springs, AR. Large cold spot clusters occur east of Oxford, MS and Memphis, 
TN and east of Jackson, MS. 

Mississippi Alluvial Valley 

The Mississippi Alluvial Valley originates at the confluence of the Ohio and Mississippi Rivers in 
southern Illinois and runs to the Gulf of Mexico. In winter, hot spots occur near Baton Rouge and New 
Orleans, LA. Cold spots occur north of Jackson, MS up through Memphis, TN. In summer, hot spot 
activity is seen in the north and south of the region. 

Mid-South 

The Mid-South ecoregion covers most of Texas, all of Oklahoma and much of northwestern Arkansas. 
In winter, hot spot clusters are prominent in the south Texas. Hot spots are also seen in northwest Texas 
and in east Oklahoma and west Arkansas. The Ozark National Forest is proximal to some of the hot spot 
clusters in this part of the Mid-South. During the warmer months, hot spots are also in the very southern 
tip of Texas and are scattered throughout the northern part of the ecoregion. 

In sum, the LISA analysis identified four significant clusters or associations between social 
vulnerability and plume dispersion across the South. While we did find “hot spots,” they do not 
characterize the relationship between these variables, overall. To help clarify this relationship, Tables 4 
and 5 show the distribution of association types in each region, by season. The majority of associations 
between social vulnerability and smoke plume are not significant at p ≤ 0.05 in winter or in the Coastal 
Plain, Mississippi Alluvial, and Mid-South in spring/summer. In fact, the significant high/high 
associations accounted for no more than 8 percent of all associations in any ecoregion in winter 
(Appalachian Cumberland) and roughly 16 percent in spring/summer (Piedmont). 

4.2.4. Plume Intensity in Hot Spots and Low/High Clusters 

Next, we compared the intensity of plume exposure for hot spots and low/high smoke plume clusters 
by calculating the mean number of plumes for both cluster types. As well, we present the total number 
of clusters for both hot spots and low/high clusters. We also compared the mean number of plumes for 
hot spots and low/high clusters within one mile of a National Forest. 

We compared hot spots and low/high clusters because these clusters controlled for smoke exposure. 
Both cluster types had “high” (above average) smoke exposure, only social vulnerability varied.  
The idea was to see if socially marginal clusters with high smoke exposure experienced more smoke 
compared to non-socially marginal populations with high smoke exposure in general and for clusters 
proximal to National Forests. 
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Table 4. Distribution of LISA Clusters by Ecoregion—Winter. 

Type of Association 
Appalachian 

Cumberland (N = 8404) 
Piedmont  

(N = 12,103) 
Coastal Plain  
(N = 28,806) 

Mississippi Alluvial  
(N = 2492) 

Mid-South  
(N = 16,248) 

 CBG (%) CBG (%) CBG (%) CBG (%) CBG (%) 
High/High 8.02 5.21 4.47 4.25 4.92 
Low/Low 18.21 19.19 14.03 9.79 11.97 
Low/High 10.57 5.34 8.60 12.96 10.85 
High/Low 11.82 10.11 14.85 13.36 15.05 

Insignificant 51.39 61.16 58.05 59.63 57.21 
Total 100.00 100.00 100.00 100.00 100.00 

Table 5. Distribution of LISA Clusters by Ecoregion—Spring/Summer. 

Type of Association 
Appalachian 

Cumberland (N = 8404) 
Piedmont  

(N = 12,103) 
Coastal Plain  
(N = 28,806) 

Mississippi Alluvial  
(N = 2492) 

Mid-South  
(N = 16,248) 

 CBG (%) CBG (%) CBG (%) CBG (%) CBG (%) 
High/High 14.16 15.62 4.90 4.49 7.82 
Low/Low 20.59 19.74 13.38 6.22 8.40 
Low/High 19.34 13.27 12.47 16.53 17.10 
High/Low 11.17 7.53 10.94 9.87 12.60 

Insignificant 34.76 43.84 57.24 62.88 54.07 
Total 100.00 100.00 100.00 100.00 100.00 
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Table 6. Mean plume count in hot spot and low/high clusters generally and within 1 mile of a National Forest. Number of hot spots and low/high 
clusters generally and within 1 mile of a National Forest—winter. 

Ecoregion 
Mean Number of 

Plumes in  
Hot Spots 

Mean Number of 
Plumes in  

Low/High Clusters 

Number of 
Hot Spots 

Number of 
Low/High 
Clusters 

Mean Number of 
Plumes in hot  

Spots near  
National Forest  

Mean Number of 
Plumes in Low/High 

Clusters near 
National Forests 

Number of 
Hot Spots 

near National 
Forests 

Number of  
Low/High clusters 

near National 
Forests 

Appalachian 
Cumberland 

6.90 (s.d. = 3.48) 6.32 (s.d. = 2.66) 674 888 9.19 (s.d. = 7.55) 8.19 (s.d. = 3.94) 75 206 

Piedmont 21.70 (s.d. = 11.86) 21.91 (s.d. = 12.43) 630 646 28.34 (s.d. = 16.10) 26.81 (s.d. = 18.43) 124 127 
Coastal Plain 47.09 (s.d. = 21.93) 50.98 (27.04) 1255 2414 65.73 (s.d. = 33.72) 71.28 (37.15) 97 292 
Mississippi 

Alluvial 
23.31 (s.d. = 6.60) 25.13 (s.d. = 8.18) 106 323 0 0 0 0 

Mid-South 21.80 (s.d. = 9.90) 25.64 (s.d. = 12.74) 799 1763 36.00 (s.d. = 15.59) 40.61 (s.d. = 17.36) 15 145 

Table 7. Mean plume county in hot spot and low/high clusters generally and within 1 mile of a National Forest. Number of hot spots and 
low/high clusters generally and within 1 mile of a National Forest—spring/summer. 

Ecoregion 
Mean Number of 

Plumes in Hot Spots 

Mean Number of 
Plumes in 

Low/High Clusters 

Number 
of Hot 
Spots 

Number of 
Low/High 
Clusters 

Mean Number of 
Plumes in Hot 

Spots near National 
Forest  

Mean Number of 
Plumes in Low/High 

Clusters near 
National Forests 

Number of Hot 
Spots near 

National Forests 

Number of 
Low/High 

Clusters near 
National Forests 

Appalachian 
Cumberland 

87.75 (s.d. = 4.23) 87.92 (s.d. = 5.18) 1190 1625 95.83 (s.d. = 2.97) 99.38 (s.d.8.18) 6 8 

Piedmont 90.21 (s.d. = 4.92) 91.49 (s.d. = 4.62) 1891 1606 94.85 (s.d. = 7.90) 93.54 (s.d. = 6.18) 110 68 
Coastal Plain 160.89 (s.d. = 22.60) 162.05 (s.d. = 27.01) 1411 3593 163.08 (s.d. = 23.25) 164.22 (s.d. = 26.64) 61 199 
Mississippi 

Alluvial 
136.90 (s.d. = 8.42) 139.61 (s.d. = 9.56) 112 412 0 135 0 1 

Mid-South 140.24 (s.d. = 9.28) 139.38 (s.d. = 8.93 1271 2778 135.80 (s.d. = 5.34) 140.17 (s.d. = 6.39) 10 138 
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Table 6 contains results for the winter season. Mean number of plumes was slightly higher in hot 
spots, compared to low/high areas for the Appalachian Cumberland ecoregion, in general, and for areas 
near National Forests in that ecoregion. Otherwise, hot spots were not more encumbered by smoke than 
other places across the South. Also, the number of hot spots near National Forests is either  
less than or equal (Mississippi-Alluvial) to the number of low/high clusters. Table 7 also shows 
overwhelmingly that there is not more smoke exposure in hot spots vis-à-vis low/high clusters during 
the warmer months. Overall, results do not suggest that socially vulnerable populations are potentially 
exposed to more smoke plumes than populations that are not vulnerable in the terms we measured. 

5. Conclusions 

This exploratory study provides a baseline assessment of the spatial intersection between an indicator 
of social vulnerability and population exposure to smoke pollution at the CBG level across the U.S. 
South. Again, while we did find significant spatial clustering of high social vulnerability block groups 
in the vicinity of block groups with a high number of smoke plumes, this type of association does not 
predominate in any of the ecoregions. Therefore, we cannot conclude that socially vulnerable 
populations in the region, overall, are exposed to more smoke from wildfires and prescribed fires, 
compared to communities that are not socially vulnerable. 

Ours is the first analysis to assess this relationship at a broad scale; as such, it provides a point of 
departure for subsequent studies examining community-level exposure to smoke from both wildfire and 
prescribed fire. Data presentation at this stage is more descriptive than quantitative, as the LISA analysis 
indicated hot or cold spot clusters based on a given CBG’s value relative the mean. While a given 
PLUME score may be greater than the neighborhood mean, smoke may pose little threat to public health. 
The present analysis allowed us to examine only potential smoke exposure, rather than actual exposure 
because we did not examine how much particulate matter (PM < 2.5) was distributed on the ground.  
With respect to impacts from exposure, we also had no data indicating actual impacts to human  
health; for example, population-level responses in terms of hospital admittance or other emergency 
treatments [20]. 

Further, policy implications from this study are limited because we were not able to discern fire source 
(wildland or prescribed burn). Subsequent studies should examine smoke dispersal from prescribed 
burns initiated by publicly-managed agencies to assess the impact of such fires on vulnerable 
populations. Federal agencies are mandated by Executive Order 12898 to examine the impacts of their 
policies and programming on minority and low income populations. Such studies would have a direct 
bearing on federal agencies’ responsibilities to both manage fuel reductions and to help ensure the health 
and safety of affected populations. 
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