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Abstract: A key factor for operational forest management and forest monitoring is the 

availability of up-to-date spatial information on the state of forest resources. Earth observation 

can provide valuable contributions to these information needs. The German federal state of 

Rhineland-Palatinate transferred its inherited forest information system to a new architecture 

that is better able to serve the needs of centralized inventory and planning services, down to 

the level of forest districts. During this process, a spatially adaptive classification approach 

was developed to derive high-resolution forest information layers (e.g., forest type, tree 

species distribution, development stages) based on multi-temporal satellite data. This study 

covers the application of the developed approach to a regional scale (federal state level) and 

the further adaptation of the design to meet the information needs of the state forest service. 

The results confirm that the operational requirements for mapping accuracy can, in principle, 

be fulfilled. However, the state-wide mapping experiment also revealed that the ability  
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to meet the required level of accuracy is largely dependent on the availability of satellite 

observations within the optimum phenological time-windows. 

Keywords: remote sensing; forest information layers; tree species mapping; spatially adaptive 

classification; Central Europe; operational forest management 

 

1. Introduction 

1.1. Background 

Forest ecosystems cover large parts of the Earth’s land surface and are among the most important 

providers of central ecosystem services. As the largest reserves of biomass worldwide and the most 

important terrestrial carbon dioxide sink, forests fulfill important ecological (e.g., biodiversity, feedback 

mechanisms), economic (e.g., timber production), and socioeconomic (e.g., recreation) functions [1,2]. 

At the same time, forests and forest ecosystems are under accelerating pressure from regional impacts 

of global warming and changing socio-economic conditions [3]. Within this framework, multiple national 

and international commitments dealing with forest resources, sustainable forest management, and 

biodiversity—such as the Montréal Process [4], the Kyoto Protocol [5], the Convention on Sustainable 

Development and the Convention on Biological Diversity [6], and European Forests 2020 [7]—are 

leading to increased demand for expanded information on forest resources [8,9]. Accurate and up-to-date 

information on the spatial distribution of forest type, forest cover, and tree species composition is a key 

factor for sustainable forest management and a central component of forest monitoring programs [10]. 

Information layers on forest cover and species distribution are also important for characterizing the 

impacts of climatic, cultural, economic, and demographic change dynamics on the multifunctional role 

of forest ecosystems [11,12]. As traditional forest inventory concepts are cost-intensive and time-consuming, 

remote sensing-based mapping approaches are attractive to complement and optimize large-area forest 

inventories [13,14]. 

Although large-area forest cover and forest type mapping using medium- and high-resolution satellite 

data is growing in importance [2,15,16], these information layers are insufficient when dealing with the 

specific information requirements of operational sustainable forest management systems [17]. While 

classification accuracies are suitable for sustainable forest management of small study areas, the transfer 

to larger areas presents a significant challenge. At the national or sub-national level, the use of satellite 

data for updating forest information systems remains rather uncommon. 

However, due to organizational realignment of forest survey programs, forestry administrations in 

Germany are increasingly challenged to adopt innovative information retrieval concepts. The German 

federal state of Rhineland-Palatinate (RLP) decided to transfer its current forest information system to a 

new architecture that is better able to serve the needs of centralized inventory and planning services, 

down to the level of forest districts and associated field staff. The integration of Earth observation (EO) 

data products is primarily seen as a periodically recurring task of updating information about a forested 

area and forest type, and of mapping tree species distribution, estimating timber volume, as well as 

describing forest structure. 
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In the course of developing this system, we introduced a new approach to produce differentiated forest 

information products at state level, which meet the information needs of the RLP forest authorities and 

can be readily integrated into operational forest survey methods. These forest information products are 

organized into five hierarchical information levels (subsequently termed forest information layer, FIL): 

FIL 1 forest/non-forest map, FIL 2 forest type map, FIL 3 tree species distribution map, FIL 4 tree species 

distribution and stand development stage map, and FIL 5 stand characteristics. To overcome current 

limitations in achieving acceptable mapping results within topographically heterogeneous and structurally 

complex forest systems in Central Europe, a spatially adaptive classification approach was developed. 

An initial pilot study [18] examined the feasibility of deriving forest information layers for a Central 

European low-mountain range, considering high variation in forest communities, forest structure, and 

the fragmentation of the forested area. That first experiment was limited to an area of approximately 

5300 km2 in the northern part of RLP, and used a bi-temporal combination of ASTER data. The use of 

a spatially adaptive classification approach achieved the required accuracy levels, with overall accuracy 

of 87% for classifying five main tree species and of 74% for classifying tree species and development 

classes (15 classes in total). Compared with conventional classifiers, the results demonstrated a significant 

increase in classification accuracy of the order of 12 percentage points. Consequently, the approach has 

been evaluated as suitable for integration into operational forest management procedures [18]. 

In this paper, we describe the application of the developed approach at the regional scale (federal state 

level) as well as the further adaption of the design to meet the information needs of the state forest service. 

1.2. Information Need for Operational Sustainable Forest Management in the Federal State of 

Rhineland-Palatinate (Germany) 

The state forest service of RLP is responsible for forest surveys, forest monitoring programs, forest 

planning, and sustainable management [19]. The service collects, stores, and provides data on ecological 

site condition; landscape and soil vulnerabilities; and about various forest stand attributes such as detailed 

species composition, age information, timber volume, and further management-relevant features. In RLP, 

forest surveys are conducted at stand level by measuring individual trees and sample plots, complemented 

by analysis of aerial photographs and expert knowledge [20]. To date, forest inventories rely on  

time-consuming field surveys that are conducted at 5- to 10-year intervals. As a result of increasing costs 

and limited or decreased staff resources, there is a strong interest in exploring remote sensing-based methods 

to complement or even replace existing survey methods [21,22]. 

The state authorities determine the strategic focus on detailed and high-spatial-resolution forest 

information layers. Only these are suitable as direct input for sustainable forest planning and for optimizing 

field survey efforts. To prepare for the integration into a digital forest information system and to  

allow the multipurpose use of the derived data, a hierarchical structure of the forest information layers 

was defined. The layers are intended to provide information on specific forest characteristics and  

should complement existing forest information data and systems. The first FIL distinguishes only 

between forest and non-forest. The second FIL is focused on forest types (deciduous or coniferous), 

while the third FIL differentiates high-resolution tree species distribution maps. The fourth FIL comprises 

high-spatial-resolution tree species distribution maps at stand- and within-stand level and additional 

assignment into three development classes. The most detailed information layer is FIL 5 (which is not 
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considered in this study), which characterizes forest stands by tree species distribution, forest structure, 

forest development stage, forest volume, tree height, and forest cover. 

Within this context, the federal forest service of RLP defined the following data and  

mapping requirements: 

- Update of existing forest/non-forest mapping products at a minimum mapping unit of 100 m2 

accommodating the needs of multiple authorities and users. 

- Forest type delineation at a minimum mapping unit of 100 m2. 

- Spatial discrimination of five primary forest cover classes in RLP (Sessile and Pedunculate oak, 

European beech, Norway spruce, Douglas fir, and Scots pine) and three tree species 

development stages (stand qualification, dimensioning, and maturing). 

- Derivation of spatially explicit forest attributes at stand level (e.g., tree height, stand structure, 

total biomass, timber volume). 

Particular attention should be paid to the following points: 

- Direct integration of existing forest inventory data as reference information. 

- Use of remote sensing-based mapping and inventory techniques compatible with standard field 

survey methods currently conducted in RLP. 

- Product consistency throughout the state of RLP. 

- High level of classification accuracy is required. 

- Approach must be based on satellite systems that provide reliable data availability. 

- Processing chain must be capable of being integrated into operative forest management. 

1.3. Objectives 

Based on the information need and the map product requirements specified by the state forest 

authorities, and taking into account challenging natural and forestal conditions (caused by climatic gradients 

and gradually changing site characteristics, as well as inherited management decisions and silvicultural 

practices applied in adjacent forests under different ownership or custody), the following objectives have 

been defined: 

- Design and application of an optimized data processing chain (geometric and radiometric 

corrections, data fusion techniques, classification algorithms) capable of handling data from 

multiple sources (multispectral satellite data from different sensor systems, official forest 

inventory data). 

- Integration of additional support data sets (airborne LiDAR, digital aerial orthophotos) for 

testing the validity of state forest inventory data used as reference information. 

- Production of satellite-based forest information layers for the complete federal state of RLP, 

comprising maps of forest/non-forest distribution, forest types (coniferous vs. deciduous), tree 

species at stand level, and tree species enhanced by three corresponding developmental stages. 

- Integration of the derived products in operational forest management tasks. 
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2. Study Area and Data 

2.1. Study Area 

The federal state of RLP is located in the west of Germany (see Figure 1). The state covers an area  

of about 19,850 square kilometers or 5.6% of the total geographical area of Germany. The landscape  

is dominated by the large Rhine River valley (crossing the state from southeast to northwest), the steep 

Moselle River valley, and the low mountain ranges of Eifel, Hunsrück, Westerwald (part of the Rhenish 

Hercynian uplands) and the Palatinate Forest low-mountain region. While the upper Rhine plain supports 

intensive agriculture, the low mountain ranges are characterized by steep, forested hills with elevations 

up to 800 m above sea level, and high plateaus dominated by farmland and pasture [23]. 

 

Figure 1. Study area: Detailed map of the study area highlighting the spatial distribution of 

forested areas (green). 
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With a total forest cover of more than 8330 square kilometer or 42% of the state’s total area,  

RLP together with the state of Hesse, are Germany’s most densely wooded states. In RLP, the forest is 

predominantly in public ownership (approximately 75%). The most representative tree species are: 22% 

Norway spruce (Picea abies (L.) H. Karst.), 21% European beech (Fagus sylvatica L.), 20% Sessile oak 

(Quercus petraea (Mattuschka] Liebl.) and Pedunculate oak (Quercus robur L.), 11% Scots pine (Pinus 

sylvestris L.), and 6% Douglas fir (Pseudotsuga menziesii (Mirbel) Franco) [24]. 

The sub-Atlantic climate in the investigated area is modified by an altitude-related gradient. Mean 

annual rainfall ranges from 500 (upper Rhine plain) to 1300 mm (Hunsrück low-mountain range) and 

mean annual temperature from 6 to 11 °C [25]. According to the variability of climate and the natural 

environment, the study area is divided into 16 ecoregions with different forest growing conditions [23]. 

The growing season (defined as the period when daily mean temperatures exceed 10 °C on consecutive 

days) varies on average from 140 days in the mountainous parts to about 175 days in the river valleys. 

This leads to relatively large differences in phenology of forest species across the study area [23,25]. 

2.2. Data 

2.2.1. Satellite Data 

Satellite data suitable for the derivation of detailed forest information layers at state level must meet 

the following requirements: sufficient spectral resolution to ensure reliable differentiation of forest types 

and tree species [26]; high spatial resolution to accurately depict small forest stands and adequately 

characterize forest biophysical parameters [27]. Additionally, the system should provide frequent repetition 

cycles, because phenology information inherent in multi-temporal observation is a key asset for separating 

otherwise spectrally similar species [28–30]. In the pilot study [18] it became apparent that in order  

to differentiate between deciduous tree species, satellite images from at least two phenological stages 

are necessary: foliage formation and fully developed foliage. The start of the phenological phase of 

foliage formation is sensitive to regional climate conditions with substantial variation within and among 

species [31,32]. In the mountainous regions of South and Southwest Germany, foliage formation of European 

Beech starts significantly earlier (on average 7 days) than Sessile Oak [23,33,34]. Most importantly,  

the leaf development phase (bud burst followed by the development of small leaves with folded  

blades and subsequent development of small unfolded leaves) with significant differences between  

both species groups [35]) lasts two to three weeks and thereby creates a substantial time window for the 

acquisition of satellite imagery with high discrimination capacities. At present, several satellite systems 

are able to fulfill the requirements listed above almost perfectly (e.g., SPOT-4/5/6/7, RapidEye, and the 

forthcoming Sentinel-2). 

To map RLP forest, we initially used 28 SPOT-5 and 4 SPOT-4 scenes, attempting to cover the  

two most important phenological stages for forest species discrimination. The multispectral images were 

acquired with three bands: visible green (500–590 nm), visible red (610–680 nm), and near-infrared 

(780–890 nm) at 10-m spatial resolution, combined with shortwave-infrared band (1580–1750 nm) 

acquired at 20-m spatial resolution [36]. Due to cloud cover and competition among customer orders, 

the extension of both acquisition periods and the inclusion of two additional RapidEye scenes, covering 

the central part of the state during the phenological stage of foliage formation, became necessary. The 



Forests 2015, 6 1988 

 

 

RapidEye sensor is equipped with a multispectral push broom imager with spatial resolution of 6.5 m 

that captures data in five spectral bands: visible blue 440–510 nm), visible green (520–590 nm), visible 

red (630–685 nm), red edge (690–730 nm), and near-infrared (760–850 nm) [37]. Details of the scenes 

used are shown in Table 1; spatial extent, overlap and cloud cover are mapped in Figure 2 for both 

acquisition periods. 

Table 1. Available satellite data and resulting processing unit characteristics. 

Processing 

Unit 
Early-Spring Acquisition Period Summer Acquisition Period Details 

ID 
Area 

(km2) 
Acquisition date Sensor 

Incidence 

angle 

Acquisition 

date 
Sensor 

Incidence 

angle 

Total 

cloud 

cover 

(%) 

Forested 

area (%)

1 1673 24/04/2011 SPOT4 8.3 31/07/2008 SPOT5 19.8 1.9 44 

2 315 25/04/2011 SPOT5 29.7 31/07/2008 SPOT5 19.8 0.7 31 

3 752 05/05/2008 SPOT5 20.6 16/08/2009 SPOT5 19.6 1 54 

4 755 10/05/2008 SPOT5 14.2 16/08/2009 SPOT5 19.6 0.1 23 

5 1294 25/04/2011 SPOT5 29.7 31/07/2008 SPOT5 19.7 1 40 

6 1510 05/05/2008 SPOT5 20.6 15/07/2008 SPOT5 22.5 12.3 35 

7 553 05/05/2008 SPOT5 20.6 16/08/2009 SPOT5 19.6 12.9 36 

8 137 22/05/2010 SPOT5 25.1 16/08/2009 SPOT5 19.6 0 18 

9 1977 05/05/2008 SPOT5 20.6 31/08/2009 SPOT5 4.7 1 41 

10 1108 06/04/2010 RapidEye 3.8 03/07/2006 SPOT5 13.9 0 42 

11 1132 18/04/2010 SPOT5 27.7 03/07/2010 SPOT5 21.2 6.3 51 

12 1288 25/05/2009 SPOT5 17.1 05/08/2009 SPOT5 3.4 0.8 5 

13 833 06/04/2010 RapidEye 3.8 07/08/2010 RapidEye 7.6 0 53 

14 287 06/04/2010 RapidEye 3.8 08/07/2010 SPOT5 22.4 0 46 

15 532 06/04/2010 RapidEye 3.8 08/07/2010 SPOT5 22.4 0 43 

16 423 06/04/2010 RapidEye 3.8 07/08/2010 RapidEye 7.6 32.2 37 

17 1593 20/04/2009 SPOT4 17.2 31/08/2005 SPOT5 1.3 0.2 20 

18 611 20/04/2009 SPOT4 17.2 31/08/2005 SPOT5 1.3 0.9 74 

19 869 10/05/2008 SPOT5 10.8 31/07/2008 SPOT5 19.8 1 36 

20 459 20/04/2009 SPOT4 17.2 05/09/2005 SPOT5 2.6 3 74 

21 575 07/04/2010 SPOT5 12.3 05/09/2005 SPOT5 2.6 1.3 80 

22 519 07/04/2010 SPOT5 12.3 14/07/2010 SPOT5 10.8 6.4 32 

Due to the extended acquisition periods in combination with cloud coverage and the varying observation 

angles of the SPOT satellites, it was impossible to classify the whole study area in one process, as intended. 

Instead, the considered satellite data, representing the phenological stage of foliage development and 

full foliage, created a mosaic of intersecting footprints that resulted in 22 individual bi-temporal data 

stacks (see Figure 2c). The stacks were compiled individually according to the phenological situation in 

the processing units. Thus, the annual variation in phenology during the observation period, especially 

that of early foliage development, resulted in limited comparability of the extracted reference signatures 

across the 22 data stacks, ranging in size from just over 140 km2 ha to more than 1900 km2 (average size 

875 km2). Consequently, separate processing of the data stacks as individual processing units was necessary. 
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Figure 2. (a) Available satellite data for the early-spring acquisition period, representing  

the phenological stage of foliage development; (b) Available satellite data for the  

summer acquisition period, representing the phenological stage of full foliage; (c) Resulting 

processing units. 

2.2.2. Forest Inventory Data 

The state forest authorities provided detailed forest inventory data for all state and communal forests, 

through a digital forest-information-system. This information system documents approximately 75%  

of the state’s forests. The inventory data are collected as part of the regular forest surveys carried out at  

5- to 10-year intervals, complemented by expert assessment at stand level [20]. The exact geolocation 

and extent are stored in a GIS database, associated with numerous silvicultural attributes (such as species 

composition, stand structure, tree development stages, stand density, and forest volume) and additional 

site characteristics (such as growing conditions, geology, soil, climate, and stand history). For each tree 

species within a forest stand, age class, stand structure and silvicultural measures (such as thinning operations 

and selective cuttings) are described by a multifunctional definition, which is based on the following distinct 

development stages: establishment (stand foundation and establishment of seedlings), qualification 

(thickets), dimensioning (crop tree definition and selective thinning), and maturation (timber stage). A 

forest stand may include up to 16 different tree species; on average, it comprises two or three main tree 

species in mixtures. In this study, we focus on five main stand-forming tree species that collectively represent 

more than 80% of the total forest in RLP [38]. Stand polygons range in size from 0.05 to 80 ha (average 

3.5 ha). In total, more than 185,000 individual stand descriptions are stored in the forest inventory database. 

The database provided by the state forest administration is primarily designed for forest management 

purposes. Accordingly, the within-stand distribution of tree species and development stages are only 
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qualitatively expressed in the form of estimated area proportions but are not explicitly localized within 

the stand, which is seen as a major limitation of the data [20,39]. 

2.2.3. Supplementary Data 

Airborne LiDAR data are available for the entire federal state. The data were acquired by the state’s 

survey authorities during a ten-year period. The state survey agency provides first-return points and 

filtered ground points with an average point density of 4 m−2. A 1-m resolution digital surface model 

(DSM) and a digital ground model (DGM) were calculated from the point data. A canopy height model 

(CHM) was created by subtracting the digital surface model from the digital surface model [40]. The 

acquisition of LiDAR data over the complete federal state was conducted over a period of 10 consecutive 

years, with the consequence of substantial differences in data quality (e.g., point densities) between the 

individual data segments. This did not allow to use LiDAR-data as a consistent information layer in the 

pixel-based classification. However, the LiDAR-derived canopy height information proved to be extremely 

useful to quality-check and adjust inventory database entries on stand development phases. Additionally, 

current high-spatial-resolution aerial imagery, topographic and thematic maps, as well as the official 

topographical cartographic information system are available for the study area. 

3. Data Preparation 

Considering the requirements defined by the state forest service, the approach must be capable  

of being integrated into operative forest management. Therefore, entire processing chain is designed  

to optimize the available data (satellite and reference) to achieve the required level of accuracy, and to 

integrate the preparation and classification methods into a single processing chain (see Figure 3). 

 

Figure 3. Schematic of the spatially adaptive classification approach to deriving high-resolution 

forest information layers. 
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3.1. Preprocessing of Satellite Data 

With regard to the subsequent mapping and classification processes, the following steps were applied 

to optimize the quality of the SPOT-4/5 and RapidEye data. 

3.1.1. Resolution Enhancement 

Multispectral satellite data with medium spatial resolution have only been of limited use for the 

identification of species compositions, especially in forests with high tree species diversity [41,42]. 

Therefore, the reduced spatial resolution of the SPOT-4/5 infrared band was adjusted to match the 10-m 

pixel size of the visible and near-infrared bands (1–3). The resolution enhancement was performed using 

a local correlation approach that preserves the spectral characteristics of the low-resolution input band 

and transfers the textural properties of the high-resolution reference to the SPOT-infrared channel [43]. 

This approach was found to be appropriate in an independent comparison study [44]. The resulting enhanced 

spatial resolution is expected to improve the identification of small forest structures. For RapidEye data, 

no further resolution enhancement was necessary. 

3.1.2. Geometric Registration 

Multi-temporal image analysis requires accurate georeferencing and correction of distortions.  

The georegistration of SPOT-4/5 and RapidEye data utilizes a digital elevation model to compensate 

relief-dependent pixel displacements. Especially in the mountainous regions of the study area,  

relief-dependent distortions could degrade the classification results [45,46]. To ensure sub-pixel accuracy, 

an automated search algorithm was used to identify large sets of ground control points [47]. The resulting 

ortho-projected images were transformed to the local coordinate system (Gauss-Krüger Zone 2). Sub-pixel 

accuracy was achieved, fulfilling all requirements for multi-temporal image analysis and guaranteeing 

efficient integration of the external geo-databases. 

3.1.3. Atmospheric Correction 

A major problem for mapping forest types in mountainous regions is radiometric distortion of  

the measured signal due to topography-dependent illumination effects [48–50]. The magnitude of these 

effects varies as a function of solar inclination and azimuth as well as slope incline and aspect [51,52]. 

In the mountainous regions of our study area, these effects are particularly pronounced at Eifel, Hunsrück, 

and Westerwald, where major morphological features extend almost orthogonally to the illumination 

azimuth (see Figure 1). Since simple topographic normalization strategies such as Lambert cosine correction 

can lead to overcorrection effects, the concurrent correction of topographic and atmospheric influences, 

explicitly accounting for direct and diffuse irradiance fluxes, is considered one of the most efficient 

strategies for compensating terrain-dependent radiometric distortions [53–55]. The applied radiometric 

correction scheme comprises sensor calibration using adjusted calibration functions and full radiative 

transfer modeling. The integrated radiometric correction was performed using AtCPro (Atmospheric 

Correction and Processing of Multi- and Hyperspectral Data) software, which is based on the 5S model 

by Tanré et al. [56]. AtCPro considers direct and diffuse radiance terms, which are modified according 

to local elevation, slope and aspect derived from the digital elevation model [55]. Several studies confirm 
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that the concurrent correction of topographic and atmospheric influences leads to substantial improvements 

in classification results [51,57–59]. 

3.2. Forest Inventory Data Processing 

The forest inventory data provided by the state forest administration is primarily designed for forest 

management purposes. With the requirement to develop an approach with operational capacity for repeated 

state forest inventories, it was essential to establish an optimized processing scheme to guarantee the 

direct integration of available forest inventory data into the classification process. The following measures 

were taken to achieve this objective. 

3.2.1. Screening of Suitable Training Sites 

Pure stands occur only occasionally in near-natural forests; consequently, all available forest inventory 

data had to be screened for potential training sites. The tree species variability within the different stands 

precludes immediate integration of forest inventory information for generating representative training 

data for the classification process (stand distribution of tree species and tree development stages are only 

qualitatively expressed in the database in the form of estimated area proportions, but are not explicitly 

georeferenced within a stand). Consequently, spatial discrimination of suitable training areas representing 

specific tree species and development stages was necessary.  

From the available forest inventory data, GIS-based selection was performed, grouping forest stands 

into 15 thematic classes according to main tree species and development stages. To be selected, a specific 

class had to be the dominant species in terms of areal coverage within the stand. For each selected stand, 

image subsets of the principal-component-transformed satellite data set were extracted by intersecting 

the image with the corresponding stand geometries. Each of the image subsets was spatially segmented 

into five spectral subclasses by applying an ISODATA clustering algorithm. Following an approach 

similar to the method of guided clustering presented by Bauer et al. [60] and Reese et al. [61], it is possible 

to identify the largest spectrally homogeneous areas within each stand. Based on transformed divergence 

values, high-spatial-resolution aerial imagery, forest inventory descriptions, and field measurements, the 

derived clusters were labeled either as representative of one of the fifteen thematic classes or as ambiguous. 

Thereby, all areas composed of mixed canopies, those at stand boundaries, or affected by other disturbances 

were described as ambiguous. All accepted clusters were marked as potential training areas and stored 

in a GIS database. The guided clustering excluded approximately 40% of the GIS-selected polygons for 

the tree species classes Norway spruce and Douglas fir, and up to 60% for Sessile and Pedunculate oak, 

European beech, and Scots pine. For further use, only the most homogeneous and spectrally representative 

areas within a forest stand were retained in the final GIS-database. 

3.2.2. Determination of Training Data 

For the final extraction of spectral references, a 100 m × 100 m regular sampling grid was superimposed 

on the identified potential training areas. By using a regular point grid, spatial autocorrelation among 

neighboring reference pixels was avoided [62,63]. Spectral reference information to represent the  

15 thematic classes was extracted from more than 540,000 reference points and stored in a GIS-database. 
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This resulted in a consistent set of reference data for each of the thematic classes. The class descriptors 

were characterized by approximate normal distributions. 

3.2.3. Verification of Training Data 

To verify that the derived training data represent not only the correct tree species but also the appropriate 

development stage, a final data quality check was performed. Due to lack of timeliness of part of the forest 

inventory data, as well as short-term events (silvicultural treatment, storm fall, or insect calamities) it 

was felt necessary to verify whether the database entries on development stages were consistent. Comparison 

with stand-wise statistics of crown height distribution derived by the airborne laser scanning ensured 

that all training data were within the expected tree height distribution for a specific development stage. 

4. Methods 

This section presents the methods used to derive state-wide forest information layers for RLP, 

comprising an up-to-date forest/non-forest map and high-spatial-resolution forest type maps and tree 

species distribution maps. Additionally, it presents a validation concept to ensure the required levels of 

accuracy, and to explore the implications for further developments and adaptations. 

4.1. Derivation of High-Resolution Forest Information Layers 

4.1.1. Forest/Non-Forest Stratification 

To derive a first forest information layer and focus the subsequent processing steps only on relevant 

areas, the satellite imagery was merged into a multi-phenological data-stack, and then stratified into forest 

and non-forest areas via unsupervised classification using the ISODATA algorithm [64]. The resulting 

spectral classes there assigned to the informational classes forest and non-forest by means of high 

resolution aerial imagery. 

4.1.2. Forest Type Map 

To fulfill the increasing need for information on the multiple roles of forests, large-area forest type 

mapping projects should become a key component in providing accurate and up-to-date information on 

the spatial distribution and species composition of forest ecosystems. Several projects have mapped 

transnational or even pan-European forest resources [15,65–67]. In order to evaluate the potential 

advantages of adaptive classification methods in combination with high-spatial-resolution data and complex 

satellite data preprocessing to increase the map accuracy of large-area forest type maps, a tree type map 

was derived from our spatially adaptive classification product (see Section 4.1.3). For this purpose the 

thematic classes Sessile and Pedunculate oak, European beech, Norway spruce, Douglas fir, and Scots 

pine (in the tree species development stages stand qualification, dimensioning, and maturing) were 

reclassified into the forest type classes deciduous forest and coniferous forest. 
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4.1.3. Map of Tree Species Distribution and Tree Species Development Stages 

The temporal and spatial consistency of reflectance properties is of particular importance when 

addressing large study areas characterized by different ecoregions [68]. In RLP, spatially variable growth 

conditions (depending on regional climate, soil, silvicultural practice) cause the same forest cover class 

to exhibit different spectral responses at the time of observation, particularly during early phenological 

development stages. During later phenological stages, this spectral variability becomes less relevant because 

canopy development is largely completed. However, the necessity to consider multi-phenological satellite 

data in order to achieve the required level of classification accuracy, and additional regional differences 

caused by local variances in silvicultural practice (especially between public and private forests) impose 

the need for regionally adapted procedures. In order to overcome these limitations on classifier performance, 

a spatially adaptive classification approach was introduced [18]. 

Rather than attempting to derive homogenous strata from the satellite imagery, the spatially adaptive 

classification generates an efficient organizational structure and ensures flexible access to the available 

reference data. This procedure avoids additional preliminary processing steps and ensures access to the 

whole training dataset. For this study, the organizational design was based on a regular 10 km × 10 km 

grid, superimposed onto RLP. Thereby, each of the 10 km × 10 km quadrants represents a separate spatial 

reference unit, within which the available training data are used to parameterize the classifier. Considering 

the preconditions (training data descriptors were characterized by approximate normal distributions), the 

maximum likelihood classifier appears an appropriate choice. Spatially adaptive parameterization accounts 

for existing environmental, phenological, and management gradients across the spatial units. The actual 

size of the sampling quadrants was selected to allow a sufficient amount of training data in each quadrant 

for most of the thematic classes. According to Swain and Davis [69], the per class number of training 

samples in a maximum likelihood classification should not be less than ten times the number of dimensions 

in the feature space (i.e., 10 × 4 bands = a minimum of 40 samples). 

Spatially adaptive classification involves the following steps (see Figure 4): 

(1) Identification of the local reference unit within the unknown forest-pixel to be classified; 

(2) Verification of whether sufficient reference data per thematic class are available within  

this unit; 

(3) If so, these data are used directly to parameterize the maximum likelihood classifier; 

(4) Otherwise (reference data are insufficient for one or more thematic classes within the starting 

reference unit), the considered search area for the respective thematic class is expanded by 

considering neighboring reference units;  

(5) In case a thematic class is still not represented by sufficient data, the training procedure falls 

back on a basic reference set derived from the entire reference database; 

(6) Derivation of final maps uses a maximum likelihood classification based on locally optimized 

training data. 
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Figure 4. Flowchart of the spatially adaptive classification approach. 

For further details on the design and implementation of the spatially adaptive classification approach, 

see Stoffels et al. [18]. 

4.2. Validation 

Traditional statistical methods use an independent validation dataset to assess the accuracy of  

derived forest cover maps. Presented with the challenges of operational sustainable forest management, 

statistical accuracy assessment can only assess the quality of the approach, not its suitability for inclusion 

in forest inventory schemes. 

To assess the accuracy of the resulting forest information layers, different sets of validation points 

were selected. Independent data from the official topographical cartographic information system and the 

federal forest survey were used to assess the accuracy of the forest/non-forest stratification and forest 

type mapping. A probability sampling design was chosen to validate the accuracy of the tree species 

distribution map and the tree species development stages. The validation points were derived using 

delineation of well-defined stands from the forest inventory GIS database. Within the selected stands, 

more than 1500 points of interest were randomly selected, considering the requirements of proportional 

adjustment. Every point of interest was characterized by forest inventory data and verified by visual 

inspection of very high spatial resolution aerial imagery. Points that could not be unambiguously assigned 

to one stand (e.g., points in mixed stand, points at stand boundaries) were excluded from the sample. 
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The forest information layers were analyzed by means of confusion matrices [70,71] that were  

used to calculate producer’s accuracy, user’s accuracy, overall accuracy [72,73], and Cohen’s kappa 

coefficient [74,75]. 

To account for the challenges of operational sustainable forest management and to assess the potential 

for integrating the derived maps into current forest inventory schemes, a validation workshop was held 

with forest assessors. These forest survey experts reviewed the resulting data and maps with a special 

focus on the stand-specific accuracy of tree species distribution maps, the scale of the resulting maps, 

applicability to field surveys, limitations on practical application of the product, and further developments. 

5. Results and Discussion 

5.1. Forest/Non-Forest Stratification 

The derived first FIL, representing state-wide forest/non-forest stratification, was validated using 

6274 points from the official RLP topographical cartographic information system, achieving an overall 

classification accuracy of more than 93%. The forest/non-forest map represents a forest information 

layer that is capable of updating the topographical cartographic information system (e.g., including 

newly-afforested areas or excluding new development areas). 

5.2. Forest Type Stratification 

A forest type map (FIL 2) was derived from our spatially adaptive classification product to evaluate 

the potential for more accurate large-area forest type mapping via adaptive classification methods combined 

with high spatial resolution data and complex satellite data preprocessing. For direct comparison,  

two freely available pan-European forest type products were selected: the European Commission’s  

Joint Research Center (JRC) Forest Type Map 2006 [15] and the European Environment Agency’s GIO 

(GMES/Copernicus initial operations land) land High-resolution Layers (HRL) Forest Type product [76]. 

JRC provides its forest type map (FTYP 2006) at 25 m spatial resolution (the proposed INSPIRE grid 

standard) containing broadleaved and coniferous categories. Inputs consisted of high-spatial -resolution 

SPOT4/5 and IRS-LISS-3 satellite imagery (acquired in 2005 and 2006) and multi-temporal MODIS 

data. The map product is freely available from the JRC website (http://forest.jrc.ec.europa.eu/download/ 

data/forest-data-download/). The European Environment Agency’s high-resolution forest type map is 

available at 20 m spatial resolution. The forest type layer was mapped on the basis of high spatial  

resolution IRS-P6/RESOURCESAT and RapidEye imagery, acquired in 2011 and 2012. Additionally, 

medium-resolution IRS-A WiFS data were used. The forest type product maps coniferous and  

broadleaved trees at a minimum mapping unit of 0.5 ha [77]. The product is available as a web mapping  

service from the Copernicus Land Monitoring Services website (http://land.copernicus.eu/pan-european/ 

high-resolution-layers/forests). 

Validation of Forest Type Information Layers 

Based on the forest type mapping results, Table 2 shows the percentages of tree species for the whole 

study area compared with those estimated during a state-wide forest survey in 2008 [24] and JRCs 2006 

forest-type mapping product [15]. 
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Table 2. Proportional coverage of forest types for Rhineland-Palatinate from official  

forest survey estimation [78] compared with the JRC forest-type map, Copernicus HRL, and 

the proposed spatially adaptive classification. 

Forest Type 
Forest 

Survey RLP 
JRCs Forest-Type 

Map 2006 
Copernicus  

High-Resolution Layers 
Spatially Adaptive 

Classification 

Deciduous Forest  60% 59.6% 67.9% 53.8% 
Coniferous Forest 40% 40.4% 32.1% 46.2% 

The proportional coverage of JRCs forest type map from 2006 almost perfectly matches the official 

survey estimation of 2012. The derived percentages of both Copernicus HRL and our classification 

deviate from the state forests survey values by 7.9% and 6.2%, respectively. However, the comparison 

does not take into account the spatial distribution and fragmentation of the forested area. The state-wide 

terrestrial forest inventory (2012–2013) was used to assess the accuracy of the predicted forest types. The 

state forest inventory was conducted as a supplement to the national forest inventory (Bundeswaldinventur 3), 

based on a 2 km × 2 km cluster sampling grid. Each cluster is represented by a square of 150 m side 

length with sampling plots in the four corners, on which angle-count sampling and several plot measurements 

were conducted [79]. To assess the accuracy of forest type, only data on tree species distribution were 

used. If a sampling plot was characterized by more than 80% deciduous trees it was labeled “deciduous”; 

if it was covered by more than 80% coniferous trees it was labeled “coniferous.” All other ambiguous 

sampling points were excluded from the accuracy assessment. From the resulting 4480 validation points, 

only those covered by the forest type maps were considered for further analysis. Because of cloud cover, 

areas not covered by the resulting maps, and differences in spatial resolution, the number of validation 

points used was 3940 for the spatially adaptive classification product, 4149 for JRCs forest-type mapping 

product, and 3995 for the Copernicus high-resolution layers. 

The forest type map derived from our spatially adaptive classification achieved a substantially higher 

overall accuracy of 90.72%, compared to 81.18% for the JRC product and 78.48% for Copernicus (see 

Table 3 for further detail). User and producer accuracies for both forest types differed considerably 

depending on which map product was examined. Overall, user and producer accuracies are higher for 

the spatially adaptive classification (Deciduous forest: 90.93% and 89.79% for user’s and producer’s 

accuracy, compared to 85.80% and 72.25% for JRC, and 92.34% and 74.55% for Copernicus, 

respectively. Coniferous forest: 90.51% and 91.58% for user’s and producer’s accuracy, compared to 

72.33% and 85.84% for JRC, and 70.86% and 90.91% for Copernicus, respectively). 
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Table 3. Summary of forest-type validation (based on 4480 validation points). 

 

JRCs Forest-Type 
Mapping Product 

Copernicus  
High-Resolution Layers 

Spatially Adaptive 
Classification 

Error of Error of Error of 

Omission Commission Omission Commission Omission Commission

Deciduous Forest 27.75 14.20 25.45 7.66 10.21 9.07 
Coniferous Forest 14.16 27.67 9.09 29.14 8.42 9.49 
Overall Accuracy 78.48% 81.18% 90.71% 

Area covered 100% 91% 96% 

Figure 5 shows map views of all three forest type maps in comparison with high spatial resolution 

aerial imagery of a densely forested area in the Hunsrück low-mountain range. The area is covered with 

mature deciduous and coniferous trees and has not changed in composition or structure since 2006. High 

map accuracy and the spatial resolution of 10 m × 10 m leads to good spatial consistency with the forest 

type map derived from of our spatially adaptive classification. In this case, the 25 m × 25 m spatial 

resolution of the JRC map is not suitable for mapping small-scale forest structures. 

 

Figure 5. Map views of JRC forest-type map 2006, Copernicus high-resolution layers (forest 

type), and the spatially adaptive classification product in comparison with high spatial resolution 

aerial imagery of a densely forested area in the Hunsrück low-mountain range. 
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5.3. Tree Species and Tree Development Stages 

Based on the spatially adaptive classification, a forest cover map at stand level was produced for RLP. 

Despite the use of 22 individual processing units, good consistency of the mapping results was obtained 

for most of the processing units. No (or only marginal) inconsistencies in the classification results were 

detected at the boundaries of adjacent processing units. Frequent cloud cover prevented the classification 

of some parts of the state, but amounted to less than 3.5% of the total area. The classification results were 

combined with the state forest inventory system and labeled according to the thematic class descriptions. 

Supplemented by topographic and administrative information, the results were transferred as digital and 

paper maps to the state forest service. 

At the state level, the resulting forest cover map shows an ecoregion-dependent distribution of the 

main tree species across the state. At lower elevations, the forest is dominated by deciduous species, 

whereas mixed and coniferous forests dominate the higher elevations of the low mountain ranges (Figure 6). 

At forest district level, the resulting maps are characterized by consistent delineation of forest stand and 

management units as well as tree associations inside these boundaries, as can be verified from GIS data 

and aerial imagery. The consistency of these spatial patterns is valid for the whole study area regardless 

of topographic conditions, forest composition, or silvicultural practice. 

5.3.1. Validation of Tree Species and Tree Development Stage Classification 

Error matrices were used to quantify the mapping accuracy of the spatially adaptive classification. 

While Table 4 summarizes the achieved accuracies at two levels of detail: tree species only; and tree species 

combined with development stage the full confusion matrices are provided as supplementary information. 

The accuracy assessment exclusively considers forested areas within the study area. To assess the accuracy 

of the resulting thematic maps, a probability sampling design was chosen [80]. The number of validation 

points was adjusted based on the relative proportions of the individual forest cover classes in the resulting 

maps, using a minimum of 500 validation points per forest cover class [81]. This proportional adjustment 

leads to an increase of up to 827 validation points for thematic classes with high percentage cover. 

Finally, 8885 points were chosen as validation points for accuracy assessment. 

The previous pilot study [18] achieved an accuracy of 87% for five dominant tree species; when each 

of these five species were additionally differentiated into three age/management classes, 75% accuracy 

was achieved, which thereby satisfied operational requirements. The classification accuracies for the 

entire state did not reach this level. Nevertheless, the classification accuracy at species level (83.51%) is 

still within the quality specification defined by the state forest service, while the accuracy at the detailed 

species and development stage level (54.95%) is considerably worse than that in the first case study. 

Errors of omission and commission varied strongly between the different thematic classes. Focusing on 

tree species level, error of omission varied from 8.2 (Scots pine) to 23.5 (Norway spruce) and the error 

of commission from 8.4 (Norway spruce) to 23.4 (Douglas fir). Focusing on tree species and development 

stage level, error of omission varied from 19 (Douglas fir; stand qualification) to 62.3 (Douglas fir; stand 

dimensioning) and error of commission varied from 15.2 (Scots pine; stand dimensioning) to 65.8 (Douglas 

fir; maturing). This unsatisfactory level of accuracy limits the potential use in operational forest management. 

However, it also needs to be mentioned that the validation data on development stages are not entirely 
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error-free. The main reason is that the data base information on development stages (a dynamically changing 

attribute, which is frequently updated by growth rate extrapolation and not on the basis of direct field 

observation) is not always compliant with the image acquisition dates.  

 

Figure 6. Map of tree species distribution and development stages throughout Rhineland-Palatinate. 
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Table 4. Summary of classification accuracy for Rhineland-Palatinate (%). 

Species Level Species and Development Stage Level Number of 

Validation 

Points 
 Error of  Error of 

 Omission Commission  Omission Commission  

Oak 19.0 16.0 

Oak—stand qualification 43.1 34.7 580 

Oak—dimensioning 49.4 48.0 852 

Oak—maturing 61.1 63.2 614 

European 

beech 
15.5 20.5 

Beech—stand qualification 48.2 38.7 520 

Beech—dimensioning 44.7 51.1 636 

Beech—maturing 33.7 45.0 827 

Norway 

spruce 
23.5 8.4 

Norway spruce—stand 

qualification 
33.8 30.6 500 

Norway spruce—

dimensioning 
50.0 36.0 580 

Norway spruce—maturing 41.1 26.5 566 

Douglas fir 13.3 23.4 

Douglas fir—stand 

qualification 
19.0 62.6 500 

Douglas fir—dimensioning 62.3 39.4 500 

Douglas fir—maturing 41.2 65.8 500 

Scots pine 8.2 14.1 

Scots pine—stand 

qualification 
29.5 15.2 500 

Scots pine—dimensioning 53.4 50.4 500 

Scots pine—maturing 39.7 60.3 710 

Overall accuracy = 83.51% Overall accuracy = 54.95%  

Kappa statistic = 0.79 Kappa statistic = 0.52  

5.3.2. Acceptance of FIL 

In addition to the quantitative accuracy assessments we conducted an evaluation exercise focused on 

the acceptance of the provided mapping products by terrestrial inventory experts. These experts evaluated 

achieved mapping accuracy, possible benefits for practical field work, and the potential incorporation 

into currently applied inventory concepts. The intention was thus to better understand the usefulness of 

the satellite-based tree species distribution maps for optimizing the preparation of surveys and their 

execution in the field. 

The evaluation focused on stand-specific mapping quality, particularly the delineation of mixtures 

and patches within otherwise homogeneous stands. The survey experts used both digital versions and 

paper prints (see Figure 7). The findings were discussed on the basis of joint field surveys, individual 

interviews and a dedicated evaluation workshop. In those areas where our results were in the order of  

75 to 90 per cent, the response was generally positive. It was considered particularly useful to dispose 

of up-to-date information on the spatial pattern of forest stands, including the perception of internal stand 

variability. As a general conclusion it was agreed that the tree species distribution map is of appropriate 

quality, while the mapping results of the development stages still need further improvements. 
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Figure 7. Subset of resulting state-wide forest information layer on tree species distribution 

and development stages, superposed by official forest stand boundaries and with high-resolution 

aerial imagery as background layer. 

5.3.3. Problem Analysis 

The spatially adaptive classification of the five main tree species achieved an overall accuracy within 

the quality specification of the state forest service, whereas the classification of species and development 

stage (overall accuracy of 55%) did not fulfill the requirements. However, feedback from expert field 

evaluations of the derived species and development stage information layer reported high quality and 

good usability in specific forest districts. As mentioned (see Section 2.2.1), the limitations of satellite 

data availability precluded classification of the whole study area in one process. Instead, the considered 

satellite data, representing the phenological stage of foliage development and full foliage had to be processed 

as 22 individual data stacks. This is viewed as a major limitation to the concept of spatially adaptive 

classification. However, the advantages in overcoming classifier deficiency emerging from variable 

ecological growth conditions and management schemes outweigh the restrictions associated with the 

limited spatial extent of the processing units. 
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In order to estimate the product quality at a regional scale and to evaluate the effect of fragmenting 

the study site into 22 processing units, a detailed assessment was performed of the achieved classification 

accuracies within each unit. 

Due to variations in unit size and tree species composition, the amount of validation data was only 

sufficient for a unit-based accuracy assessment at the species level. Figure 8 shows the overall classification 

accuracy achieved for each of the 22 processing units at tree species level. 

 

Figure 8. Overall classification accuracy at tree species level for each of the 22 processing units. 

Compared with the overall classification accuracy of 83.5% for the whole study area, unit-based 

accuracy ranges from 69% (unit 17) to 87% (units 1 and 17); 16 of the 22 processing units achieve overall 

accuracies >75%, corresponding to 70.6% of total forested area within the state. A further three processing 

units obtained accuracies >70%, and only three units had overall accuracies <70%. Nonetheless, Figure 7 

shows distinct regional differences in the mapped processing units. To determine the causes of quality 

deficiencies, Table 5 summarizes the characteristics of each processing unit and their respective accuracies. 

See Supplementary Information 2 for more details about the proportional coverage of the five main tree 

species according to the official forest inventory data. 
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Table 5. Processing unit characteristics and overall classification accuracies. 

Processing Unit Early-Spring Acquisition Period Summer Acquisition Period Details Phenology   

ID 
Area 
(km2) 

Acquisition date  Sensor 
Incidence 

angle 
Acquisition 

date 
Sensor

Incidenc
e angle

Total cloud 
cover (%) 

Forested 
area (%) 

Reported foliage 
formation 

(beech) 

Delay in 
days 

Acquisition delay 
in days 

OA (%) 

17 1593 20/04/2009 S4 17.2 31/08/2005 S5 1.3 0.2 20 13/04/2009 7 1328 87.1 

1 1673 24/04/2011 S4 8.3 31/07/2005 S5 19.8 1.9 44 12/04/2011 12 997 86.3 

2 315 25/04/2011 S5 29.7 31/07/2005 S5 19.8 0.7 31 12/04/2011 13 998 85.5 

6 1510 05/05/2008 S5 20.6 15/07/2008 S5 22.5 12.3 35 30/04/2008 5 –71 82.0 

8 137 22/05/2010 S5 25.1 16/08/2009 S5 19.6 0 18 22/04/2010 30 279 81.5 

7 553 05/05/2008 S5 20.6 16/08/2009 S5 19.6 12.9 36 30/04/2008 5 –468 81.4 

11 1132 18/04/2010 S5 27.7 03/07/2010 S5 21.2 6.3 51 24/04/2010 –6 –76 80.5 

3 752 05/05/2008 S5 20.6 16/08/2009 S5 19.6 1 54 30/04/2008 5 –468 79.8 

4 755 10/05/2008 S5 14.2 16/08/2009 S5 19.6 0.1 23 21/04/2008 19 –463 79.5 

9 1977 05/05/2008 S5 20.6 31/08/2009 S5 4.7 1 41 28/04/2008 7 –483 79.3 

22 519 07/04/2010 S5 12.3 14/07/2010 S5 10.8 6.4 32 23/04/2010 –6 –98 79.1 

21 575 07/04/2010 S5 12.3 05/09/2009 S5 2.6 1.3 80 19/04/2010 –12 1675 76.9 

19 869 10/05/2008 S5 10.8 31/07/2008 S5 19.8 1 36 25/04/2008 15 –82 76.6 

10 1108 06/04/2010 RE 3.8 03/07/2006 S5 13.9 0 42 26/04/2010 –20 1373 76.4 

13 833 06/04/2010 RE 3.8 07/08/2010 RE 7.6 0 53 22/04/2010 –16 –123 75.9 

15 532 06/04/2010 RE 3.8 07/08/2010 S5 22.4 0 43 24/04/2010 –18 –93 74.5 

18 611 20/04/2009 S4 17.2 31/08/2005 S5 1.3 0.9 74 13/04/2009 7 1328 73.1 

14 287 06/04/2010 RE 3.8 07/08/2010 S5 22.4 0 46 24/04/2010 –18 –93 71.9 

5 1294 25/04/2011 S5 29.7 31/07/2008 S5 19.7 1 40 16/04/2011 9 998 70.7 

20 459 20/04/2009 S4 17.2 05/09/2009 S5 2.6 3 74 09/04/2009 11 1323 69.1 

12 1288 25/05/2009 S5 17.1 05/08/2009 S5 3.4 0.8 5 09/04/2009 46 –72 64.1 

16 423 06/04/2010 RE 3.8 07/08/2010 RE 7.6 33 37 25/04/2010 –19 –123 63.3 
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To identify the main reasons why the overall accuracy of >85% could only be achieved for three 

processing units, information about satellite data quality and availability, phenological development, 

processing unit size and characteristics, available forest information data, forest structure, composition, 

and ownership as well as the evaluations of the forestry experts were reviewed. Table 5 lists all processing 

units in descending order of classification accuracy and provides strong explanatory evidence for the 

low classification accuracies of units 16 and 12. For unit 16, the low overall accuracy of 63.3% is attributed 

to high cloud cover in the only available satellite scene during the summer acquisition period. For unit 12, 

the low overall classification accuracy of 64.1% is attributed to low forest cover and corresponding low 

availability of reference data, combined with the late acquisition date during the spring observation period. 

Conversely, the combination of significant size and suitable early spring acquisition date, matching the 

phenological stage of foliage formation, lead to very high overall classification accuracies of 86.3% and 

87.1% for processing units 1 and 17, respectively. Yet, especially the high overall classification result 

of processing unit 8 (81.5%) is not compatible with this scheme. Unit 8 has an area of only 137 km2 and 

there is a phenological mismatch in the satellite data acquisition date during the early spring observation 

period. A detailed survey of the available forest information data and high spatial -resolution aerial imagery 

revealed that the high classification accuracy is driven only by the tree species distribution in this limited 

area. The area, a small tributary valley of the Moselle River, is characterized by an exceptionally high 

degree of deciduous forest cover (around 75%); therefore, the classification accuracy is not comparable 

with other processing units. 

Considering the final evaluation survey, the experience from the data preprocessing, the preliminary 

study [18], as well as the feedback from the forest survey experts, the following were identified as main 

factors influencing the spatially adaptive classification: 

(1) Phenology: Spectral separability of deciduous tree species can be substantially increased  

if the combined satellite observations capture the important phenological stages of foliage 

formation and fully developed foliage [18,26,29,82,83]. To ensure high mapping quality of 

forest information layers, the required satellite observations should be acquired within the 

optimum phenological time-windows. 

(2) Spatial extent of processing unit: To compensate climatic- and management-dependent 

gradients in forest site conditions, the use of a spatially adaptive classification approach seems 

to be a feasible strategy. However, the spatial extent of the processing unit should be large enough 

to ensure sufficient reference data for the classification process and thereby the best possible 

spatial adaptation to the forest characteristics. 

Consequently, the quality of the derived forest information layers depends strongly on the quality, 

consistency, and availability of satellite data. Furthermore, this demonstrates that spatially adaptive selection 

of reference samples offers only a partial solution to the problem of achieving consistent classification 

results across larger areas. It overcomes inconsistencies in the class descriptors emerging from variable 

ecological conditions and management schemes and can handle varying availability of reference data 

within a study area. However, the spatially adaptive organization of the available reference data does not 

consider the additional requirement that for optimum phenological timing of multi-temporal satellite 
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datasets. Our spatially adaptive scheme should be extended and improved to also provide appropriate 

and consistent reference data across areas with different phenological development. 

6. Conclusions 

Satellite-derived forest information layers were integrated with operational forest survey methods  

to support the development of an innovative forest management system for the federal state of 

Rhineland-Palatinate, Germany. Using multi-phenological satellite data, the following forest 

information mapping layers were derived: forest/non-forest, forest type, tree species distribution, and 

tree species with their development stages. All training data were automatically drawn from the official 

forestry data base of the state forest administration. The core concept further included a radiometric  

pre-processing chain with correction of relief-induced illumination artifacts, which is an essential 

prerequisite for coping with topographically complex terrain. The classification strategy used satellite 

observations from two distinctly different phenological stages (springtime leaf emergence vs. summertime 

optimum development of the tree layer) and employed a spatially adaptive version of a maximum 

likelihood classifier [18]. Three of the four resulting forest information layers (FIL 1–FIL 3) achieved 

mapping accuracies suitable for an immediate integration into the operational forest inventory methods, 

whereas the fourth forest information layer (FIL 4: tree species and associated development stages) 

requires further improvements (see Figure 9). However, in areas where an optimum set of satellite images 

was available, forest practitioners and survey experts also confirmed the potential usefulness of FIL 4 for 

preparing and conducting terrestrial surveys. Consequently, also FIL 4 will be considered as an additional 

input to the operational forest inventory concept, provided that satellite systems with suitable acquisition 

capacities become available. 

The results of this pilot project confirm that the operational requirements for mapping accuracies can, 

in principle, be fulfilled. However, the state-wide mapping experiment also revealed that the required 

accuracy largely depends on the availability of satellite observations which cover large areas within the 

optimum phenological time-windows (April/May and July/August). Particularly Sentinel-2, with its 

optimized acquisition strategy, wide-swath observation geometry, high spatial resolution, and extended 

band set, is a prime candidate to overcome the data-dependent limitations identified so far, and thereby 

form the backbone of a future EO-supported forest observatory at federal state level. We therefore 

conclude that the expected improvements in satellite availability will be a milestone towards integrating 

EO products into operational forest inventory and monitoring systems. 
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Figure 9. Conceptual layout of operational forest information layers derived of the 

conclusion of this study. 

Based on the results of this study, it is also envisaged that state-wide forest information layers may 

be integrated into the official geodata infrastructure of RLP to be shared with further potential users; 

such as the state survey or nature conservation agencies (see Figure 9). Additionally, it has been decided 

to continue with the acquisition of high quality airborne LiDAR data in the forthcoming years. It can therefore 

be expected that consistent crown height information will soon be available for the complete federal state 

area, and can then be integrated as an additional classification layer to further improve the FIL products. 
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