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Abstract: Fiscal uncertainties can sometimes affect national continuous forest monitoring 

efforts. One solution of interest is to lengthen the time it takes to collect a “full set” of plot 

data from five to 10 years in order to reduce costs. Here, we investigate using ancillary 

information to partially offset this proposed solution’s negative effects. We focus our 

discussion on the corresponding number of years between measurements of each plot while 

we investigate how thoroughly the detrimental effects of the reduced sampling effort can 

be ameliorated with change estimates obtained from temporally-dense remotely-sensed 

images. We simulate measured plot data under four sampling error structures, and we 

simulate remotely-sensed change estimates under three reliability assumptions, integrated 

with assumptions about the additional unobserved growth resulting from the lengthened 

observation window. We investigate a number of estimation systems with respect to their 

ability to provide compatible annual estimates of the components of change during years 

spanned by at least half of the full set of plot observations. We show that auxiliary data 

with shorter observation intervals can contribute to a significant improvement in estimation. 
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1. Introduction 

Fiscal uncertainties can sometimes affect national continuous forest monitoring efforts. The sample 

designs for these large long-term efforts are often inflexible and can be adversely affected by budget 

shortfalls. When a budget shortfall affects a national forest inventory (NFI) program to the extent that 

it reduces the interpretive ability of the effort, the effects can be wide-ranging and profound. For 

instance, in Europe, there has been a concerted effort to interpret multiple national forest inventories, 

in unison, in order to understand continent-wide (and world-wide) forest population change by 

harmonizing monitoring information at the supra-national level (e.g., Tomppo and Schadauer [1]). 

This harmonization process, as well as monitoring forest population change in general, can be 

hampered severely by national budget shortfalls, which are occurring with increasing frequency. A 

further complication lies in the fact that limitations of capital expenses can be very different in 

different countries. This has led to many different solutions for the problem. In some cases, the scope 

and objectives of the monitoring have been limited by strategies involving a reduction of the number 

of sample plots or an increase in the number of years between measurements of the sample plots. 

Decreasing the number of the plots might be effected randomly over the entire area covered by a 

particular monitoring effort or it might be restricted to areas considered to be of minor economic or 

managerial significance. Reducing the scope or objectives of the monitoring effort can result in the 

collection of a reduced set of variables or in fewer measurements of a particular variable. For instance, 

because the measurement of tree height can be very time consuming, limiting the number of tree height 

measurements is often one of the effected solutions. Increasing the number of years between 

measurements of sample plots can involve all of the plots or only the plots in particular 

subpopulations. In addition, a staggered measurement schedule might be incorporated, such as 

measuring 50% of the plots in one measurement year and the remaining 50% of the plots in another 

one. By this scheme, the number of years between measurements of each set of plots might remain 

unchanged. An extension of this idea, which was intended to result in annually-consistent budgets, led 

to the United States Department of Agriculture (USDA) Forest Service’s panelized annual inventory 

system conducted by the Forest Inventory and Analysis (FIA) Program. Even with this level of 

budgetary planning, further shortfalls can occur. Here, we investigate the effects of one proposed 

solution to a potential budget shortfall for the national monitoring effort conducted by FIA. The 

solution of interest is to lengthen the “cycle”, that is the time it takes to collect a “full set” of plot data 

from five years to 10 years. This solution can have manifold implications, a few of which have been 

discussed in Roesch [2] and Roesch and Van Deusen [3]. 

We use a simulation to investigate how thoroughly the detrimental effects of the reduced sampling 

effort can be ameliorated with change estimates obtained from temporally-dense remotely-sensed 

images. Within the simulation, we use four sampling error structures for the measured plot data and 

three assumptions of applicability of the remotely-sensed image change estimates (ICE). 
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Specifically, our objective is to obtain annual estimates of the components of change, given  

multi-year data collected by temporally-overlapping panels. Van Deusen and Roesch [4] and Roesch 

and Van Deusen [5] explored estimation of the change in forest land classification, in the context of 

the national forest inventory in the United States, while Roesch [6] concentrated on estimation of the 

change in the tree population on land that remains forested throughout the period of interest. The 

current work focuses on land that is forested at some point during a period of interest. Eriksson [7] 

presented a set of definitions for the continuous components of change. In this paper, we subscribe to 

the definitions of Roesch [8], which presented a discrete version of the Eriksson definitions. We define 

entry as the cubic meter volume (or value) of trees as they attain the entry criterion; live growth as the 

annual growth in volume that occurs on trees after a defined entry criterion has been achieved; 

mortality as the volume of trees as they die; and harvest as the volume of trees as they are harvested. 

These population components of change are compatible, that is: 

𝐘𝑡+1 = 𝐘𝑡 + 𝐋𝑡 + 𝐄𝑡 −𝐌𝑡 −𝐇𝑡 (1) 

where: 

Yt = the value of interest at the beginning of year t; 

Lt = growth in the value of interest on live trees during year t; 

Et = the value of interest on live trees as they enter the population during year t; 

Mt = the value of interest on trees as they die during year t and; 

Ht = the value of interest on trees as they are harvested during year t. 

It has often been argued that because these components are compatible, the estimators of these 

components should also be compatible. The recursive estimation systems that we explore here are 

compatible and are compared to non-recursive estimation systems. For clarity and without loss of 

generality, assume that the estimands of interest are the cubic meter volume per hectare of all live trees 

in a fixed area in each component of change category during each year of a multi-decadal period. The 

plot sampling design considered here consists of a number (g) of mutually-exclusive, spatially-disjoint 

and temporally-successive panels. The first panel to be measured is selected by locating a random 

point within the population area. One panel per year is then measured, in a predetermined order of 

succession, for g years. After the entire set of panels has been measured, the sequence reinitiates. 

Bechtold and Patterson [9] discuss an example of this type of design. Various statistical aspects of this 

type of design have been discussed by McCollum [10], Van Deusen [11], Roesch et al. [12] and  

Van Deusen [13], among others. This panel design provides remeasurement observations that are 

spatially disjoint and temporally overlapping. Usually, analysts are interested in a temporal scale that is 

finer than the scale of observation, which has resulted in a number of suggestions for obtaining those 

finer-scale estimates. Roesch [8] argued that the average annual growth within each individual panel is 

best applied to the center of the measurement interval, which is analogous to an assumption of linear 

change between observations. This was thought to be a reasonable first approximation, in lieu of 

contradictory evidence. All analytical methods proposed to date for this class of forest monitoring 

sample designs have been predicated on this or similar assumptions. For the interested reader, a related 

discussion can be found in Westfall et al. [14]. 
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Roesch and Van Deusen [3] discussed the effects of ignoring differences in the temporal aspects of 

a realized sample from the intended design. Specifically, they showed the effects of two (usually tacit) 

assumptions in NFI designs. The first was that variation in the time of observation for an individual 

areal sample is ignorable. The second was that variation in the remeasurement period lengths between 

individual plots in successive areal samples was ignorable. They explored the effects of these 

assumptions and discussed how inference can be improved by a judicious accounting of these 

sampling disparities. They showed the remeasurement period assumption to be especially problematic. 

That is, plots in NFI systems are never remeasured on exact temporal intervals, and large biases can be 

introduced when there is little effort made to restrict the distribution of temporal interval lengths. They 

concluded that further research was needed to determine what restrictions should be placed on the 

distribution of temporal intervals to achieve specific objectives. This paper constitutes one specific 

extension of that research in that we explore some of the effects of an unusually-long survey cycle. 

2. Methods 

2.1. Simulated Population 

To construct the simulated population, we used methods similar to those used to construct one of 

the populations in Roesch [6], specifically Population 1 in the referenced work. We started with the 

FIA plot data measured at least twice by the annual sample design in the state of Georgia (USA) 

between 1995 and 2012. This resulted in 7330 plots, most of which had 3 measurement times (i.e., two 

observed growth intervals for each component). Note that although the FIA sample design includes a 

plot remeasurement interval of 5 years, logistical adjustments, especially in the early years of usage of 

the design, led to the actual remeasurement interval varying quite widely around the 5-year target for 

these plots. To create a plausible population, we first created a seed population (Population 0) utilizing 

the theory and methods described in Roesch [6] for deriving annual values from the multi-year 

observations. The seed population allowed us to simulate a population (Population 1), from which we 

might assume the observed sample data could have been drawn. Because exact harvest times were 

unknown, harvested volume was randomly allocated to a year within each observation interval. Linear 

interpolation and extrapolation were used to obtain an initial value for the live growth, entry and 

mortality change components for each year from 1995 through 2012, as well as a starting cubic-meter 

per hectare value in the beginning of 1995, with temporal adjustments made as necessary for high 

levels of harvest and mortality (note that, as in Roesch [6], we are not attempting to reconstruct the 

plot, but rather a reasonable facsimile to the forested condition from which it could have been drawn). 

Construction of Population 0 then proceeded with 500 variance-interjected copies of Set 1, resulting in 

3,665,000 hectares, 2,360,411 of which were forested at some time during the period of interest. The 

population is represented by 5 matrices, each with 3,665,000 rows and 18 columns (one column for 

each year), one matrix for each change component and one for initial annual volume. Variance was 

interjected at two levels. In Level 1, to maintain the trend while adding variance to the seed, all values 

for each component on each hectare were multiplied by a unique random variate, drawn from an N  

(1, 0.025) distribution. The second level of variance was introduced temporally by multiplying the 

result of Step 1 for each annual value for each component on each hectare by a unique random variate 
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drawn from an N (1, 0.0025) distribution, thereby completing the construction of Population 0.  

For Population 1, a mild (latent) non-linear trend was introduced into each of the components of 

Population 0, 𝑇1𝑖 = [0.95 + (0.05𝑙𝑛(𝑖 − 1997))], 𝑖 = 1998 to 2011, where each value in each year i 

is multiplied by T1i. Table 1 gives the Population 1 distribution statistics for 1998 to 2011.  

Population 1 is available from the first author upon request. 

2.2. Sampling Simulations 

Each simulation consisted of 1000 iterations of 1000 plots each (without replacement) from each 

population, under each of the four sampling error structures. In the current investigation, we use a 

method similar to that described in Roesch [6], to consider 4 sampling error structures. The sampling 

errors used here are elevated relative to those described in Roesch [6] in order to account for additional 

errors resulting from the longer cycle length or observation window. Note that the use of the sampling 

error structures to account for unobserved live growth should be greater for a 10-year observation 

window than for a 5-year observation window. This affects all live growth on mortality and cut trees 

between the last observation and the time of death or harvest. Therefore, the components of live 

growth, mortality, and harvest are more heavily affected by this additional error than entry. The entry 

component is affected by the cohort of trees that entered the population and died or were harvested 

prior to the next observation. 

Each of the four sampling error structures was introduced by multiplying a unique random normal 

deviate of mean b and standard deviation d from Table 2 by each sampled observation of initial 

volume, entry, live growth, mortality and harvest. 
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Table 1. Distribution statistics for Population 1. 

Component Statistic 
Year 

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Volume 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1st Quartile 0.00 0.00 0.42 1.89 4.33 7.11 9.86 12.56 14.84 16.47 17.58 18.59 19.17 19.59 

Median 9.91 14.93 19.98 25.31 30.71 35.84 41.21 45.78 49.51 53.05 56.53 59.07 61.52 63.46 

Mean 50.53 54.21 57.79 61.45 65.60 69.50 73.21 76.16 78.78 81.30 83.62 85.70 87.46 89.00 

3rd Quartile 77.83 83.76 89.56 95.08 101.26 106.63 110.80 113.99 116.78 120.38 123.21 126.65 130.25 132.89 

Maximum 813.34 813.36 814.69 815.08 816.37 818.58 821.72 825.90 831.01 837.24 844.48 852.75 862.01 872.21 

Live Growth 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1st Quartile 0.00 0.00 0.00 0.00 0.29 0.66 0.73 0.66 0.50 0.22 0.00 0.00 0.00 0.00 

Median 1.19 1.49 2.02 2.49 3.04 3.36 3.43 3.40 3.36 3.20 2.35 0.73 0.00 0.00 

Mean 3.57 3.59 3.79 4.01 4.27 4.43 4.49 4.47 4.48 4.53 4.13 3.51 2.75 1.71 

3rd Quartile 5.30 5.39 5.70 6.03 6.35 6.50 6.65 6.68 6.72 6.94 6.56 5.65 3.94 0.00 

Maximum 52.52 50.58 66.35 58.15 48.79 39.41 33.73 35.04 39.47 43.90 44.57 41.38 39.08 46.09 

Entry 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1st Quartile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.04 0.11 0.17 0.22 0.25 0.26 0.24 0.22 0.18 0.08 0.00 0.00 0.00 

Mean 0.45 0.47 0.52 0.57 0.62 0.64 0.65 0.64 0.63 0.64 0.57 0.47 0.35 0.22 

3rd Quartile 0.46 0.50 0.58 0.64 0.72 0.76 0.78 0.75 0.72 0.67 0.56 0.38 0.16 0.00 

Maximum 21.21 21.60 29.03 27.63 17.04 12.20 9.91 11.56 13.28 15.23 16.71 15.15 15.01 14.90 

Mortality 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1st Quartile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.06 0.02 0.00 0.00 0.00 0.00 0.00 

Mean 0.74 0.74 0.76 0.78 0.82 0.86 0.88 0.91 0.94 0.97 0.90 0.77 0.60 0.38 

3rd Quartile 0.21 0.28 0.39 0.46 0.55 0.65 0.71 0.73 0.72 0.69 0.48 0.20 0.00 0.00 

Maximum 108.46 93.27 78.00 77.97 78.57 78.77 79.11 79.44 79.54 80.31 80.39 80.51 80.83 80.94 
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Table 1. Cont. 

Component Statistic 
Year 

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Harvest 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1st Quartile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 0.63 0.75 0.84 0.99 1.21 1.45 1.78 1.99 2.16 2.20 1.90 1.55 1.05 0.55 

3rd Quartile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Maximum 341.31 373.88 352.31 358.61 447.97 466.30 466.29 462.06 465.60 483.98 485.19 498.90 488.34 510.38 
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Table 2. Mean (b) and standard deviation (d) of the normal random variates used to 

simulate each sample observation. 

Component 

Error Structure 

1 2 3 4 

b d b d b d b d 

Initial Volume 1.01 0.10 1.00 0.03 1.00 0.05 0.99 0.10 

Entry 1.01 0.10 1.00 0.03 1.00 0.05 0.99 0.10 

Live Growth 1.01 0.10 0.99 0.03 0.98 0.05 0.95 0.10 

Mortality 1.01 0.10 0.99 0.03 0.98 0.05 0.95 0.10 

Harvest 1.01 0.10 0.99 0.03 0.98 0.05 0.95 0.10 

2.3. Moving-Window Mean of Ratios Estimator 

Our estimation approach uses the (semi-centralized) moving-window mean of ratios estimator 

(MWMOR) in Roesch and Van Deusen [3] and Roesch [6], an estimator that arose from a different 

perspective than previously-developed estimators. The idea was simple. One stacks the observations 

on a temporal scale (or a function of the temporal scale) and then slices through the stack (say to create 

annual segments) to determine what proportion of each observation contributes to the estimate for each 

year spanned by the observation. For this problem, as in Roesch and Van Deusen [3], we use the 

general three-dimensional selection model given in Roesch [2] with the exception that time will be  

re-scaled relative to the proportion of the growing season elapsed within each year. Assign to each 

observation of variable x labels for plot i and a superscript representing the beginning value and ending 

value as xi
b and xi

e, respectively. Because there are no observations between xi
b and xi

e, the distribution 

of the volume growth between the two observations must be modeled. In Roesch and Van Deusen [3], 

two simplifying assumptions were made. In the first, it was assumed that the growing season begins 

and ends on the same dates for each year in the area of interest. In the second, it was assumed that 

growth for each plot is uniform throughout the growing season. Given these assumptions, we can 

temporally order each observation by the year of observation plus the proportion (p) of the growing 

season that has elapsed. We use si to represent the difference in these values to obtain the growing 

season-adjusted temporal span between the beginning and ending observations. We then allocate the 

proportion of growth observed over si to the proportion of each year spanned by si, (thereby accounting 

for the marginal probability of the time dimension). Modeling growth between observations allows us 

to allocate growth within components to the years the growth occurred. A simple time-adjusted 

estimator for annual volume growth (within the growth component) is the moving-window mean of 

ratios estimator (MWMOR) for component C in year t: 

𝐶𝑡
𝑀 =

1

𝑛𝑡
∑

𝑐𝑖,𝑡
𝑝𝑖,𝑡

𝑛𝑡

𝑖=1

 (2) 

where: 

𝑛𝑡 = the number of plots observing growth in year t; 

𝑝𝑖,𝑡 = the product of portion of year t growing season observed by plot i and the portion of plot i 

area within the area of interest and; 
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𝑐𝑖,𝑡 = the value of component C observed on plot i, assignable to year t. 

The general statistical properties of ratio estimators are well known and can be found in very early 

works, such as Raj [15], Walton and DeMars [16], Cassel et al. [17] and Cochran [18]. 

In some of the estimators below, we use a trend distributed version of 𝐶𝑡
𝑀  in which 𝑐𝑖,𝑡 in  

Equation (2) is replaced by 𝑐𝑖,𝑡
𝑇 . The value of 𝑐𝑖,𝑡

𝑇  is determined by the value of the trend in initial cubic 

meter volume at year t. A proportion is allocated to each year observed in a plot remeasurement 

interval, 𝑐𝑖,𝑡
𝑇 = 𝜋𝑦𝑥𝑖, where xi is the total value of a change component (such as live growth) observed 

over an interval of years y = 1 to Y, and 𝜋𝑦 = 𝑣𝑦 ∑ 𝑣𝑗
𝑌
𝑗=1⁄ , where vj is the sample mean initial volume 

for year j. Note that we use the variable t to refer to the general year within the population or 

estimation interval and the variable y to refer to the year within a particular sample plot’s 

remeasurement interval. Because plots are measured in panels, y selects a panel-specific subset of t. 

We use this change of variable below, where it is appropriate. The underlying assumption of 𝑐𝑖,𝑡
𝑇  is that 

the level of a change component during a particular year will be proportional to the standing volume at 

the beginning of the year. The trend distributed estimators then take the form: 

𝐶𝑡
𝑇 =

1

𝑛𝑡
∑

𝑐𝑖,𝑡
𝑇

𝑝𝑖,𝑡

𝑛𝑡

𝑖=1

 (3) 

2.4. Incorporating Image Change Estimates 

Roesch [6] demonstrated the utility of a weighting method that can be used in conjunction with the 

MWMOR estimators above. We use a variant of that approach here in order to use the remotely-sensed 

information to better approximate the timing of harvests and the corresponding allocation of the 

components of change within a remeasurement window. 

We simulated the incorporation of ICE observations from remotely-sensed images every two years 

under three different assumptions of reliability. In Assumption 1 (A1), a clearcut, defined as the 

harvest of at least 95% of the cubic-meter volume, is successfully identified in the image 95% of the 

time, and there are no false positives. Under this assumption, when a clearcut is identified, it is known 

to have occurred since the last plot visit, but may have been missed during intervening ICE 

observations. Under Assumption 2 (A2), all clearcut harvests are correctly identified 100% of the time 

and assigned to the correct year. Again, there are no false positives. Assumption 3 (A3) reflects the 

highest level of reliability in which every harvest (whether a partial harvest or a full harvest) is 

identified and assigned to the correct year; we can estimate the proportion harvested to within ±5% 

(truncated at 0% and 100%), and there are no false positives. 

Under all three of these reliability assumptions, ICE data collected every two years will be in sync 

with about half of the plot observations collected under the panel design and out of sync with the other 

half. That is, one panel or 1/10 of the plots is observed every year, and the ICE observations are made 

every year. For half of the plots, the first ICE observation made after the plot observation will be in 

one year, and for the other half of the plots, the first ICE observation after the plot observation will be 

in two years. 

There are a number of different approaches that could be taken to determine the weights used to 

allocate the change components to the intervening years, depending on the analyst’s prior knowledge 
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with respect to the reliability of the ICE data and the availability of reasonable growth models. For 

instance, by the clearcut definition above, up to 5% of the cubic-meter volume could remain on live 

trees, and new trees could develop and grow subsequent to the harvest and prior to the next sample plot 

observation. For partial harvests, the possibility for subsequent growth is much higher. In large 

countries with a very diverse range of species and forest types, there are often not reasonable growth 

models available for many of those types. Additionally, there will usually be unobserved growth on 

trees that die or are harvested during the observation interval. In the case of a clearcut, this unobserved 

growth occurred on the prior stand, so it is reasonable to assume that it will usually far outweigh the 

observed growth, because growth is observed only on trees present at the next plot observation. 

Therefore, under Assumptions 1 and 2, we simplify the annual allocation problem by assuming that all 

observed growth occurred before the ICE clearcut observation. Under Assumption 3, for all harvests, 

we use an allocation that separates pre-harvest and post-harvest change based on an estimate of the 

proportion of volume harvested. 

2.4.1. Estimation under A1 

Under Assumption A1, when a clearcut is identified, it is known to have occurred since the last plot 

observation, but may have been missed during intervening ICE observations. To establish weights, we 

could either use an estimate of the probability of having missed the clearcut at previous ICE 

observations or we could assume that the probability is unknown. Because A1 is intended to be our 

worst case assumption in the simulation, we assumed that this probability was unknown. The 

allocation of partial harvest volumes is unaffected by ICE observations under this assumption. 

We define 𝑦𝑖,𝐼 as the number of years of the first ICE observation of clearcut for plot i since the 

previous plot measurement. Although it would be a rare event, we also define 𝑦𝑖,𝐼𝐼 ≥ 𝑦𝑖,𝐼𝐼 + 2 as the 

year of the second ICE observation of clearcut for plot i during the remeasurement interval, in order to 

estimate the weight for harvest. Additionally, when there are two ICE-identified clearcuts on plot i, we 

define ri,I as the proportion of total clearcut volume in the first clearcut and ri,II = 1 − ri,I as the 

proportion of total clearcut volume in the second clearcut. 

𝜋𝑖,𝑦
𝑇ℎ𝐴1 =

{
 
 
 
 

 
 
 
 
𝜋𝑦 if no ICE-identified clearcut                                                                

𝑦𝑖,𝐼
−1 if one ICE-identified clearcut and 𝑦 ≤ 𝑦𝑖,𝐼                                      

𝑟𝑖,𝐼 if ICE is out-of-sync with two identified clearcuts and 𝑦 = 𝑦𝑖,𝐼
. 5𝑟𝑖,𝐼 if ICE is in-sync with two identified clearcuts and 𝑦 = 𝑦𝑖,𝐼 − 1

. 5𝑟𝑖,𝐼 if ICE is in-sync with two identified clearcuts and 𝑦 = 𝑦𝑖,𝐼        

. 5𝑟𝑖,𝐼𝐼 if two ICE-identified clearcuts and 𝑦 = 𝑦𝑖,𝐼𝐼 − 1                           

. 5𝑟𝑖,𝐼𝐼 if two ICE-identified clearcuts and 𝑦 = 𝑦𝑖,𝐼𝐼                                    

0 otherwise                                                                                                  

 (4) 

The proportion ri,I would have to be estimated. An estimate might be obtained from the ICE data, 

but it is not directly available from the sample plot data. Under A1, we do not assume that we can 

confidently estimate ri,I from the images, so we set it equal to 0.5. The allocation for the harvest 

component on plot i for year t under A1 is: 

ℎ𝑖,𝑡
𝑇ℎ𝐴1 = 𝜋𝑖,𝑦

𝑇ℎ𝐴1ℎ𝑖 (5) 
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where hi is the observation of cubic meter harvested volume on plot i during the remeasurement 

interval. The estimator for the harvest component for year t under A1 is: 

𝐶𝑡
ℎ𝐴1 =

1

𝑛𝑡
∑

ℎ𝑖,𝑡
𝑇ℎ𝐴1

𝑝𝑖,𝑡

𝑛𝑡

𝑖=1

 (6) 

For the other components of change (live growth, entry and mortality), the allocation to each year 

between plot observation and ICE clearcut call: 

𝜋𝑖,𝑦
𝑇𝑜𝐴1 =

{
 
 

 
 𝜋𝑦 if no ICE-identified clearcut                            

𝑦𝑖,𝐼
−1 if one ICE-identified clearcut and 𝑦 ≤ 𝑦𝑖,𝐼  

0   if no ICE-identified clearcut and 𝑦 > 𝑦𝑖,𝐼  

𝜋𝑦  if two or more ICE-identified clearcuts    

 (7) 

The allocation for the other components of change on plot i for year t under A1 is represented as  

𝑜𝑖,𝑡
𝑇𝑜𝐴1 = 𝜋𝑖,𝑦

𝑇𝑜𝐴1𝑜𝑖, where oi is the observation of a specific component o for plot i during the interval. 

The estimator for the other components of change for year t under A1 is: 

𝐶𝑡
𝑜𝐴1 =

1

𝑛𝑡
∑

𝑜𝑖,𝑡
𝑇𝑜𝐴1

𝑝𝑖,𝑡

𝑛𝑡

𝑖=1

 (8) 

2.4.2. Estimation under A2 

Under Assumption 2 (A2), we know if a clear-cut has occurred within the past two years, and we 

can assign it to the correct year. As under A1, the allocation of partial harvest volumes is unaffected by 

ICE observations. The weight for the harvest component is defined as: 

𝜋𝑖,𝑦
𝑇ℎ𝐴2 =

{
 
 

 
 
𝜋𝑦 if no ICE-identified clearcut                            

1 if one ICE-identified clearcut and 𝑦 = 𝑦𝑖,𝐼  

𝑟𝑖,𝐼 if two ICE-identified clearcuts and 𝑦 = 𝑦𝑖,𝐼 

𝑟𝑖,𝐼𝐼 if two ICE-identified clearcuts and 𝑦 = 𝑦𝑖,𝐼𝐼
0 otherwise                                                               

 (9) 

As we mentioned above, the proportion ri,I would have to be estimated, and it is not directly 

available from the sample plot data. However, by definition, a clearcut consists of the harvest of 95% 

of the volume present during the year of harvest, so ri,I could be approximately estimated by: 

𝑟̂𝑖,𝐼 =
𝑣𝐼

𝑣𝐼 + 𝑣𝐼𝐼
 (10) 

where 𝑣𝐼 is the sample mean initial volume for year for the year of the first ICE-identified clearcut and 

𝑣𝐼𝐼 is the sample mean initial volume for the year of the second ICE-identified clearcut. An estimator 

for  𝑟𝑖,𝐼𝐼 would then be 𝑟̂𝑖,𝐼𝐼 = 1 − 𝑟̂𝑖,𝐼. 

The allocation for the harvest component on plot i for year t under A2 is: 

ℎ𝑖,𝑡
𝑇ℎ𝐴2 = 𝜋𝑖,𝑦

𝑇ℎ𝐴2ℎ𝑖 (11) 

This leads to the estimator for the harvest component for year t under A2: 
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𝐶𝑡
ℎ𝐴2 =

1

𝑛𝑡
∑

ℎ𝑖,𝑡
𝑇ℎ𝐴2

𝑝𝑖,𝑡

𝑛𝑡

𝑖=1

 (12) 

For the other components of change, if there were a single clearcut, we assign all observed growth 

to the years prior to the ICE clearcut observation, but otherwise, we use proportional allocation as 

described above. We define the value of the trend by a proportion that is allocated to each year y in an 

interval beginning with the year of the sample plot observation for plot i and ending with the year of 

the first ICE observation of clearcut (𝑦𝑖,𝐼): 

𝜋𝑖,𝑦
𝐼 =

𝑣𝑦
∑ 𝑣𝑗
𝑦𝐼
𝑗=1

⁄  (13) 

Then, the weight for the other components is: 

𝜋𝑖,𝑦
𝑇𝑜𝐴2 =

{
 

 
𝜋𝑦  if no ICE-identified clearcut                            

𝜋𝑖,𝑦
𝐼  if one ICE-identified clearcut and 𝑦 ≤ 𝑦𝑖,𝐼  

𝜋𝑦   if two ICE-identified clearcuts                        

0   otherwise                                                              

 (14) 

The allocation for the other components on plot i for year t under A2 is then: 

𝑜𝑖,𝑡
𝑇𝑜𝐴2 = 𝜋𝑖,𝑦

𝑇𝑜𝐴2𝑜𝑖 (15) 

The estimator for the other components of change for year t under A2 is: 

𝐶𝑡
𝑜𝐴2 =

1

𝑛𝑡
∑

𝑜𝑖,𝑡
𝑇𝑜𝐴2

𝑝𝑖,𝑡

𝑛𝑡

𝑖=1

 (16) 

2.4.3. Estimation under A3 

Under Assumption 3 (A3), we know if any harvest has occurred within the past two years and 

which year the harvest occurred. We will assume that proportional growth occurred before and after 

ICE harvest observations and that we can estimate the proportion harvested to within ±5% (truncated 

at 0% and 100%). Let 𝜋𝑖,𝑦
ℎ  be the ICE-estimated proportion of volume harvested in year y on plot i. 

Then, the weight for the harvest component under A3 is: 

𝜋𝑖,𝑦
𝑇ℎ𝐴3 = {

𝜋𝑦 if no ICE-identified harvest in observation interval

𝜋𝑖,𝑦
ℎ if ICE-identified harvest in year 𝑦                                 

0 otherwise                                                                              

 (17) 

The harvest allocation on plot i for year t under A3 is: 

ℎ𝑖,𝑡
𝑇ℎ𝐴3 = 𝜋𝑖,𝑦

𝑇ℎ𝐴3ℎ𝑖 (18) 

This results in the estimator for the harvest component for year t under A3: 

𝐶𝑡
ℎ𝐴3 =

1

𝑛𝑡
∑

ℎ𝑖,𝑡
𝑇ℎ𝐴3

𝑝𝑖,𝑡

𝑛𝑡

𝑖=1

 (19) 

To determine the allocation for the other components of change, let 𝜋𝑖,𝐹
ℎ  be the first (in year F, yF) 

ICE-estimated proportion of volume harvested on plot i and 𝜋𝑖,𝑆
ℎ  be the second (in year S, yS)  
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ICE-estimated harvest proportion on plot i. We set 𝜋𝑖,𝐹
ℎ = 0 if there is not an ICE-identified harvest 

during the interval, and we set  𝜋𝑖,𝑆
ℎ = 0 if there are not two ICE-identified harvests during the interval. 

The proportion remaining following the first harvest on plot i is 𝜋𝑖,𝐹
𝑅 = 1 − 𝜋𝑖,𝐹

ℎ . Likewise, the 

proportion remaining following the second harvest on plot i is 𝜋𝑖,𝑆
𝑅 = 1 − 𝜋𝑖,𝑆

ℎ .We calculate the annual 

allocation in three parts: 

𝑎𝑦 = {
(𝜋𝑖,𝐹

ℎ 𝜋𝑦) ∑𝜋𝑗

𝑦𝐹

𝑗=1

⁄ if one or two ICE-identified harvests and 𝑦 ≤ 𝑦𝐹

0 otherwise                                                                        

 (20) 

𝑏𝑦 = {
(𝜋𝑖,𝐹

𝑅 𝜋𝑖,𝑆
ℎ 𝜋𝑦) ∑𝜋𝑗

𝑦𝑆

𝑗=1

⁄ if two ICE-identified harvests and 𝑦 ≤ 𝑦𝑆

0 otherwise                                                            

        (21) 

and: 

𝑐𝑦 = (𝜋𝑖,𝐹
𝑅 𝜋𝑖,𝑆

𝑅 𝜋𝑦) (22) 

We then sum the parts to obtain the annual proportion: 

𝜋𝑖,𝑦
𝑇𝑜𝐴3 = 𝑎𝑦 + 𝑏𝑦 + 𝑐𝑦 (23) 

The allocation under A3 then becomes: 

𝑜𝑖,𝑡
𝑇ℎ𝐴3 = 𝜋𝑖,𝑦

𝑇𝑜𝐴3𝑜𝑖 (24) 

Finally, the estimator for each of the other components under A3 is: 

𝐶𝑡
𝑜𝐴3 =

1

𝑛𝑡
∑

𝑜𝑖,𝑡
𝑇𝑜𝐴3

𝑝𝑖,𝑡

𝑛𝑡

𝑖=1

 (25) 

2.5. Compatibility and the Estimation of Initial Volume 

In the previous subsections, we have described the estimators for the components of change. A 

complete estimation system also requires an estimator for initial volume. If the estimation system is 

also required to be compatible, as defined in Section 1, then some means of ensuring compatibility is 

required. We caution the reader that to ensure compatibility in an equation system is to enforce a 

constraint, and every constraint leads to a sub-optimization of one or more of the system’s estimators. 

The plot sample provides single-panel direct annual estimates of standing volume, while we desire 

estimates of standing volume at the beginning of the year or prior to the growing season. We assume 

that each panel’s estimate of mean standing volume is a mid-year estimate, because sample plots are 

measured throughout the year. There are a number of approaches that could be taken, but the simplest 

approach would be to take the mean of successive panel means to obtain the initial annual estimates. 

For i = 1998 to 2006: 

𝐘̂𝑖+1
𝑃 = .5(𝑣̅𝑖

𝑃 + 𝑣̅𝑖+1
𝑃 ) (26) 

where 𝑣̅𝑗
𝑃 is the (assumed mid-season) standing volume estimate for panel j. We denote this series of 

estimates as 𝐘̂𝑃. 
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Alternatively, because 𝐘̂𝑃  does not ensure compatibility of the estimation system, we can use 

recursive estimation to estimate initial annual volume. That is, we can start with an initial volume 

estimate for a particular year and successively apply the annual estimators of the components of 

change to obtain successive estimates of initial annual volume. In the simulation, we started with the 

initial volume estimate for the year 2003, (𝐘̂2003
𝑅 = 𝐘̂2003

𝑃 ), which is in the center of the estimation 

interval. To obtain the recursive series of estimates ( 𝐘̂𝑅) for 1999 to 2007, we used the algorithm: 

For i = 2003 to 2006: 

𝐘̂𝑖+1
𝑅 = 𝐘̂𝑖

𝑅 + 𝐋̂𝑖 + 𝐄̂𝑖 − 𝐌̂𝑖 − 𝐇̂𝑖 (27) 

For earlier years we use, for i = 2003 to 2000: 

𝐘̂𝑖−1
𝑅 = 𝐘̂𝑖

𝑅 − 𝐋̂𝑖−1 − 𝐄̂𝑖−1 + 𝐌̂𝑖−1 + 𝐇̂𝑖−1 (28) 

2.6. Estimation Systems 

The estimators described in the preceding sections can be combined in various ways to define an 

estimation system. Furthermore, variance reduction can be achieved in the estimators by combining 

successive estimates with a moving window estimator. For any initial estimator for time t (𝜀𝑡 ), a 

moving window estimator of size s (s is an odd positive integer) is: 

𝜀𝑖
𝑠 = ∑ 𝜀𝑖

𝑡+((𝑠−1) 2⁄ )

𝑖=𝑡−((𝑠−1) 2⁄ )

 (29) 

The estimation systems that we tested in the simulations will be easiest to follow if we define an 

estimation system nomenclature. In the nomenclature, the character “E” is followed by a 4-character 

code (e.g. E1234). The 1st character is for harvest; the 2nd character is for the other growth 

components; the 3rd character is for initial volume; and the 4th character is for the moving window size: 

ECCP1 = CM for all change components and 𝐘̂𝑃 for initial annual volume, 

ECTR1 = CM for harvest, CT for the other change components,  𝐘̂𝑅 for annual volume, 

E11R1 = ChA1 for harvest, CoA1 for the other change components, 𝐘̂𝑅 for annual volume, 

E22R1 = ChA2 for harvest, CoA2 for the other change components, 𝐘̂𝑅 for annual volume, 

E33R1 = ChA3 for harvest, CoA3 for the other change components, 𝐘̂𝑅 for annual volume, 

ECCP3 = 3-year moving window on ECCP1, 

ECCP9 = 9-year moving window on ECCP1, 

ECTR9 = 9-year moving window on ECTR1, 

E11R9 = 9-year moving window on E11R1, 

E22R9 = 9-year moving window on E22R1, 

E33R3 = 3-year moving window on E33R1, 

E33R5 = 5-year moving window on E33R1 and, 

E33R9 = 9-year moving window on E33R1. 
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2.7. Estimator Evaluation 

For each iterate, for each year, we calculated the empirical bias (EB) and the empirical mean 

squared error (MSE), over the 1000 iterations, between each estimator and the true population values 

under each of the four error structures. 

That is: 

𝐸𝐵𝑃𝐸𝑆 =
1

1000
∑(𝑥̂𝑃𝐸𝑆𝑖 − 𝑋𝑃)

1000

𝑖=1

 (30) 

where 𝑥̂𝑃𝐸𝑆𝑖 is the sample estimate of any variable, X, in population P for estimator E, under error 

structure S for iterate i. Likewise: 

𝑀𝑆𝐸𝑃𝐸𝑆 =
1

1000
∑(𝑥̂𝑃𝐸𝑆𝑖 − 𝑋𝑃)

2
1000

𝑖=1

 (31) 

Here, we use the empirical mean squared error as the overriding criterion for judging the 

effectiveness of the external information while being cognizant of any introduced bias. Estimator 

robustness was tested in a simulation by sampling the population under four different assumptions of 

sampling error structure for the plot data and three different assumptions of the accuracy of the 

remotely-sensed data. Each simulation consisted of 1000 iterations of 1000 plots each (without 

replacement) from the population. 

3. Results 

Figure 1 gives the empirical means of the components of change and initial annual volume plotted 

with the true population mean on the left-hand side and mean squared errors on the right-hand side of 

the initial annual estimators (ECTR1, ECCP1, E11R1, E22R1 and E33R1) for estimation years 1999 

through 2007. The results are given subsequent to 1000 iterations of 1000 samples each under Sample 

Error Structure 1. The corresponding results for these components of change for Error Structures 2 

through 4 are available from the first author upon request. They are not given here, in the interest of 

brevity, because they are very similar to the results for Error Structure 1. 

The differences between each annual mean and the true population mean on the left-hand side of 

Figure 1 is the empirical bias (EBPES) described above, for each estimator. These estimation years are 

shown because they are the years that are the center of at least 1 observation window (or panel), for a 

sample drawn under this design and sample error structure from a population spanning 1995 to 2012. 

From Figure 1, it is obvious that the ICE observations usually served to lower the bias for estimates of 

annual harvest. This usually, though not exclusively, also resulted in lowered empirical mean squared 

errors for the annual harvest estimates. Figure 1 also shows that the general trend model had a positive 

effect on mortality estimates, while using the trend model for entry and live growth showed  

mixed results. 

This work was predicated on the assumption that the improvement in harvest estimates obtainable 

through the use of the ICE observations will also result in better estimates of annual volume. The 
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bottom row of Figure 1 investigates that assumption. Of the single-panel estimators for initial  

(1 January) annual volume in the bottom row of Figure 1, ECCP1 can be seen to be the most variable. 

 

Figure 1. The empirical means of the initial annual estimators (ECTR1, ECCP1, E11R1, 

E22R1 and E33R1) plotted with the true population mean for (a) live growth; (b) entry; (c) 

mortality; (d) harvest; and (e) initial volume; and the corresponding mean squared errors 

for (f) live growth; (g) entry; (h) mortality; (i) harvest and (j) initial volume, from the 

simulation of 1000 iterations of 1000 samples each under Sample Error Structure 1. 

Figure 2 gives the empirical means plotted with the true population mean on the left-hand side and 

mean squared errors on the right-hand side of the moving-window annual estimators (ECTR9, ECCP9, 

ECCP3, E11R9, E22R9, E33R3, E33R5 and E33R9) over 1000 iterations of 1000 samples, each under 

Sample Error Structure 1. As expected, the moving window estimators “smooth” the mean annual 
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estimates and usually serve to lower the annual empirical mean squared errors for the components 

relative to the corresponding results in Figure 1. The bottom row of Figure 2 gives the results for the 

moving window annual estimators of annual volume. As in Figure 1, this row shows some advantage 

to combining panels. For instance, the MSEs are slightly less variable in the early years for ECCP3, 

relative to the results for ECCP1 in the top row of the figure. ECCP9 shows an even further reduction 

in MSE for most years, relative to ECCP3. 

 

Figure 2. The empirical means of the moving window annual estimators (ECTR9, ECCP9, 

ECCP3, E11R9, E22R9, E33R3, E33R5 and E33R9) plotted with the true population mean 

for (a) live growth; (b) entry; (c) mortality; (d) harvest; and (e) initial volume; and the 

corresponding mean squared errors for (f) live growth; (g) entry; (h) mortality; (i) harvest 

and (j) initial volume, from the simulation of 1000 iterations of 1000 samples each under 

Sample Error Structure 1. 
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Although we are only showing the results for Error Structure 1, we note that the ranking of the 

mean for each annual estimator remained constant through the four error structures, although the 

position of each annual group of estimators did change slightly with error structure. 

4. Discussion and Conclusions 

Roesch [6] explored some special problems that arise in estimation of the components of change 

when the temporal scale of the population estimand of interest is finer than the scale of observation 

under both biased and unbiased sampling error structures. Here, we go further and attempt to 

ameliorate the effects of an unplanned increase in the temporal interval between observations. In the 

example simulations, the temporal scale of observation was increased from five to 10 years, while the 

temporal dimension of the population of interest and the estimands of interest remained fixed at one year. 

As discussed in Roesch [6], by definition, the MW estimator is non-centralized and uses the 

information for all plots whose intervals span a particular year. This can allow the use of more data in 

the years at the extremes of a period of interest, but will lead to a reduced ability to detect trend 

changes. This effect is intensified for longer cycle lengths. That is, when the design observes five-year 

windows, an estimate of average annual change “smooths” the actual annual change, and the 

estimators, while drawing strength from overlapping panels, provide further smoothing. Both of these 

effects are substantially increased when the cycle length is changed to 10 years. The simulations 

showed the variance/bias trade-off encountered when the moving-window mean of ratios estimator 

was used in the extremity years of observation. Although the MWMOR estimator is sometimes biased 

in the presence of the trend in the extremity years, the empirical mean-squared error was often much 

lower when the extraneous information was used. These simulations have accentuated the difficulty 

that exists when attempting to compensate for an inadequately-informed sample. Large observation 

intervals frustrate the estimation of even the simplest of trends. We investigated the estimator 

performance of compatible annual estimators of the components of change during years spanned by at 

least half of the full set of plot observations, without attempting to address the additional problem 

arising from the known loss of adequate information in the extreme years of the monitoring effort, 

which resulted from the lengthened cycles. Never-the-less, we have shown that highly-informative 

auxiliary observations with shorter observation intervals (as was available under ICE Assumption 3) 

can contribute to significant improvement in estimation. 

Auxiliary information, such as simulated under ICE, may arise from several remote sensing efforts. 

For example, the National Agriculture Imagery Program (NAIP) collects fine-scale imagery across the 

United States on a two- to three-year rotating schedule. The manual interpretation of these data for 

land use, land cover and change information would provide auxiliary observations similar to the ICE 

scenarios presented in these analyses. Data from other remote sensing efforts may also be appropriate. 

For example, Li et al. [19] used a time series of Landsat TM imagery to classify changes in forest 

vegetation and the year that change occurred. Model output arising from Li’s et al. [19] approach 

could also be informative in our application if modeling error in the classification is in line with the  

ICE scenarios. 

Although our focus in this research was on estimating components of change, ICE-type information, 

such as described by Webb et al. [20], could aid in estimating several other parameters of interest. For 
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example, forestland provides a suite of ecosystem services, and changes in the use of the forestland 

base influence the availability of those services (Coulston et al. [21]). Van Deusen and Roesch [4] and 

Coulston et al. [21] provide temporally-specific approaches to estimate changes in the use of 

forestland, based on remeasured plot data alone. Including auxiliary data on land use and/or land cover 

change may improve the precision of land change estimates. However, further development and testing 

of appropriate temporally-specific estimators is required to take full advantage of the auxiliary 

information. Temporally-specific estimators serve to increase the relevance and timeliness of NFI data. 

Using temporally-dense remote sensing data to assist in the estimation may provide an opportunity for 

national forest inventories whether or not fiscal climates are uncertain. However, the inclusion of 

auxiliary data that is more temporally dense than the plot data has the potential to provide 

improvement only if time is specifically accounted for in the estimation process, as is the case here. 
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