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Abstract: Combined use of new geospatial techniques and non-parametric multivariate statistical
methods enables monitoring and quantification of the biomass of large areas of forest ecosystems
with acceptable reliability. The main objective of the present study was to estimate the aboveground
forest biomass (AGB) in the Sierra Madre Occidental (SMO) in the state of Durango, Mexico, using the
M5 model tree (M5P) technique and the analysis of medium-resolution satellite-based multi-spectral
data, and field data collected from a network of 201 permanent forest growth and soil research sites
(SPIFyS). Research plots were installed by systematic sampling throughout the study area in 2011.
The digital levels of the images were converted to apparent reflectance (ToA) and surface reflectance
(SR). The M5P technique that constructs tree-based piecewise linear models was used. The fitted
model with SR and tree abundance by species group as predictive variables (ASG) explained 73% of
the observed AGB variance (the root mean squared error (RMSE) = 39.40 Mg- ha~!). The variables
that best discriminated the AGB, in order of decreasing importance, were the normalized difference
vegetation index (NDVI), tree abundance of other broadleaves species (OB), Band 4 of Landsat
5 TM (Thematic Mapper) satellite and tree abundance of pines (Pinus). The results demonstrate
the potential usefulness of the M5P method for estimating AGB based in the surface reflectance
values (SR).
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1. Introduction

The Sierra Madre Occidental (SMO) mountain range is of great ecological interest because of its
environmental heterogeneity, which is attributed to the broad physiographical and climatic diversity
in the area [1]. Moreover, the SMO is home to pine and oak species that are economically important
in ecosystems in Mexico and other parts of the world [2]. The SMO crosses several states in western
Mexico, including the state of Durango (the SMO occupies 71.5% of the surface area of the state). The
state of Durango generates between 25% and 30% of the national timber production, producing a total
of 1.5 million- m® of roundwood per year, and boasts forest reserves that are important sources of
environmental services [3]. Studies that attempt to estimate forest biomass in this type of ecosystem
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are expensive due to its large coverage and difficult access for direct estimation of biomass. Thus, the
emergence of geospatial techniques is becoming increasingly relevant for estimating and monitoring
forest biomass in short periods of time because of its low cost and acceptable accuracy [4-7]. Because
of the macrospatial scale and high heterogeneity of these ecosystems, the quantitative data obtained
often do not comply with the underlying assumptions of simple statistical analysis (homogeneity
and normality of distribution), so other techniques such as logistic regression and non-parametric
classification methods are often applied [8-10]. The M5 model tree (M5P) technique is a reconstruction
of M5 algorithm for inducing trees of regression models [11]. M5P is used for numeric prediction and at
each leaf it stores a linear regression model that predicts the class value of instances that reach the leaf.
To determine which attribute is the best to split the portion of the training data that reaches a particular
node, the splitting criterion is used. The standard deviation of the training class is treated as a measure
of the error at that node and each attribute at that node is tested by calculating the expected reduction
in error. The attribute that is chosen for splitting maximizes the expected error reduction at that node.
The main objective of the present study was to estimate the aboveground forest biomass (AGB) in the
SMO in the state of Durango, Mexico, using the M5P technique and the analysis of medium-resolution
satellite-based multi-spectral data, and field data collected from a network of 201 permanent forest
growth and soil research sites (SPIFyS).

2. Material and Methods

2.1. Study Area

The study area is a mountainous zone in the state of Durango (Mexico) that forms part of the
Sierra Madre Occidental (Figure 1).
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Figure 1. Location of the study area.
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The area occupied by the state of Durango represents 6.3% of the land in Mexico. The total
area covered by the state is 12.3 million ha, of which 9.1 million ha (74.35% of the land in the state)
is forestland managed by 11 Regional Forest Management Units (UMAFORES). A large part of the
forestland (4.9 million ha) is occupied by temperate forest and is subjected to precipitation levels of
between 800 and 1200 mm per year, with frost occurring in winter as a result of the combination of
low temperatures and humid winds from the Pacific Ocean; a smaller area of the land (0.5 million),
affected by warmer climate, is occupied by forest classified as rainforest [12]. The mean elevation
in this zone is 2650 m above sea level. These forests have rich biodiversity and include at least 27
coniferous tree species (of which 20 are Pinus species) and 43 species of Quercus; the predominant forest
stands comprise pines and oaks, often mixed with Arbutus and Juniperus, among other tree species [13].
These unique forests are irregular and have been subject to selective harvesting for almost a century to
provide a mix of services to local communities. This irregularity refers to the spatial arrangement of
trees (vertical and horizontal irregularity) and the variation in the age structure of trees and stands.
This structure is the result of the management history, which has depended on land ownership, as well
as the economic and social changes that have taken place in the state, and also natural conditions [14].

2.2. Field Data

The dasometric data were obtained from 201 permanent forest growth and soil monitoring plots
(SPIFyS) in the SMO in the state of Durango. The plots were installed during the winter of 2011 using
the protocol developed by [15]. The data of these permanent sample plots are used to monitor the
growth and yield of Durango’s forests. The plots cover the main forest types and the current diameter
distributions of commercial forests in Durango. The plots are 50 x 50 m in size (distance was corrected
by the slope) and are distributed by systematic sampling (with some exceptions), with a variable grid
ranging from 3 to 5 kilometers, depending on the size of the “Ejidos”. Ejidos are communal groups
that live in rural areas and whose lands are managed with some level of governmental control. The
sampling plots are intended to be re-measured at five-year intervals. Among other variables, tag
number, species code, breast height diameter (measured in cm at 1.3 m above ground level), total tree
height (m), height to the live crown (m), azimuth (°) and radius (m) from the center of the plot of all
trees equal or larger than 7.5 centimeters (cm) in diameter were recorded. The database used here
includes measurement data from 31,979 trees.

The aboveground biomass in each of the SPIFyS plots was estimated using specific allometric
equations developed by [16] for the same study area. Depending on the species, the goodness of fit
statistics ranged between 0.82 and 0.97 of the coefficient of determination (R?) and the root mean
square error (RMSE) between 22.68 and 133.68 kg.

The main descriptive statistics for the total aboveground biomass per hectare in the study sites
are summarized in Table 1.

Table 1. Descriptive statistics of the total aboveground biomass per hectare in the 201 permanent forest
growth and soil monitoring plots (SPIFyS).

Variable Mean Standard Deviation Minimum Value Maximum Value
Number of stems per ha 645 271.84 224 2264
Stand basal area (m?-ha—!) 23.44 8.06 8.21 54.83
Dominant height (m) 17.47 5.08 6.86 30.60
Stand biomass (Mg: ha=—1) 141.64 75.01 27.73 469.42

2.3. Tree Abundance by Species Group (ASG)

The tree abundance (number of trees per group of species per plot) was estimated for posterior
analysis in this study. A total of seventy-two different tree species were grouped in four groups of
species as they present similar growth patterns: (P) Pinus species (16); (OC) other conifers species (12);
(Q) oaks species (26); and (OB) other broadleaves species (18).
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2.4. Source of Spectral Data

The data used for the study were obtained from six Landsat 5 TM (Thematic Mapper) satellite
images captured between March and May 2011 and covering all of the SMO within the state of
Durango (path/row: 30/44, 31/42,31/43, 31/44, 32/42 and 32/43) [17]. This satellite platform, of
medium spatial resolution, operates in seven bands of the electromagnetic spectrum: blue (bandwidth
0.45-0.52 um), green (bandwidth 0.52-0.60 um), red (0.63-0.69 pum), near infrared (0.78-0.89 um), mid
infrared (1.55-1.75 um) and far infrared (2.08-2.35 um). These bandwidths correspond, respectively,
tobands 1, 2, 3, 4, 5 and 7 of the Landsat TM5 satellite [18]. Band 6, designed for the thermal mapping
and soil moisture, was not considered because of its lower (120 m) spatial resolution.

The satellite images were digitally pre-processed by radiometric correction techniques, according
to the procedures suggested by [19,20]. The images are produced by USGS with a rectification using a
cubic convolution geometric correction for discrete data (level L1T), with a root mean square error
(RMSE) of less than 1 pixel, thus making them suitable for digital image processing [21]. The digital
levels (DLs) were converted to radiance values to generate images that were calibrated with the
minimal radiance (Lmin) and maximal radiance (Lmax) values for each band of the sensor [22]. The
radiance was subsequently converted to apparent reflectance (Top of Atmosphere (ToA)) with the aim
of converting the original values of each image into standard physical variables that are comparable
over time for the same sensor [19]. This process was carried out with IDRISI® Selva software [23] and
the ATMOS algorithm, which fits the radiometric effect on considering the solar elevation, yielding an
image with reflectance values (0-1).

Furthermore, the same images were downloaded from the National Landsat Archive Processing
System (NLAPS), corresponding to the product Landsat 4-5 Thematic Mapper level 1 of reflectance
on surfaces (SR), radiometrically and atmospherically corrected, and processed through the Standard
Landsat Product Generation System (LPGS) using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) algorithm [17].

Bands 1, 2, 3, 4, 5 and 7 (Band 1 to Band 7) of Landsat TM5 were used; Band 6 was not used,
because of its thermal characteristics [17]. The Normalized Difference Vegetation Index (NDVI) was
also calculated, with the aim of compensating the factors that influence the images in relation to
biomass estimation, such as the illumination conditions, the slope and the orientation of the surface.
The use of NDVI calculated for ToA and SR, as a predictor variable to model AGB has been successfully
reported in previous studies [24-26].

NDVI — (NIR — R)

(NIR + R) @

where NIR is the spectral band in the near infrared region (Band 4) and R the band in the
red region (Band 3).

2.5. Integration of Data Files

Once the images were obtained by the previously mentioned processes (ToA and SR spectral
bands), a mosaic was constructed with six of the scenes covering the SMO. Posterior geolocation of the
SPIFyS in the mosaic enabled extraction of the information at the pixel level by bilinear interpolation.
ArcGIS 10® software [27] was used for this extraction. ToA and SR values were integrated in a database
together with the extracted total aboveground biomass (Mg-ha—') as inputs for the model.

2.6. Fitted Model

We used a machine learning technique to estimate the AGB at stand level. M5P technique
combines a conventional decision tree with the possibility of linear regression functions at the nodes.
First, a decision-tree induction algorithm is used to build a tree, but instead of maximizing the
information gain at each inner node, a splitting criterion is used that minimizes the intra-subset
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variation in the class values down each branch. The splitting procedure in M5P stops if the class values
of all instances that reach a node vary very slightly, or only a few instances remain. Second, the tree
is pruned back from each leaf. When pruning, an inner node is turned into a leaf with a regression
plane. Third, to avoid sharp discontinuities between the subtrees, a smoothing procedure is applied
that combines the leaf model prediction with each node along the path back to the root, smoothing
it at each of these nodes by combining it with the value predicted by the linear model for that node.
Techniques devised by [11] for their classification and regression trees system are adapted in order
to deal with enumerated attributes and missing values. All enumerated attributes are turned into
binary variables so that all splits in M5P are binary. As to missing values, M5P uses a technique called
“surrogate splitting” that finds another attribute to split on in place of the original one and uses it
instead [11,28,29].

In this study, in a first stage, the six spectral bands of the Landsat 5 TM sensor (1, 2, 3,4, 5 and 7)
and the NDVI were analyzed with the algorithms ToA and SR to estimate AGB. In a second stage,
its spectral variables (SR) were evaluated with variables that incorporate aspects of forest structure
(ASG). All analyses were performed with M5P technique implemented into the WEKA open source
software [30].

To compare the performance of the models, the coefficient of determination (R?), the root mean
squared error (RMSE) and the root relative squared error (RRSE) were used as goodness-of-fit criteria
for evaluating model performance and were expressed as follows:

5 i — i)
RZ —1— Zjl - (2)
;1 (yl - yl)
> (i)
RMSE = A| =1 - ®3)
>
RRSE = | =1 (4)
Z (]21 - yz)z

Il
—_

where, y;, ; and y; are the observed, estimated and mean values of AGB, respectively; n is the total
number of observations used to fit the model; and p is the number of model parameters.

The selected model was applied for mapping AGB in the SMO area using ArcGIS 10®
software [27].

3. Results

The decision tree generated by the M5P technique for ToA, SR and SR with ASG variables were
implemented in WEKA software, using the pixel level values extracted from the images of the 201
SPIFyS plots is shown in Figure 2.

In accordance with the hierarchical structure of the decision trees, the following variables that best
discriminated or predicted the AGB, in order of decreasing importance were, for ToA: Band 7, Band 3,
Band 1, NDVI and Band 5; for SR: NDVI, Band 1 and Band 7; and for SR with ASG: NDVI, OB, Band
4 and tree abundance of pines. Categorization of the trees continued following the path determined
by the responses to the questions at the internal nodes, until reaching a terminal node, where the
predetermined label will be that assigned to the classification pattern—in this case, the pixel values for
AGB estimation. The Table 2 show the goodness-of-fit statistics derived from the M5P technique with
ToA values explained 54% (R?) of the observed variability in the AGB of the 201 research plots, with a
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RMSE of 50.47 Mg-ha~!. SR model explained 69% (RMSE = 42.17 Mg- ha~!), and when including the
ASG variables the explanation of the variance increases to 73% (RMSE = 39.40 Mg-ha~!).

<=o,ooz//&>o.ooz
- e

<=0.583 >0.583 <=0.578 >0.578
<=0.663 >0.663 <=0.141  >0.141 <=0.026 >0.026

<=0.53 >0.53 <=0.532 >0.532 <=0.007 >0.007

7 7o N
<=0.611 >0.611 <=0.994 >0.994 <=0.174 >0.174

e e W7 CsR230%)

(“osﬁ.//-kmmj

<=0.491 >0.491 <=065 >0.65
®
<=0.402 >0.402 <=0.501 >0.501 <=292.375 >292.375
<=0.428 >0428 <=0.531 >0.531 <=250.458 >250.458 <=926.875>926.875
<=1204.25>1204.25 <=266.667 >266.667

(c:ﬂﬂﬁ/&mﬂﬁﬁ

<=0.491 >0.491 <=0.65 >0.65
<=0.402  >0.402 <=0.501 >0.501 <=0.082 »0.082
s o
<=0.053  >0.053 <=0531 >0.531 <=2158.667 >2158.667
<=0429  >0.429 <=0.709  >0.709

Figure 2. Decision tree obtained using the M5P technique with ToA (upper), SR (middle) and SR
with ASG variables (bottom). (Band 1 to 7): of Landsat 5 TM (Thematic Mapper) satellite, (NDVI):
normalized difference vegetation index, (OB) tree abundance of other broadleaves species, and (Pinus)
tree abundance of pines.
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Table 2. Summary of the goodness-of-fit statistics for estimation of the AGB.

Statistics ToA SR SR with ASG
R? 0.54 0.69 0.73
RMSE 50.47 4217 39.40
RRSE 67.45 56.36 52.66

Graphical analysis of the residual values and the observed values plotted against the predicted

values of AGB did not reveal any important problems in relation to heterogeneity of the variance or
lack of normal distribution of the residuals, with the exception of a slight trend of underestimation for

high AGB (Figure 3).
500 - 200 -
----- ERE -
+ .
40 |l eamarcon 150 4
400 P ~
- L 100
T 350 . =
=
2 300 | S 50
@ 2
O 250 S o
$ 200 Q
: o 50
2 150 | 3
3 3-100
100 - y=1.076x-10.129 & +
50 | R2=0.5478 -150 4
0 | | | | | ! ‘ ‘ ‘ ‘ -200 4
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350
Predicted AGB (ToA) (Mg ha) Predicted AGB (ToA) (Mg ha)
500 - .
..... e + ~ 200 -
e + +
450 | ——— Lineal (Predicted AGB vs i
Observed AGB) L 150 -
400 1 e N
— - o
T 350 1 -~ £ 100
= s
=) 1 = 50
2 300 =
& 250 | 2
< g °
<
2 200 1 s -50
8 E
2 150 - h-]
e} 2-100
100 - y=1.087x- 11.696 & .
2 = - ]
50 R? = 0.6868
0 . ‘ ‘ | ; , ‘ | . . 200 -
0 50 100 150 200 250 300 350 400 450 500 0 0 100 1% 200 2850300 350
Predicted AGB (SR) (Mg ha") Predicted AGB (SR) (Mg ha™')
500 - = 200 -
----- 1:1 i
450 | . + - + +
ineal (Predicted AGB vs L 150 A
Observed AGB) -7 -
400 - vin £ Ty
_ - > 100 - v
w 350 - = T 5 + +
2 300 - g 50 — T¢+++++ .
5 3 TS e T
+
Q 250 - € 0 oty
3 e i T BRE
3 200 8 g A
g | g -50 1 FEH T Fery o+
5 i
2 150 4 ) +F5
o 3100 + *
3 +
100 + y=1.09x - 12.586 2
2 = [+ 4
50 | R2=0.7276 150
0 | | ‘ | | | | | | | -200 -
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350
Predicted AGB (SR+ASG) (Mg ha'') Predicted AGB (SR+ASG) (Mg ha'")

Figure 3. Graphs showing the distribution of the residuals and of the observed AGB values with ToA
(upper), SR (middle) and SR with ASG variables (bottom).
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The spatial distribution of the estimated AGB (Mg-ha—!) in the SMO area obtained by the
application of the classification rules included in the regression tree model (M5P) for SR variables is
shown in Figure 4. The lighter color pixels represent the lowest amounts of AGB, below 75 Mg-ha~1,
whereas the dark green pixels represent the largest amounts of AGB, which consistently correspond
to the most dense areas of temperate forest. Calculated mean amount of AGB for the study area was
around 106 Mg-ha~!.
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Figure 4. Spatial distribution of the total AGB in the SMO, state of Durango, Mexico.

The total AGB content estimations from the MP5 technique for SR variables for the analyzed
forest management units are shown in Table 3. The highest mean value of AGB was observed
in the UMAFOR 1006 (Municipally of San Dimas) with 148.98 Mg-ha~! and a total estimation
of 64,033,008.59 Mg. This zone encompasses the largest area of forestland and therefore the largest
amount of AGB. On the other hand, the lowest amount of AGB was observed in the UMAFOR 1001
with a mean estimate of 78.66 Mg- ha—!, making it the forest region with the lowest density out of the
eleven forest management units considered in this study.
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Table 3. Estimation of AGB for the regional forest management units in the SMO, state of
Durango, Mexico.

UMAFOR Mean AGB Surface Area Total AGB
(Mg-ha—1) (ha) Mg)
1001 78.66 423,990.00 33,350,319.02
1002 85.58 351,498.00 30,079,977.18
1003 107.10 126,054.00 13,500,870.12
1004 99.54 318,104.00 31,663,478.70
1005 125.38 424,753.00 53,256,210.80
1006 148.98 429,806.00 64,033,008.59
1007 88.29 253,619.00 22,393,159.18
1008 111.12 373,308.00 41,482,686.80
1009 120.90 162,075.00 19,594,636.15
1010 111.49 358,944.00 40,017,365.50
1011 84.97 262,488.00 22,303,475.59
TOTAL 105.64 3,484,639.00 283,143,798.25

4. Discussion

The results of the present study demonstrate that the data acquired by a medium spatial resolution
(Landsat) sensor are potentially useful for estimating AGB in structurally complex forests, such as those
in the SMO in the state of Durango (Mexico), with satisfactory results and low cost. The deterministic
predictors were the bands belonging to the blue, green and most red, near and mid infrared spectral
regions. This finding was similar to that reported by [31], who demonstrated that reflectance in the
red and near infrared regions yielded good predictions for AGB estimation in forest zones of the
Yellowstone National Park, USA. In the present study, the model tended to underestimate AGB values
above approximately 250 Mg- ha~!. This might possibly be due to the saturation of NDVI, which is
the most influential variable in predicting biomass for high values. In this sense, several studies have
similarly found that the NDVI loses its sensitivity to dense vegetation because of the saturation in
red and near infrared wavelength in measuring and monitoring plant growth, vegetation cover and
biomass production from satellite data [32-34]. Models fitted ToA, SR, and SR with ASG, respectively,
showed an increasing capacity to overcome these NDVI saturation problems.

Furthermore, [35] concluded that the vegetation indices or individual bands, which include one or
more bands in the infrared spectrum, provide satisfactory descriptions of zones occupied by conifer or
broadleaf species. Moreover, in the case of SR, which was better than ToA, the contribution of Band 1
in two terminal nodes of the M5P model is associated with the structural variability of the canopy [36].
Ginli et al. [37] found that the reflectance from Landsat TM satellite Band 1 was the best predictor of
AGB (R? = 0.465, RMSE = 91,836 t-ha™ 1), given the structural conditions of the canopy and understory,
as the reflectance from this band increased as the AGB increased. In the present study, the result of the
M5P analysis with SR spectral bands (R? = 0.69, RMSE = 42.17 Mg- ha~!) was higher to that reported
by Houghton et al. [38], who analyzed data from the MODIS sensor (resolution, 500 m) and forest
inventory data using the non-parametric Random Forest (R? = 0.61) method to map forest biomass
in Russia.

In a recent study, Tian ef al. [39] used the non-parametric k-nearest neighbours (k-NN) technique
to produce an optimized model (R? = 0.59, RMSE = 24.92 ton- ha~!) from Landsat-TM images of a
sample of 133 plots, with topographic correction based on sun-canopy-sensor (SCS + C). Likewise,
Hall, [30] used Landsat 5 (TM) images rectified by SCS+C radiometric correction and compared the
performance of the k-NN method and support vector machine (SVM) method for estimating AGB.
They found that k-NN performed better (R? = 0.54; RMSE = 26.62 ton-ha~!) than SVM (R? = 0.51;
RMSE = 27.45 ton-ha™1).

In general, most previous studies report significant relationships between AGB and the reflectance
values yielded by each sensor. The reliability was within the range reported in diverse research
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studies that estimate AGB from medium resolution spectral data, from Landsat and SPOT, which
often yield R? values between 0.50 and 0.70 with absolute errors of the estimates of between 30 and
60 Mg-ha~! [5,40-47]. The present study also shows that incorporation of spectral data and tree
abundance estimated by species group in mixed and uneven-aged forests (SR with ASG), such as the
SMO, can increase the level of estimation of the AGB (R? = 0.73; RMSE = 39.40 Mg- ha™1). In this sense,
previous studies have reported significant variations in forest biomass estimation between different
ecological zones, tree species, ages, density and management types [48-50].

In other studies [51-53], several authors have concluded that the spectral data derived after
atmospheric and topographic correction may improve the accuracy of the biomass estimation,
irrespective of the statistical method used. As the areas being monitored are mountainous zones,
the quality of the data is negatively affected by the reflectance between sunny and shaded slopes.
Interactive parameter fitting in the topographical correction methods may improve the quality of the
spectral data and of the AGB estimates [52,53].

5. Conclusions

In the present study, we estimated the AGB in the SMO in the state of Durango, Mexico, using the
MB5P technique and the analysis of medium-resolution satellite-based multi-spectral data, and field
data collected from a network of 201 SPIFyS.

The findings show that the M5P method is potentially useful for estimating forest biomass. Data
from the infrared channel of the Landsat TM5 sensor proved best for discriminating or predicting AGB.

The surface reflectance values (SR) in comparison with atmospheric correction from the sensor
(ToA), was best for the estimation of AGB.

The results of this study indicate that performing atmospheric corrections and considering
variables related to forest structure (SR with ASG variables) can help to solve problems of saturation of
NDVI for high values of biomass.
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