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Abstract: Phage therapy is based on a simple concept: the use of a virus (bacteriophage) that is
capable of killing specific pathogenic bacteria to treat bacterial infections. Since the pioneering work
of Félix d’Herelle, bacteriophages (phages) isolated in vitro have been shown to be of therapeutic
value. Over decades of study, a large number of rather complex mechanisms that are used by
phages to hijack bacterial resources and to produce their progeny have been deciphered. While these
mechanisms have been identified and have been studied under optimal conditions in vitro, much less
is known about the requirements for successful viral infections in relevant natural conditions. This is
particularly true in the context of phage therapy. Here, we highlight the parameters affecting phage
replication in both in vitro and in vivo environments, focusing, in particular, on the mammalian
digestive tract. We propose avenues for increasing the knowledge-guided implementation of phages
as therapeutic tools.
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1. Introduction

With the alarming worldwide increase in the prevalence of multidrug-resistant bacteria, phage
therapy—the use of phages to target pathogenic bacteria [1]—has recently returned to the spotlight
in the USA and Europe, although it had never fallen out of favour in countries such as Georgia [2].
The three main characteristics of phages that make phage therapy an appealing strategy are (i) the
self-replication of phages, leading to a local increase in their concentration; (ii) the lack of broad
off-target effects due to the narrow host specificity of phages and (iii) genomic flexibility making it
possible to rapidly develop optimised variants. The recent publication of a successful compassionate
clinical case treatment with phages has highlighted the potential value of phage therapy in the context
of human health [3,4]. However, in modern phase II clinical trials, the efficacy of phage therapy was
highly variable in a small number of patients with chronic otitis, and phage therapy was ineffective
in a larger trial with children with diarrhoea [5,6]. This lack of success may partly reflect the paucity
of data relating to the translation from in vitro to clinical settings [7]. We must, therefore, address
the challenge of identifying the parameters characterising effective phage treatments. For example,
in studies of several experimental models investigating the use of phages to target bacteria residing in
the digestive tract of animals, treatment efficacy has been reported to range from complete inefficacy
to highly successful [8–12]. These findings contrast strongly with in vitro observations in which most,
if not all, phages are highly efficient at infecting their host. These discrepancies may be explained by
the influence of the bacterial lifestyle on phage infection, as discussed below.
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2. Bacteria Provide Essential Support for the Parasitic Lifestyle of Phages

Bacteria are among the most ubiquitous organisms on the planet and their high levels of
diversity are regularly confirmed in metagenomics studies [13–15]. Bacteria colonise a multitude
of environments, from oceans to deserts, demonstrating their great ability to thrive in different
environments and to regulate major global processes, such as the biogeochemical cycles of essential
elements (carbon, nitrogen, oxygen) [16].

From an anthropocentric point of view, most bacteria are harmless while a few are beneficial or
pathogenic. Bacteria isolated from many body sites have been shown to survive in various conditions,
such as the acidic medium of the stomach or the highly oxygenated respiratory tract. Even within
a single species, bacteria may display considerable phenotypic flexibility. This is illustrated by the
well-known model bacterium Escherichia coli, a facultative anaerobe able to survive in environmental
conditions that are very different from its natural habitat, the digestive tract of warm-blooded
animals [17].

Bacterial physiological responses play a crucial role in shaping the interactions of bacteria
with their environment. The recent development of several techniques (membrane, chip, RNASeq),
which facilitate the capture of mRNAs, has made a fundamental contribution to the description of
global physiological responses in bacteria. These techniques have made it possible for researchers to
describe the transcriptomic profile of bacteria growing in several different types of conditions [18–23].
For example, Denou et al. compared Lactobacillus johnsonii gene expression between in vitro (in flasks)
and in vivo (mouse gastrointestinal tract) conditions and in different sections of the gastrointestinal
tract (stomach, caecum and colon) [18]. Their observations confirmed that the animal host, either
directly or indirectly via other microbes, influences gene expression in the bacterial populations
colonizing different body sites.

Phages are obligate parasites and, as such, their distribution matches that of the bacteria they
infect. Bacteria may be susceptible to phages or resistant via many mechanisms developed by bacteria
during the course of their coevolution with phages. Bacteria can prevent phage adsorption by deleting
phage receptors, modifying their conformation, or releasing factors that occupy the binding site or even
mask it. Other mechanisms of protection involve the prevention of phage DNA injection, the digestion
of phage DNA by restriction-modification enzymes or by the CRISPR-Cas machinery. For a more
comprehensive and detailed description of these phage resistance mechanisms, we refer the reader to
the review by Labrie, S.J., et al. [24]. In 2015, a novel system called BREX (bacteriophage exclusion) was
described and reported to specifically prevent phage DNA replication [25]. Doron et al. (2018) recently
used comparative genomics to predict an impressive list of 26 new putative antiphage systems, nine of
which were experimentally validated [26]. In addition, environmental fluctuations driving bacterial
modifications can directly or indirectly influence phage infection, as discussed in the chapters below
focused on virulent phages and schematically illustrated in Figure 1.
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3. Bacterial Physiology Affects the Outcome of Phage Infection

In optimal in vitro conditions, bacterial growth is characterised by four different phases: (i) the
lag phase (initial phase) during which the bacteria are still adapting and adjusting to the growth
conditions; (ii) the exponential growth or log phase during which the bacteria replicate rapidly; (iii) the
stationary phase during which nutrients are depleted from the medium, limiting replication rates
(during this phase, growth rate and death rate are usually matched); and (iv) death, which occurs
when the nutrients are exhausted. The physiological state of a bacterium is linked to its growth
conditions, which are, in turn, highly dependent on abiotic factors, such as nutrient variety and density,
in particular [19]. Changes in growth conditions can affect the antibacterial activity of phages by
preventing infection, replication or lysis. In vitro studies of phage–host interactions are typically
performed in exponential phase cultures in liquid broth and little is known about these interactions in
other conditions resembling those found in natural environments. The initial isolation of phages itself
introduces a selection bias in that it often occurs in growth conditions that are optimal for the host
(rich medium with shaking), i.e., those in which the bacteria are constantly in a planktonic state.

Many in vitro studies on the model system consisting of the phage T4 and its host, E. coli, have
characterised the effects of host physiology on the infection efficiency of the phage. At high growth
rates, phage T4 is absorbed and released more rapidly, its burst size increases and its eclipse and latent
periods decrease [27–30]. These observations led to the suggestion that phage synthesis and assembly
rates depend on the protein synthesis machinery of the host, whereas lysis time is correlated with
cellular dimensions [29]. Other studies have shown that phages T4 and ms2 can enter a dormant state
during the infection of stationary-phase cells. This state has been referred to as “hibernation” and is
reversible. Some phage proteins are synthesised during hibernation but particle assembly is placed on
hold until additional nutrients become available in the environment, which allows the phage infection
processes to resume [27,31,32].

Bacteria may display various physiological states due to environmental stochasticity, which can
convert a phage-susceptible bacterial host into a phage-resistant host. Indeed, stochastic differential
gene expression can generate a heterogeneous population of cells within which a subpopulation
may express lower levels of phage receptors, with consequences for the rate of phage adsorption.
Such stochastic expression renders cells effectively resistant to phages without the need to acquire
resistance through mutation. Although this phenomenon, known as phenotypic resistance, remains
underappreciated and understudied, it may potentially account for the difference in infection efficiency
between in vitro and in vivo conditions [33–35].

Another example of differences in phage infection efficiency due to shifts of environmental
conditions is provided by phage T5. The infection efficiency of this phage has been shown to be
dependent on temperature, which alters the host cell’s membrane rigidity [36]. By contrast, E. coli
phage infection efficiency seems to be independent of oxygen concentration, at least in vitro, as shown
by studies in both aerobic and anaerobic conditions [11,12]. Nevertheless, it was shown that different
aeration conditions imposed on Bacillus thuringiensis could affect the duration of the infectious
cycle of phage BAM35 [37]. In 2004, Sillankorva et al. performed an extensive study with the
phage US1 and its host, Pseudomonas fluorescens [38]. These authors showed that temperatures lower
(4 ◦C) or higher (37 ◦C) than the optimal temperature (26 ◦C) had a major effect on phage infection
efficiency, leading to an absence of phage amplification (37 ◦C) or rare (4 ◦C) phage infections.
Furthermore, this phage cannot infect its host in a glucose medium despite its high infection efficiency
in nutrient-rich conditions. Studies of the outer membrane protein profiles of cells grown in these
two environments identified two proteins—17.5 and 99.0 kDa—with differential abundance under
these growth conditions. These proteins were not detected in bacteria growing at 37 ◦C or in a glucose
medium and the smaller protein was not detected at 4 ◦C, suggesting a possible role for these proteins
as phage receptors. Environmental shifts can also, in some cases, trigger the production of capsules,
which may mask phage receptors or allow other phages to use these same receptors [39–41]. In other
cases, these environmental fluctuations can promote the induction (resumption of lytic cycle) of
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prophages present in the genome of bacteria, causing the destruction of their host [42]. Interestingly,
prophage induction is frequent in the digestive tract of mammals as suggested by metagenomics data,
however, their precise role waits to be defined [43,44].

4. Bacterial Community Lifestyle Influences Phage Infection

In any environment, including body sites, bacterial populations do not generally adopt the
planktonic state of growth that is frequently observed in laboratory experiments. Instead, they tend
to live in multilayer aggregates of cells that adhere to each other and frequently to surfaces via
the production of a matrix of extracellular polymeric substances (EPSs) [45]. These EPSs include
exopolysaccharides and proteins but also lipids and DNA. The resulting biofilms limit the efficacy
of antibiotics, principally by decreasing their diffusion. As a result, the bacteria are not completely
eradicated by such treatments, favouring the development of chronic bacterial infections [46]. In such
situations, phages may constitute a potential solution given their impact on microbial communities [47].
However, the efficacy of phages against biofilms in vitro is variable and certain biofilm components
may act as barriers against phage infection. For example, the presence of an amyloid fibre network
of CsgA (curli polymer) can physically prevent phages from penetrating biofilms [48]. Phages can
also attach to these amyloid fibres, preventing the viral binding to receptors [48]. On the other hand,
some phages are equipped with enzymes that can degrade the polysaccharides produced by bacteria,
thereby facilitating the diffusion of viral particles in biofilms [49,50]. The efficacy with which phages
infect bacteria in biofilms is also strongly influenced by nutrient availability and nutrient concentrations
that are highly heterogeneous within the biofilm structure [51].

An additional layer of complexity in interactions between phages and biofilms has been reported
in studies of biofilms formed by the gut pathogen Campylobacter jejuni. Following phage infection,
some of the cells in C. jejuni biofilms enter a carrier state. This involves phenotypic modifications to the
bacterial cells, conferring advantages that enable them to survive in extraintestinal environments but
preventing them from colonising the gut of chickens. Nevertheless, such carrier bacteria can import
the phage into chickens that are already colonized by C. jejuni, providing the phage with opportunities
to infect new cells following its release from the carrier [52,53].

Biofilms can also provide bacteria with a spatial refuge, reducing the probability of contact
between a phage and its host, driving coexistence dynamics between the two populations without
extinction of either the bacteria or the phage. This has been studied in vitro and modelled in silico.
Spatially explicit individual-based stochastic models have shown that these structured refuges may
maintain coexistence between the two populations within their boundaries, without the emergence of
resistant clones [54]. In vitro experiments on populations of P. aeruginosa and bacteriophage PP7 in a
heterogeneous artificial environment (static bacterial growth) showed a decrease in viral transmission
and the emergence of refuges for the bacterial cells, stabilising interactions between the two antagonistic
entities [55]. Similar observations were made when biofilms were grown on the wall of chemostats [56].
Finally, Eriksen et al. showed in a much more structured environment (solid agar in a Petri dish) that
populations of phages and bacteria can co-exist in the long term but that this phenomenon is dependent
on bacterial density, requiring the presence of at least 50,000 cells [57]. This threshold for phage
replication is close to the threshold of 10,000 cells previously determined for well-mixed populations
in several systems (Bacillus subtilis, Escherichia coli and Staphylococcus aureus), a phenomenon known as
the “threshold for phage replication” or “proliferation threshold” [58,59].

5. Human Health and the Gut Phageome

Many aspects of phage biology, from initial adsorption to final lysis, can be affected by host
behaviour, making it harder to reliably predict the overall efficacy of a phage in a given situation.
This challenge is even greater when the complexity of viral species inhabiting the human gut is taken
into account, as the cellular hosts of most of these viruses have yet to be identified [60,61].
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The human gastrointestinal tract is a highly diverse and heterogeneous environment [62] that is
inhabited by many different microorganisms [63]. It is also characterised by changes in conditions
between sections, exposing its inhabitants to fluctuations in pH, nutrient levels, water and oxygen
concentrations and even structure (ranging from liquid to semi-solid) [64–68].

It is now acknowledged that there are at least as many phages as bacterial cells in the mammalian
gastrointestinal tract [69]. In healthy humans, only a small proportion of the phageome (phage
community) is common to large numbers of individuals, with most of the phages present being
subject specific [44]. Moreover, patients with inflammatory bowel disease (ulcerative colitis and
Crohn’s disease) or AIDS have been shown to have gut viral populations that are very different in
size and diversity from those of healthy individuals [70,71]. Furthermore, changes in viral diversity
have been shown to precede the appearance of type I diabetes in children [72]. Phageome variations
are of course connected with bacteriome deviations, demonstrating the intimate but still poorly
characterised link between these two antagonistic populations. These conditions of viral and cellular
dysbiosis raise questions about whether certain diseases are caused by changes in the microbiome
rather than a single pathogen, defining the new concept of a “pathobiome” [73]. This concept underlies
a paradigm shift with a move away from targeting single pathogens to targeting whole communities.
Within this framework, phages are potentially useful as modulators of the microbiome as a whole.
A striking example of this approach is provided by the similar efficacies of treatments for recurrent
Clostridium difficile infections based on faecal microbiota transfer or sterile faecal transfer with filtering
to exclude bacteria (but not phages), highlighting the role of non-bacterial components of the microbiota
in the clinical effect of treatment [74,75]. Interestingly, the virome composition of patients treated by
sterile transfer was found to be similar to that in the donor [75].

Interesting features of these phages can be linked to their adaptation to this environment;
for example, some phages carry specific motifs in their capsids that allow them to bind to the intestinal
mucus, potentially creating an additional layer of protection against bacteria [76]. Moreover, a direct
role of the microbiome in phage evolution has also been suggested by the results of a study reporting
the evolution of an ability to infect new hosts through the use of a second strain as a stepping stone [9].
No such evolution was observed in vitro or in dixenic mice and it was, therefore, suggested that the
gut microbiota can promote phage and bacterial population diversification [9,77].

In summary, each partner in this tripartite interaction (the phage, the bacterium and the
mammalian host) plays an important role in phage–bacterium dynamics. It is therefore vital to
consider these partners as an ecosystem rather than as two separate paired entities (phage/bacterium
or bacterium/host) [78,79]. There are currently gaps in our knowledge that we need to overcome if
we are to implement effective strategies based on phage treatments for intestinal pathogens or for the
development of microbiota engineering strategies.

6. Overcoming the Limitations of Phage Infection Efficacy In Vivo

To optimise the output of applications based on phages, the gap between in vitro studies and
in vivo conditions may be bridged in several ways. First, phages can be isolated and characterised
in more realistic and ecologically relevant conditions than under the conditions for optimal bacterial
growth that are typically used. For example, we can decide to start from in vitro biofilms consisting
of single bacterial species or multi-species communities, and then proceed to ex-vivo conditions
using organs [11,80] and, ultimately, in vivo environments [60]. Second, the precise identification
of phage receptors and their expression profiles in ecologically relevant conditions will not only
provide us with information about phage biology but will also guide the optimisation of conditions for
in vivo efficacy. Adaptation of the phage to the targeted pathogen has also been shown to increase
phage efficacy in some cases [81]. Moreover, the use of different doses and the localised release of
microencapsulated phages may overcome some of the difficulties related to bacterial refuges and
bacterial density thresholds [82].



Viruses 2018, 10, 327 6 of 11

Third, the use of phages together with other treatments (e.g., antibiotics) may improve overall
treatment efficacy, an idea that has gained ground since the publication of the Phage Antibiotic Synergy
system in 2007 [83]. Several studies have since confirmed the advantages of combining these two
antibacterial weapons, although some of the mechanisms involved have yet to be identified (not all
phage and antibiotic combinations display such synergy [84,85]). Such combinations may also be
effective against biofilms, overcoming the limitations of each of these agents used separately [86–88].
The selection of resistant cells is a key concern in the use of both antibiotics and phages. However,
there is no overall association between antibiotic resistance and phage resistance profiles supporting
further their use in combination [89]. Nevertheless, double resistance or persister cells could provide
a means for bacteria to protect themselves from these threats, however, this requires further studies.
Interestingly, it was observed that the growth of phage-resistant bacteria during phage therapy in
experimental models can be controlled with two independent allies: antibiotics, as demonstrated
in an endocarditis model, and the innate immune response, as shown in a model of pulmonary
infection [84,90].

About a century after their first use as an antibacterial agent for treating infections, phages have
not yet revealed all their secrets. Phage biology is presenting scientists with new challenges every
day. Many of the mechanisms involved in phage infection of bacteria remain unknown, hindering the
effective use of phages as an ecological and sustainable alternative or complement to overcome the
antibiotic resistance crisis and to tackle diseases caused by microbiome dysbiosis.
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