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Abstract: Sapovirus is a common cause of acute gastroenteritis in all age groups. Sapovirus infections
are seldom investigated in Spain, and its epidemiology in the country is not well known. The use of
molecular diagnostic procedures has allowed a more frequent detection of sapoviruses in patients
with diarrhea. A total of 2545 stool samples from patients with acute gastroenteritis attended from
June 2018 to February 2020 at the Clinic University Hospital in Valencia, Spain, were analyzed
by reverse transcription (RT) and real-time multiplex PCR (RT-PCR) to investigate the etiology of
enteric infections. Sapovirus was the second enteric virus detected with a positive rate of 8%, behind
norovirus (12.2%) and ahead of rotavirus (7.1%), astrovirus (4.9%) and enteric adenoviruses (2.9%).
Most sapovirus infections occurred in infants and young children under 3 years of age (74%) with
the highest prevalence in autumn and early winter. Coinfections were found in 25% of the patients
with sapovirus diarrhea, mainly with other enteric viruses. Genotyping demonstrated the circulation
of seven different genotypes during the study period, with a predominance of genotypes GI.1, GI.2,
and GIIL1. Phylogenetic analysis showed that genogroup GII strains form a cluster separated from
genogroup GI and GV, being genotype GV.1 strains related to genotype GI.1 and GI.2 strains.
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1. Introduction

Sapoviruses cause acute gastroenteritis in patients of all ages, with the highest preva-
lence in children under 5 years old. The burden of sapovirus disease has often been
neglected due to the lack of commercial diagnostic tests [1]. The implementation of diag-
nostic molecular assays in clinical laboratories has contributed to an increased detection of
sapovirus infections in recent years [2,3]. Sapoviruses have been reported worldwide to
cause outbreaks of acute gastroenteritis mainly in daycare centers and healthcare facilities
throughout the year, and are associated with 1-17% of diarrhea sporadic cases, usually
in the cold season and in younger children [1,4]. They can be transmitted from person-
to-person and by contaminated water or foods [5]. The incubation period of sapovirus
infections varies from less than 1 to 4 days and generally cause a mild disease consisting of
diarrhea and vomiting, and sometimes coinfections [6-8].

Sapoviruses are classified in the Caliciviridae family within the order Picornavirales
(genus Sapovirus, species Sapporo virus) [9,10]. The human Sapovirus genome is a 7.1-7.7 kb
single-stranded, positive-sense RNA molecule with a 3'-end poly(A) tail, which encom-
passes two or three open reading frames (ORF1, ORF2 and ORF3), according to the
genogroup. The ORF1 encodes non-structural proteins (NS1-NS7) and a capsid pro-
tein (VP1, 60 kDa) [11-13], ORF2 encodes a minor capsid structural protein (VP2), whose
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expression was detected in vitro in cells infected with a porcine sapovirus using a reverse
genetic system [14] and the ORF3 encodes proteins of unknown function [15,16].

Sequence analysis of the viral capsid VP1 gene is widely used for the genetic classifi-
cation of sapoviruses and for the designation of new genogroups and/or genotypes [17].
Human and animals sapoviruses are classified into 19 genogroups based on available
VP1 sequences (GI-GXIX). GI, GII, GIV and GV genogroups are known to infect humans
whereas the remaining genogroups have been detected in swine (GIII and GV-GXI), sea li-
ons (GV), mink (GXII), dogs (GXIII), bats (GXIV, GXVI-GXIX) and rats (GXV). Human
sapoviruses can be further classified into 18 genotypes, with GI and GII subdivided into
7 genotypes (GI.1 to GL.7) and 8 genotypes (GII.1 to GIL8), respectively. GIV contains a
single genotype (GIV.1) and GV was subdivided into two genotypes for humans (GV.1 and
GV.2), one genotype for pigs (GV.3) and one for sea lions (GV.4) [17-19].

Sapoviruses, as well as other enteric viruses, have been increasingly detected in
cases of acute gastroenteritis, causing approximately 4% of acute gastroenteritis outbreaks
in Europe [20-22] and are also emerging worldwide [18,23-25]. In Spain, some studies
have detected the presence of sapoviruses in a significant number of fecal samples from
patients with acute gastroenteritis, demonstrating a dynamic evolution of genogroups and
genotypes [26-30].

To contribute to the understanding of the role of sapovirus as an etiologic agent of
acute gastroenteritis, this study aimed to analyze the prevalence and genetic characteristics
of human sapoviruses in patients with acute gastroenteritis in Valencia, Spain, from June
2018 to February 2020.

2. Materials and Methods
2.1. Specimen Collection and Microbiological Diagnosis

From June 2018 to February 2020 a total of 2545 fecal samples from outpatients
with acute gastroenteritis, both children and adults, were collected for bacterial and viral
enteropathogens prospective detection by real-time multiplex PCR. The BD Max enteric
viral panel combined with the enteric bacterial panel, and the C. difficile toxin B panel
(BD Max Cdiff) (Becton Dickinson, Sparks, MD, USA) when requested, were used at
the Clinical Microbiology Laboratory of the Hospital Clinico Universitario of Valencia to
analyze the stools. Positive samples for enteropathogenic bacteria were further cultivated
in the appropriate bacteriological media, and those positive for enteric viruses were kept at
—20 °C for viral strain characterization. The BD Max enteric viral panel detects norovirus
genogroup I (GI) and GII, rotavirus type A, adenovirus type F 40/41, human astrovirus and
sapovirus (genogroups I, II, IV, and V). The testing procedure was performed according to
the manufacturer’s instructions and all samples were anonymized once the diagnosis was
done. The present study was carried out in accordance with the Declaration of Helsinki and
was approved by the Ethics Committee of the Hospital Clinico Universitario of Valencia
(Approval No. F-CE-GEva-15, 26 May 2015).

2.2. Nucleic Acid Extraction and Reverse Transcription

One-hundred and eighty-six sapovirus-positive specimens were analyzed for fur-
ther viral genomic characterization by reverse transcription (RT) and hemi-nested PCR
and sequencing. Clarified 10% sapovirus-positive stool suspensions were prepared in
phosphate-buffered saline and RNA was extracted using TRIzol® reagent (Invitrogen,
Thermo Fisher Scientific) [31]. The RT reaction was performed with random primers and
the SuperScript® III reverse transcriptase (Life Technologies, Thermo Fisher Scientific,
Waltham, MA, USA).

2.3. Amplification of Sapovirus Partial Capsid Gene

Once the cDNA was obtained, it was first amplified by conventional PCR with primers
SV-F13/F14 and SV-R13/R14 previously described [15], to generate amplicons of approxi-
mately 800 bp. The conditions for the thermal cycling were as follows: initial denaturation
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at 95 °C for 3 min was followed by 35 cycles of 95 °C for 30 s, 48 °C for 30 s, and 74 °C
for 45 s. A final incubation at 74 °C for 5 min was performed for complete extension.
All samples, positive and negative from the first PCR, were analyzed by a nested PCR with
primers SV-F22 and SV-R2 under identical conditions, to amplify a region of approximately
420 bp in the capsid gene [15]. The sequences of the primers used are shown in Table 1.
Amplicons obtained in the nested PCR were sequenced for phylogenetic analyses.

Table 1. Primers used in this study to detect and characterize sapovirus strains [15,32].

Use Prime/Probe Nucleotide Sequence (5'-3') Positions *

SV-F13 GAYYWGGCYCTCGCYACCTAC 5074-5094

SV-F14 GAACAAGCTGTGGCATGCTAC 5074-5094

Capsid genogrouping SV-R13 GGTGANAYNCCATTKTCCAT 5876-5861
SV-R14 GGTGAGMMYCCATTCTCCAT 5876-5861

SV-F22 SMWAWTAGTGTTTGARATG 5154-5172

SV-R2 GWGGGRTCAACMCCWGGTGG 5591-5572

* Positions in complete sapovirus GI genogroup sequence (Manchester, accession no. X86560) [32]. Codes for generate bases: Y =C, T;
W=ATN=ACGTK=GTM=ACR=A,G.

2.4. Sequencing and Phylogenetic Analysis

When needed, amplicons were purified using the NZYGelpure kit (Nzytech, Lisboa,
Portugal). Sequencing was carried out by the ABI Prism system (Applied Biosystems,
Waltham, MA, USA) with the Big Dye Terminator V3.1 cycle sequencing kit and the
48-capillary ABI 3730 DNA analyzer. The quality of the sequences was evaluated with
BioEdit software v7.0.0 [33] and the characterization of the genogroup and the geno-
type of the sequenced viral capsid genes was carried out based on NCBI-BLAST data.
The sapovirus sequences obtained in this study were deposited in GenBank under accession
numbers MT580810, MT58081, MT580812-MT580814, MT580815-MT580861, MT580862—
MT580882, MT580883-MT580890, MT580891-MT580896, for the partial capsid sequences.

Sequences were aligned and analyzed with software programs Clustal X 2.0 [34], Gene-
Doc 2.7 and MEGA?7 (Molecular Evolutionary Genetics Analysis v7.0) [35]. Phylogenetic
trees were built by the maximum-likelihood method (bootstrap of 1000 replicates), with the
sequences from this study and reference sequences retrieved from GenBank. Genotypes
were assigned based on BLAST analyses and clustering with reference strains.

2.5. Statistical Analyses

The Mann-Whitney U and chi-squared tests were used to assess the equality of
medians for two observation samples. The level of statistical significance was established
as « = 0.05. Statistical analyses were performed by using IBM SPSS1 version 18 program
(SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Detection of Sapovirus and Other Enteropathogenic Agents

The BD Max enteric viral testing was performed in 2545 fecal samples rendering the
following rates of virus detections: norovirus, 12.2%; sapovirus, 8%; rotavirus, 7.1%,; astro-
virus, 4.9%, and enteric adenovirus 2.9%. Among enteropathogenic bacteria, Campylobacter
sp. (8.7%) and Salmonella enterica (3.6%) were the most frequently detected, followed by
enterotoxigenic E. coli (ETEC) (1%), Shiga toxin-producing E. coli (STEC) (0.6%) and Yersinia
enterocolitica (0.5%) (Figure 1). Amplicons were obtained in 88 (47.3%) of 186 sapovirus-
positive samples analyzed by conventional PCR and hemi-nested PCR, and were then
subjected to genetic characterization.

3.2. Temporal Distribution of Sapovirus

The monthly distribution of sapovirus and other enteric virus infections was evalu-
ated, detecting cases all year long, with a higher prevalence of sapovirus, norovirus and
astrovirus in autumn and early winter, and a peak in November in both years 2018 and
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2019. Rotavirus infections were more prevalent from February to June 2019 (Figure 2).
The increase in the prevalence of sapovirus infections was coincidental with a drop in the
average atmospheric temperatures (Figure 3).
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Figure 1. Microbiological findings in stool samples by real-time multiplex PCR (BD Max) from patients with acute
gastroenteritis from June 2018 to February 2020 in Valencia (Spain). For simplicity, mixed infections are not shown.
Abbreviations: STEC, Shiga toxin-producing Escherichia coli; EIEC, enteroinvasive E. coli; EHEC, enterohemorrhagic E. coli;
ETEC, enterotoxigenic E. coli.
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Figure 2. Enteric viruses detected in patients with acute gastroenteritis from June 2018 to February
2020 in Valencia, Spain.

3.3. Gender and Age Distribution of Sapovirus Infections

Of the 204 sapovirus strains detected, 55.9% were from male and 44.1% from female
patients (Table 2). The age distribution of the cases indicates that most patients were infants
and children under 2 years old (158/204; 77.4%). The greater impact on this age group is
statistically significant (p < 0.05). Interestingly, only 5 cases (2.4%) were recorded in patients
over 65 years old.
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Figure 3. Cumulative numbers of sapovirus infections by months in Valencia (Spain) from June 2018
to February 2020. Monthly average temperatures (line).

Table 2. Gender and age of patients with sapovirus infection.

Age (Years) N° Male N° Female Total (%)

0-2 89 69 158 (77.4)

3-5 8 14 22 (10.8)
6-12 7 2 9 (4.4)
13-18 2 0 2(1)
19-59 5 3 8(3.9)
>60 3 2 5(2.4)

Total (%) 114 (55.9) 90 (44.1) 204 (100)

3.4. Coinfection with Other Enteropathogenic Agents

Coinfections with other enteropathogens were observed in 25% (51/204) of patients
with sapovirus diarrhea (Table 3). Mixed infections were frequently detected with norovirus
(27.4%), astrovirus (21.5%), and rotavirus (17.6%), but also occurred with adenovirus
(7.8%), Campylobacter jejuni (9.8%), Clostridioides difficile (1.9%), Salmonella enterica (1.9%) and
Shiga toxin-producing Escherichia coli (STEC) (1.9%). Coinfections of sapovirus and other
two pathogens were also observed (norovirus and rotavirus, norovirus and adenovirus,
norovirus and S. enterica, adenovirus and astrovirus). These coinfections were detected
predominantly in infants, followed by the group of children aged 1-2 years.

3.5. Genetic Characterization
3.5.1. Genogroups and Genotypes

From a total of 88 positive samples with suitable sequences for genetic characteri-
zation, 68 corresponded to genogroup GI (77.3%), 17 (19.3%) to genogroup GII and 3 to
genogroup GV (3.4%). In total 7 different sapovirus genotypes were identified from the
88 characterized strains. Genogroup I sequences were classified into GI.1 (47/68; 69.1%)
(the predominant genotype) and GIL.2 (21/68; 30.9%). On the other hand, genogroup
II sequences have been divided into GIL.1 (8/17; 47%), GIL.3 (2/17; 11.8%), GIL.4 (6/17;
35.3%) and GIL5 (1/17, 5.9%). The three genogroup GV strains were classified as genotype
GV.1. The temporal distribution of the different genotypes showed a predominance of GI.1
and GI.2 during autumn and winter, in the months of October, November and December
(Figure 4). However, some cases were also caused by these genotypes in summer. Genotype
GIIL.1 was found in late autumn and early winter. GII.3 and GIL5 occurred only in December
and October, respectively. On the other hand, genotype GII.4 was detected in autumn and
winter (October, November, December and February) and July, at low percentages.
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Table 3. Distribution of coinfections of sapovirus with other enteropathogens in patients with acute
gastroenteritis in Valencia, Spain.

Coinfection with: N° of Cases (%)
Norovirus 14 (27.4)
Astrovirus 11 (21.5)
Rotavirus 9 (17.6)
Enteric adenovirus 4(7.8)
Campylobacter jejuni 5(9.8)
Clostridioides difficile 1(1.9)
Salmonella enterica 1(1.9)
Shiga toxin-producing E. coli 1(1.9)
Norovirus and rotavirus 2(3.8)
Norovirus and adenovirus 1(1.9)
Norovirus and Salmonella sp. 1(1.9)
Adenovirus and astrovirus 1(1.9)
Total (%) 51 (100)
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Figure 4. Sapovirus genotypes identified in patients with gastroenteritis from June 2018 to February
2020 in Valencia, Spain.

3.5.2. Phylogenetic Analysis

Phylogenetic analyses of the partial VP1 gene of 88 sapovirus strains in this study and
reference strains (NCBI-GenBank) demonstrates that they cluster into two main groups,
one including genotypes GlL.1, G1.2, GIV.1 and GV.1 (cluster A) and the other one including
genotypes GIL.1, GIL.3, GII.4 and GIL5 (cluster B) (Figure 5). Within cluster A, GV.1 forms a
subcluster independent from the rest of the group. The GV strains share a common ancestor
with the reference strain Nashville9492 (MG012434). In addition, in GI genogroup, GI.1 and
GI.2 form two separated subclusters. GI.1 strains share a common ancestor with the original
reference strain Sapporo (1982) (HM002617) and are closer to the Dresden reference strain
(2006) (AY694184). The GI.2 strains detected in this study are closer to the more recent
reference strains Nashville9367 (MG012443) and Oakland3023 (MG012442), from 2015
and 2016, respectively, while the older reference strain Potsdam 2000 (AF294739) is more
distant. Regarding genogroup GII, two subgroups were observed, one including reference
strains for genotypes GIL7 and GIIL.8 (20072248-AB6330067 and Monterey6283-MG012453,
respectively) and another one including all the GII strains from this study. The GII.1 strains
share ancestors with an older reference strain (Bristol, 1998-AJ249939) and a newer 2015
strain (Nashville9343-MG012444). The GIL5 strain found in this study shares an ancestor
with a more recent reference strain (Nashville9349-MG012447) and these are grouped with
a 2000-year reference strain (Cruise ship-AY289804). The GIL3 genotype clusters with a
2015 reference strain (Nashville9354-MG012419). Finally, it appears that the subcluster
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formed by the GII.4 genotype strains, in which many strains of this study are grouped,
form an independent group with respect to the reference strain Lima1873-MG012446.
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Figure 5. Phylogenetic analysis of the partial capsid gene of sapoviruses collected in Valencia, Spain from July 2018 to
February 2020. Phylogenicity was inferred using the Maximum-Likelihood method based on the Kimura 2-parameter
model with a bootstrap of 1000 replicates. Bootstrap values >50% are shown. The tree was condensed by removing
sequences of the same genotype that clustered together. The tree is drawn to scale; the branch lengths measure the number
of substitutions per site. The analyses included 111 sequences (87 samples and 24 references). References strains are
represented by their GenBank accession numbers and indicated with empty circles. The outgroup is indicated with filled
circle in grey. Sequences obtained in this study are indicated as follows: A in dark blue, GI.1; ¥ in blue, GI.2; B in red,
GIL1; W in purple, GIL3; B in pink, GII.4; B in yellow, GIL5; B in green, GV.1. The letters a-s represents the number of
samples analyzed and their respective GenBank access numbers. a = MT580822 and 580837; b = MT580821, 580834, 580841,
and 580854; c¢ = MT580815-MT580820, MT580823-MT580833, MT580835-MT580836, MT580838-MT580840, MT580842-
MT580853, and MT580855-MT580861; d = MT580862-MT580863 and MT580870; e = MT580865, MT580871, MT580877,
and MT580879-MT580882; f = MT580872; g = MT580864, MT580866-MT580869, MT580873-MT580876, and MT580878;
h =MT580812 and MT580813; i = MT580814; j = MT580888; k = MT580886 and MT580889; 1 = MT580883-MT580885;
m = MT580887; n = MT580890; o = MT580811; p = MT580810; q = MT580891; r = MT580894 and MT580895; s = MT580892
and MT580893; t = MT580896.



Viruses 2021, 13, 184

8of11

4. Discussion

Molecular techniques for enteropathogen detection provide comprehensive, sensitive,
and rapid alternatives for diagnosing infectious diarrhea, with clear advantages over
conventional methods. It has been reported a negative percent agreement (NPA) of 99.4%
for all viral targets in the BD Max enteric viral panel, with positive percent agreement
(PPA) values for norovirus, astrovirus, rotavirus, and adenovirus of 92.8%, 93.0%, 100%
and 95.6%, respectively [3]. Sapovirus had a PPA of 84.9% in those analyses, which was
lower than that found in a previous study (PPA, 100%) involving the BioFire FilmArray GI
panel (bioMérieux) [2].

In the present study it was found that noroviruses and sapoviruses were the most
prevalent enteric viruses in the study population, with positive rates of 12.22% and 8.09%,
respectively, followed by rotaviruses (7.11%), human astroviruses (4.91%) and enteric
adenoviruses (2.9%). The detection frequency of sapovirus has been reported to range
from 1 to 17% of diarrhea cases [1], although it varies across age groups and geographical
locations. Similar results have been obtained in other studies performed in the post-
rotavirus vaccine era, in which norovirus, sapovirus, and rotavirus infection were identified
in this order of frequency [20,36-38]. Although many studies show that norovirus remains
the most common enteric virus detected, sapovirus is increasingly being found. In a
previous study carried out in 2010-2011 in Northwest Spain (Galicia) a higher sapovirus
prevalence (15.6%) was reported [27]. By contrast, in a two-year prospective study of
gastroenteritis outbreaks in Catalonia in 2010-2011, sapovirus was only identified in two
outbreaks of person-to-person transmission in children, and in one outbreak of foodborne
transmission with coinfection with norovirus [26]. In that study, in 98% of 101 outbreaks
investigated the causative agent was norovirus.

Other enteric pathogens besides sapovirus were detected in 25% of the fecal samples in
our study. Most of these co-detections involved other enteric viruses (norovirus, astrovirus,
rotavirus and enteric adenovirus, in this order), but also bacteria (Campylobacter jejuni,
Salmonella enterica, Shiga toxin-producing E. coli (STEC) and B toxin-producing C. diffi-
cile). Many other studies have reported mixed infections of sapovirus with other enteric
pathogens [27,39,40]. Interestingly, the detection of sapovirus in healthy controls has also
been reported [1,41]. However, the multinational Malnutrition and Enteric Disease (MAL-
ED) cohort study estimated that sapovirus has the third highest attributable incidence for
diarrhea among children under 1 year of age and the second-highest attributable incidence
between 1 and 2 years of age, just behind Shigella sp. [42].

It is remarkable that in this study most sapovirus infections occurred in infants and
young children under 2 years old (77.4%). Other authors report the same findings [20,27],
although it has been also described an increase in sapovirus prevalence in elders above
60 years old [27], which was not confirmed in our study. In one survey conducted in
Germany it was found that in patients older than 14 years, sapoviruses were only detected
in immunocompromised individuals [43], which was not the case of our patients.

The highest number of sapovirus infections occurred in autumn and early winter, with
a peak in November in both years 2018 and 2019. In a previous study conducted in our
country in 2010-2011, the highest prevalence was found in September, October and late
winter (February), which is not coincidental with our findings [27].

It has been reported that the most common human sapovirus genogroups worldwide
are GI and GII [21,23]. Our results are coincidental, as 68 strains out of 88 corresponded to
GI (77.3%) and 17 to GII (19.3%), and only 3 strains were GV (3.4%). In our study, seven
different sapovirus genotypes were identified. GI.1 and GIL.2 were the two most common,
followed by GII.1, the same predominant genotypes found in 2010-2011 in Galicia (Spain)
by Varela et al. [27]. It has been reported that these three dominant genotypes are more
frequent not only in the first year of life but also in adults [1,27]. Other genotypes detected
in our study were also found previously circulating in Galicia (GIL.4, GIL5, GV.1); however,
we have not found GI.3, GII.2 and GIV.1 genotypes, and they did not detect GII.3 strains.
By phylogenetic analysis it was clearly demonstrated that genogroup GII strains form
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a cluster separated from genogroup GI and GV, being genotype GV.1 strains related to
genotype GIL.1 and GI.2 strains.

To trace the distribution of sapovirus genotypes in different settings and geograph-
ical areas is relevant, as this information is epidemiologically useful to design and de-
velop broadly protective sapovirus vaccines [1]. Even though several sapovirus recom-
binant strains of both intragenogroup and intergenogroup recombinations have been
reported [18,25,44], sequence analyses from five major genotypes (GI.1, G1.2, GIL.1, GIL3,
and GIV.1) have shown, contrary to noroviruses, limited intra-genotypic diversification
for over 40 years [45]. The relationship between sapovirus genotypes and serotypes is still
unknown and more studies are needed to clarify this question, but this observation gives
hope to the future development of sapovirus vaccines.
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