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Abstract: Bacteriophages are promising tools for the detection of fecal pollution in different envi-
ronments, and particularly for viral pathogen risk assessment. Having similar morphological and
biological characteristics, bacteriophages mimic the fate and transport of enteric viruses. Enteric
bacteriophages, especially phages infecting Escherichia coli (coliphages), have been proposed as
alternatives or complements to fecal indicator bacteria. Here, we provide a general overview of
the potential use of enteric bacteriophages as fecal and viral indicators in different environments,
as well as the available methods for their detection and enumeration, and the regulations for their
application.
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1. Introduction

Life on our planet cannot exist without water and it is estimated that 50% of the global
human population lives close to rivers, lakes, or oceans [1]. Besides its importance in main-
taining health and hygiene, water is also essential for economic and productive activities
(such as agriculture, industry, tourism, transportation, etc.), recreation and leisure (swim-
ming pools, fountains, etc.), and the preservation and restoration of natural ecosystems.
Therefore, a decrease in water quality due to pollution poses a risk to human wellbeing
and the natural environment.

One of the main sources of water pollution is the discharge of human and animal
fecal waste. If poorly managed, effluents of wastewater treatment plants (WWTPs) and
industrial and livestock wastes can spread enteric pathogens, including viruses, into aquatic
environments. Though crucial for human health and development, the microbiological
quality of water is difficult to control, due to the variety of existing waterborne pathogens,
the lack of effective methods, and the analytical and logistics costs required to detect such a
high number of pathogens (parasites, bacteria and viruses) [2]. The definition of indicator,
index, and model microorganisms, more than a century ago, allowed such limitations to be
overcome by ensuring a sufficiently appropriate control of water quality.

Despite their limitations, fecal indicator microorganisms represent a useful tool to
monitor the microbiological quality of water, where their presence is a sign of fecal con-
tamination and potentially the existence of pathogens. The most commonly used are
fecal indicator bacteria (FIB), including total coliforms, fecal coliforms, Escherichia coli,
streptococci and enterococci [3].

One of their drawbacks is that they do not provide information on the source of fecal
contamination, being frequently found in the microbiota of many animals. Moreover, they
correlate poorly with human viruses or parasites pathogens in natural aquatic environments
and WWTPs, displaying different behavior and lower survival rates [3].

Recently, bacteriophages capable of infecting enteric bacteria have been proposed as
alternative indicators of fecal and viral pollution. Bacteriophages have several advantages
over bacterial indicators, as they are more abundant and generally more persistent in the
environment and can provide more accurate information about viral pathogens. Bacterio-
phages serve as useful indicators of fecal contamination, as they are eliminated in feces,
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and do not replicate in a natural environment unless their host is present and metabolically
active [4]. They can also indicate viral contamination, as bacteriophages infecting intestinal
bacteria spread into the environment in a similar way to enteric viral pathogens and have
similar fates and survival patterns [5]. Monitoring the presence of every specific viral
pathogen is impracticable for routine control purposes. Besides the technical difficulties,
it would be extremely time-consuming and prohibitively expensive, especially for those
countries in most urgent need of efficient water quality control. Therefore, easy-to-detect
bacteriophages have been proposed as indicators of fecal and viral pollution and are now
included in multiple water quality regulations and guidelines worldwide [6].

Presented here is a general overview of the potential of bacteriophages as fecal pollu-
tion indicators, not only in water environments, but also in a range of solid matrices.

2. Families of Bacteriophages Used as Indicators of Fecal Pollution

Bacteriophages capable of infecting enteric bacteria are generally classified into three
taxonomically diverse groups: somatic coliphages, F-specific coliphages, and bacterio-
phages capable of infecting Bacteroides spp. [7,8]. Though less common, enterophages
(bacteriophages capable of infecting Enterococcus spp.) also have valuable potential as
indicator organisms due to their high concentrations in wastewater, similar survival rates
to enteric viruses, and differential prevalence in human or animal gut microbiota [9,10].
Nevertheless, their suitability has only been tested in tropical regions and further studies
are necessary [5,11].

Somatic coliphages are a heterogeneous group of bacteriophages capable of infecting
E. coli and other coliform bacteria through the cell wall after becoming attached to specific
receptors on the outer membrane [12]. Under optimal physiological conditions, lysis
occurs approximately 30 min after attachment, and between 100 and 1000 of progeny
are released per infected cell [13]. Four major families of somatic coliphages have been
described in polluted wastewaters; the most abundant are the Myoviridae and Siphoviridae,
followed by the Podoviridae and Microviridae [14]. The phage families differ in morphology
and resistance to inactivation factors. The Microviridae phages differ genetically from the
other three families in having single-stranded (ss) rather than double-stranded (ds) DNA.
Microviridae phages have tailless isometric capsids of 25–30 nm; those of the Myoviridae
family have capsids of up to 100 nm and a long contractile tail; the isometric capsids of
Siphoviridae phages are up to 60 nm and have long non-contractile tails; and Podoviridae
phages have isometric capsids of up to 65 nm with short tails. The somatic coliphages most
commonly used as model organisms in research are ΦX174, T2, and T7 [8].

Due to the availability of new genetic data, phage classification by the ICTV is cur-
rently undergoing a major overhaul, with new families being described and existing ones
divided. Following this reclassification, bacteriophages capable of infecting E. coli from
the Caudovirales order (dsDNA viruses) now include the new families Ackermannviridae,
Autographviridae, Chaseviridae, Demerecviridae, and Drexlerviridae [15,16]. As the contribu-
tion of the recently described families to phage presence in the environment has still not
been clearly defined, the initial four groups of somatic coliphages (Myoviridae, Siphoviridae,
Podoviridae, and Microviridae) [14] remain valid, as they are distinguished on a morpho-
logical basis. In contrast, some of the new families, defined by genetic differences, are
indistinguishable morphologically (e.g., Ackermannviridae and Chaseviridae are myophages,
Autographviridae are podophages, Drexlerviridae and Demerecviridae are siphophages).

Somatic coliphages are the most abundant group of indicator bacteriophages in almost
all environmental samples [7]. They have less resistance to disinfectants such as UV
light than other bacteriophages, but more than bacterial indicators [13]. Their potential
replication in environments outside the gut was once a concern [17,18], but has proved to be
negligible for several reasons: their narrow host range; the high concentrations of host and
phages required; the possible interference of accompanying microbiota and other particles
with the replicative process; the low metabolic activity of hosts in environmental conditions;
and responses to environmental stresses possibly minimize phage infection [19–21]. It
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has also been proven that neither coliphages isolated from wastewater nor laboratory
stock coliphages are capable of replicating in natural samples, even in tropical climates
with more conducive temperatures. It can therefore be concluded that the proportion of
somatic coliphages in a natural sample arising from replication in the environment will be
practically null [4,22].

F-specific bacteriophages are the second most widespread indicator phages in the
environment [7]. They are capable of infecting E. coli and other coliform bacteria through
the sexual pili, encoded in the F-plasmid, which is transferable to enteric bacteria via
conjugation [23]. This group includes two phage families: the Leviviridae, ssRNA phages
with isometric tailless capsids of around 25 nm, and the Inoviridae, ssDNA phages with
flexible filamentous capsids of 800 nm [24]. The use of RNase in culture methods permits the
differentiation between F-DNA (Inoviridae) and F-RNA (Leviviridae) coliphages. Based on
nucleotide analysis, the Leviviridae are divided into two genera, Levivirus and Allolevirus [25],
which include four different genotypes of F-RNA phages: those of subgroups I and II belong
to Levivirus and subgroups III and IV belong to Allolevirus genera [26,27]. Model coliphages
representing these groups are MS2 and f2 from genotype I, GA from genotype II, Qβ
from genotype III, and FI from genotype IV. The study of these different subgroups is
particularly useful for identifying the origin of fecal contamination, since genotypes I and
IV predominate in waters contaminated by animal residues whereas genotypes II and III
are commonly associated with human contamination [28], though these associations do not
always hold, and cross-reactivity has been recorded [29]. F-RNA phages are typically more
abundant than F-DNA phages (for instance, 90–95% of F-specific coliphages in wastewater
are F-RNA phages) and morphologically more similar to enteric viruses [30,31]. The
replication of F-specific bacteriophages outside the gut is considered extremely improbable,
as sexual pili cannot be synthesized under 32 ◦C [32].

F-specific bacteriophages can perform more accurately as indicators in samples where
they predominate, such as groundwater, clay sediments, and reclaimed waters; they are
also useful for monitoring water treatments such as UV disinfection [33–35]. In contrast,
they have a low persistence in surface waters, especially in warmer climates, and are readily
inactivated by heat or high pH [13]. Therefore, a combination of both types of coliphages
may be preferable in some types of samples. Total coliphages can be determined by either
summing the results of somatic and F-specific coliphage detection assays or using a host
strain that determines both in only one assay [36].

The third group of bacteriophages proposed as indicators infect Bacteroides spp. and
their concentrations in feces or fecally contaminated samples are usually lower compared to
coliphages [37]. Most of these morphologically homogenous bacteriophages belong to the
Siphoviridae family and infect bacteria through receptors in the cell wall [38,39]. They have a
narrow host range, with a high specificity for the cell wall receptors of a particular host [40].
Infectivity seems to be limited by the amount of bacterial capsules, which hamper phage
access to the receptors [41]. Bacteroides spp. strains are commonly used for microbial source
tracking (MST) as they are strongly associated with a given human or animal host and
differ in their capacity to recover phages from samples fecally contaminated by different
species [41,42]. In general, their utility as MST markers also depends on the geographical
location [37,43]. For example, in southern Europe, strain B. thetaiotaomicron GA17 can detect
phages of human fecal origin, unlike other strains such as B. fragilis RYC2056 or HB13 [44]
yet in the UK, a B. fragilis strain (GB-124) isolated in Brighton [45] was more efficient in
this respect. Other examples of geographical variability are strains B. fragilis HSP40 [42], B.
fragilis HB13 [46], and B. thetaiotaomicron ARABA 84 [47].

Other strains such as B. thetaiotaomicron CW18, B. fragilis PG76, PL122, and PZ8 have
been isolated and used to detect phages as markers of bovine, porcine, and aviary fecal
contamination [48,49]. Despite their low concentrations in water, Bacteroides-infecting
phages are more resistant to most inactivating factors and treatments than coliphages.
Their replication outside the gut is even more improbable, as the host strains are strictly
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anaerobic and require specific nutrients, such as hemin, that are scarcely found in the
environment [42].

Metagenomic studies using sequences from fecal samples available in databases dis-
covered the most abundant phage in the human fecal virome, named crAssphage (cross
assembly phage) [50]. Sequence similarities pointed to a group of Bacteroides-infecting
phages with short non-contractile tails from the Podoviridae family [50,51], later confirmed
by isolation through culture methods. The morphology of the first isolated crAssphage in
B. intestinalis, ΦcrAss001, was compatible with Podoviridae viruses [52]. One of the main
characteristics of ΦcrAss001 is its peculiar replicative cycle; although seemingly a virulent
bacteriophage, it can coexist in apparent equilibrium with its host without causing cell
lysis, which might benefit both bacteria and virus in a strongly competitive environment
like the gastrointestinal tract. The recently isolated crAssphage species such as ΦcrAss002
seem to follow a similar replicative pattern. Efforts to obtain lysogenic ΦcrAss001 have
failed so far, though other crAssphage have integrases compatible with lysogenic cycles
in their genome [53]. Therefore, expanding our knowledge about crAssphage replica-
tion could help to promote their use as fecal indicators with culture techniques [54,55].
CrAssphage have potential application as MST markers, being highly specific to humans
and having an extensive geographical distribution and no seasonal variation. They are
abundantly detected in human feces (constituting about 90% of the human gut virome),
and in sewage throughout the year, as well as in mussels and sediments collected in areas
contaminated with wastewater [56,57]. Nevertheless, crAssphage have also been found
in several animal sources, so further research is required on possible animal-associated
variants or specific genome regions more suitable for animal source discrimination [58,59].
They also have stronger environmental persistence than bacteria and higher concentrations
than enteric viruses in sewage worldwide, allowing a more accurate description of virus
removal [60–62]. These characteristics make crAssphage a very promising alternative as in-
dicator microorganisms of viral fecal pollution, which could be used in MST for monitoring
human fecal pollution of water [63–65].

3. Methods to Detect Bacteriophages

Strategies for detecting phages in samples can be culture-dependent or molecular,
each with its own advantages, disadvantages, and appropriate applications.

3.1. Culture-Dependent Methods

Culture-dependent methods, available since phages were first discovered, provide
qualitative or quantitative information about infectious phages in samples [66]. These
methods have already been registered as standardized protocols, mainly by two regula-
tory bodies: the International Standardization Organization (ISO) and the United States
Environment Protection Agency (Washington, DC, USA, U.S. EPA). The ISO provides stan-
dardized methodologies for detecting somatic [67], F-specific [68], and Bacteroides-infecting
phages [69] (ISO 10705), each of which includes two different approaches: a spot test (a
qualitative presence/absence protocol that can be adapted to quantitative results using a
most probable number approximation) and a double agar layer (DAL) assay (a quantitative
protocol for counting plaque-forming units (PFU) in samples). ISO methods can be easily
implemented in routine microbiology laboratories without previous experience in working
with phages [70], and provide optional steps for laboratories with limited equipment,
and quality control assays. U.S. EPA standardized protocols for detecting somatic and
F-specific coliphages [71,72] also include two different methods compatible with both types
of coliphages: Method 1601 (a quantitative method based on single agar layer (SAL) assays
for PFU enumeration) and Method 1602 (a qualitative method based on presence/absence
assays), both of which have been successfully validated, have simplified versions [73–75],
and have been recently revised in Methods 1642 and 1643 [76,77]. Due to the lack of a
specific standardized protocol, total coliphage detection is performed using methodologies
for F-specific coliphages [36].
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ISO and U.S. EPA employ different host strains for the targeted phages, but their
equivalent protocols usually give similar counts [36,78,79]. Host strains derived from E.
coli C are reported to provide the highest counts of somatic coliphages [80]. Both regulatory
bodies use nalidixic acid-resistant variants of this strain: E. coli CN13 (BCRC17137, ATCC
700609) in U.S. EPA, and E. coli WG5 (CIP 107680, ATCC 700078) in ISO methods [67,71,72].
Nalidixic acid-resistant strains were selected to minimize the growth of accompanying
microbiota, which frequently interfere with the visualization of plaques. Otherwise, a
previous filtration step is required, using membrane filters of 0.22 µm pore diameter made
of materials that do not adsorb proteins. To detect F-specific coliphages, host strains must
express the sexual pili, encoded in the F plasmid or F-derived plasmids; those in current
use are Salmonella enterica WG49 (NCTC 12484, CECT 4625, ATCC 700730) [81] and E. coli
HS/FAmp (ATCC 700891) [82] in ISO and U.S. EPA methods, respectively. Both strains
have markers for improving strain selection and stability: Ampicilin resistance (E. coli
HS/Famp) and lactose degradation capacity (S. enterica WG49) [68,71,72].

Host strains initially proposed for the F-specific protocols could also detect somatic
coliphages and were suggested for the monitoring of total coliphages, although a standard-
ized culture method has not been described. More efficient strains have been subsequently
developed for this purpose: E. coli C3000 (ATCC 15597), which is mainly used in the
U.S., detects lower amounts of somatic coliphages than the standardized strains, and E.
coli CB390 (CECT9198), which can recover both groups of coliphages with similar effi-
ciency to its standardized counterparts [36,83]. The standardized method for detecting
Bacteroides-infecting bacteriophages uses B. fragilis RYC2056 (ATCC 700786) as a host strain,
although other strains can be employed to discriminate between human and animal fecal
pollution [69,84].

Standardized culture methods are simple, robust, cost-effective, and easily prepared,
especially for coliphages, which do not require anaerobic growth conditions. The methods
can be scaled to different sample volumes, maintaining the same proportions between
medium, host strain, and sample. The material, media, reagents and labor have a sim-
ilar cost to the methods currently used in routine analysis laboratories to detect fecal
coliforms/E. coli. Costs may increase by 10–15% if an additional step with RNAase is
required for the recovery of F-RNA and F-DNA coliphage subgroups, or due to the longer
incubation times required for anaerobic Bacteroides spp. [8]. The standard methods could
be optimized further to improve phage recovery and the cost/benefit relationship; modifi-
cations could include diluting the medium concentration, substituting components, and
optimizing incubation protocols [79,85].

In general, standardized methods are time-consuming, requiring more than one
working day to obtain reliable results (at least 18 h for coliphage plaques and more than 48
h for Bacteroides bacteriophages). To prevent potentially virally contaminated water being
used for consumption, irrigation, or recreation [86,87], the results need to be obtained on the
same day as the analysis. Shorter operative times and incubation periods, as well as more
user-friendly handling, are also warranted by the increasing implementation of coliphages
in guidelines and regulations. Several modified standardized methods have already been
developed in this respect [88], the most promising being Easyphage and Quantiphage,
which incorporate non-agar-based supports for plaque counting and previously prepared
components for greater speed and simplicity [89,90]. Other promising modifications are
based on the detection of enzymatic lysis in liquid cultures, focusing primarily on the
activity of β-galactosidase [91], adenylate kinase [92], and β-glucuronidase [93]. Among
these promising fast methodologies, three have commercial application: Fastphage (already
validated in U.S. EPA methods), Quantiphage and Bluephage (currently in development).
Fastphage and Bluephage use the activity of a liberated intracellular enzyme as an indicator
of cell lysis (β-galactosidase and β-glucuronidase, respectively), the presence/absence of
phages indicated by color changes, while Quantiphage incorporates cellulose supports to
achieve a more rapid plaque detection [88].
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3.2. Molecular Methods

Molecular methods, although fast and sensitive, have a major drawback in that
they cannot provide information about infectivity, which therefore requires additional
steps. Without infectivity data, viral concentration, and human health risks are often
overestimated [94]. Molecular methods can be serological or involve nucleic acid-based or
microelectronic sensors.

Serological techniques are rapid and can be applied in situ, but they require pre-
enrichments, and antisera are less available than nucleic acid probes and primers [8].
They are mainly applied to detect F-specific coliphages, using latex agglutination or neu-
tralization methods [95], being less suitable for the highly diverse and complex somatic
coliphages, though CLAT- (Culture, Latex Agglutination, and Typing) based analyses have
been developed for some specific families [96].

Nucleic acid methods are based on plaque hybridization, employing specific probes
or, more frequently, qPCR/RTqPCR assays. They are mainly used to detect F-specific and
Bacteroides-infecting phages [8], and, as with serological methods, have limited applications
for somatic coliphages, though PCR and qPCR techniques have been developed for specific
families or bacteriophages [96]. In plaque hybridization methods, specific probes designed
for each targeted phage or phage group are applied to plaques obtained by culture [26]. RT-
qPCR analyses are used to quantify the number of genome copies (GC) present in a given
sample. The quantities detected by molecular methods tend to be higher compared with
culture methods, as GC signals are more persistent in the environment and more resistant
to treatments than infectious viruses [29]. In order to solve this discrepancy, nucleic acid
amplification techniques based on the membrane or capsid integrity have been developed.
However, membrane integrity does not equate with viability and therefore cannot serve as
a control of the efficacy of inactivation mechanisms that do not directly target cell mem-
branes [97,98]. PCR-based approaches can also be inhibited by organic substances such as
phenolic compounds, which are occasionally present in environmental samples [99]. Molec-
ular methods are available for F-specific coliphage detection, but solely for genogroups of
F-RNA-specific coliphages or specific phages such as MS2 [27,100]. PCR-based methods
have also been developed to detect certain Bacteroides phages, facilitating the recovery of
phages associated with a certain animal host [101]. As demonstrated by the discovery of
crAssphage, metagenomics studies of the gut bacteria open the possibility of identifying
sequences of new bacteriophages that infect non-cultivable host bacteria that are specific of
certain species [37]. When used as fecal indicators, crAssphage are predominantly detected
and quantified in environmental samples by qPCR assays [58,102,103]. Their isolation
from environmental samples by lysis plaque formation using DAL is still difficult, due
to the absence of appropriate hosts and a still unexplored biological replicative cycle [61].
CrAssphage are also suitable for fecal source discrimination and have been shown in com-
parative MST molecular qPCR assays to have advantages over existing bacterial markers
(such as HF183/BacR287) in terms of specificity, accuracy and high sensitivity [58,102,103].

Microelectronic methods involve the detection of viral particles, or the lysis of host bac-
teria caused by bacteriophage infection [88]. Although fast, with results being obtained in
less than 1 h, their sensitivity and precision do not yet match DAL-based methods [104–106].
Their usage is normally restricted to the detection of a specific phage, rather than to analyze
environmental samples containing different phages at varying concentrations. Conse-
quently, no microelectronic method so far has achieved a useful or feasible application
to determine infectious bacteriophages as indicators of fecal pollution in environmental
samples.

Viral concentration methods to optimize detection processes have been developed in
parallel with standardized methodologies. For the analysis of larger volumes, the samples
need to be concentrated, especially if quantification is required, as in drinking water
samples with low levels of contamination. Two methods are recommended to concentrate
volumes of up to 1000 mL, depending on the turbidity of the sample. When turbidity is
low, a simple, inexpensive, and practical procedure is recommended, using mixed cellulose
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and acetate membrane filters with a pore size of 0.45 µm after the addition of salts and pH
adjustment [107,108]. When turbidity is high, flocculation with magnesium hydroxide is
feasible for all three groups of fecal indicator phages [109,110]. Furthermore, phages can
also be concentrated by ultrafiltration, like other viruses [8].

4. Application of Bacteriophages as Indicators of Fecal Pollution
4.1. Bacteriophages as Fecal Indicators in Water

As already mentioned, FIB are used to estimate the microbiological quality of water,
but they may not be suitable or sufficiently reliable to predict the presence of enteric
viruses. In general, enteric viruses have higher survival rates during wastewater and
drinking water treatment than bacterial indicators and greater persistence in environmental
waters [17,34,110–112]. Therefore, the use of bacterial indicators alone could underestimate
the microbiological contamination of water and the associated human health risks. Adding
at least one viral indicator to the analysis provides a more accurate assessment of water
quality and promotes more confidence in its safety.

The primary origin of coliphages in water environments are human and animal feces.
They can reach water through raw or treated human and animal wastewater, septic tank
overflow, sewer leakage, and the spread of solid waste (sewage sludge, slurry, manure,
and the feces of pets, farmed animals, and wild animals) [7]. As early as 1948, Guelin [113]
already saw the potential of coliphages as indicators of enteric microorganisms in water,
observing their good correlation with the numbers of coliform bacteria in fresh and marine
water. Since then, many other studies have assessed the potential of bacteriophages as
indicators of fecal contamination in different water environments (Figure 1):

Figure 1. Fields of application of bacteriophages as fecal indicators.

Wastewater treatment plants: Bacteriophages are considered to be useful tools to
evaluate the efficacy of wastewater treatment plants [112,114–116] because their reduction
by certain pathogen removal methods is similar to that of human enteric viruses [114,117]
whereas the reduction of traditional FIB is significantly higher [5]. Coliphage concentra-
tion in wastewater shows no seasonality and remains consistently high throughout the
year worldwide, as occurs with bacterial indicators [114,118,119]. Coliphage densities in
wastewater are quite variable but the lower density of F-specific coliphages compared to
somatic coliphages in both treated and untreated wastewater sources [120], potentially
limits their use as indicators in this environment.
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Drinking water: The presence of coliphages or Bacteroides-infecting phages in drinking
water sources is a likely indicator of fecal contamination or an inadequate treatment [121].
Generally, the levels of bacterial indicators, viruses, and bacteriophages in these sources are
low and seldom detected after treatment. The few reports describing the potential of phages
to assess the quality of drinking water suggest once again that they outperform conventional
FIB, undergoing less reduction after different drinking water treatments [122–126].

Recreational water: The sanitary quality of recreational waters is monitored using
FIB according to the EU Directive 2006/7/EC [127], but alternative indicators, such as
Clostridium perfringens and bacteriophages, have also been proposed [111]. Somatic col-
iphages are found in recreational water [128], and at beaches with unknown sources of
fecal contamination, the presence of coliphages correlates with the occurrence of diseases
more often than the presence of FIB [129,130]. It has been reported that in waters with
detectable coliphages there was an increased incidence of gastrointestinal illness among
bathers when fecal pollution was likely present, but not otherwise [131]. Compared with en-
terococci, the correlation was similar for somatic coliphages and even higher for F-specific
coliphages [131]. These findings indicate that coliphages may be suitable for application as
indicators of bathing water quality.

Groundwater: Groundwater constitutes an important fraction of the water used for
household and municipal supplies, agriculture and landscape irrigation, and industry.
Contaminants reaching surface waters also affect groundwater, the routes including failure
in septic systems, leaking sewer lines and passage through soils and fissures. A study
shows that one bacterial indicator and one phage indicator provide more information than
two bacterial indicators when assessing the microbiological quality of groundwater [34].
However, as shown in Table 1, to date, only one regulation (2006) includes bacteriophages
as indicators of enteric viral pollution in groundwater, reflecting that further research is
needed in this area.

Table 1. Current guidelines and regulations around the globe that include bacteriophages as indicators of fecal pollution [132–144].

Country/Organization Biosolids Ground
Water

Recreational
Water Drinking Water Reclaimed

Water
Membrane

Integrity & UV
Direct Potable

Reuse

Australia 2012 (WA) – – 2011 * 2005/2011
(QL/WA) – –

Canada – – – 2011 (Q) – – –
Colombia 2014 – – – – – –

EU – – – 2020 2020 – –
India – – – 2012 – – –

Singapore – – – 2017 * (WHO) – – 2017 * (WHO)
South Africa – – – 1996 * – – –

USA – 2006 2015 (Prop) – 2011 (NC) 2015 –
WHO – – – 2017 * 2017 (I&AR) – 2017 *

WA: Western Australia, QL: Queensland, Q: Quebec, NC: North Carolina, Prop: Proposal, I&AR: Irrigation and aquifer recharge, *
Guideline.

4.2. Bacteriophages as Fecal Indicators in Solid Matrices

Solid or semisolid matrices play an important role in the persistence and dispersion of
pathogens in the water cycle, as they can contain large amounts of pathogens, especially
viruses, if contaminated with fecal waste [6,145].

To optimize the use of bacteriophages as indicators in solid matrices (Figure 1), stan-
dardized methodologies for their extraction, detection, and enumeration need to be devel-
oped. The current methods differ according to the matrix, which hinders the comparison of
results. Nevertheless, in general, studies indicate that somatic coliphages are found in solid
matrices at higher levels than traditional FIB and F-specific RNA coliphages. In addition,
they persist longer in soils and sediments and are more resistant to sludge and manure
treatments. For an extensive review of this question, and more data on solid matrices, see
Martín-Díaz et al. [6].



Viruses 2021, 13, 1089 9 of 16

4.3. Bacteriophages as Fecal Indicators in Food

Coliphages can be found in food when fecally contaminated water is used to grow
vegetables and fruits, in meat processing, or to farm shellfish. Bivalve shellfish are regularly
implicated in foodborne viral disease outbreaks because there is no effective way to rid them
of viral contamination without changing their sensory characteristics. Instead, efforts are
focused on preventing contamination. Shellfish accumulate and concentrate bacteriophages
and viruses through their feeding process, and their depuration systems are more efficient
for eliminating bacteria than viruses. Accordingly, Blanco-Picazo et al. found somatic
coliphages in 70% of the tested shellfish samples but no E. coli [146]. However, the utility
of phages as routine indicators of viral pollution in shellfish, in contaminated sites, or
under normal growing conditions, is controversial; studies with conflicting results have
been reviewed [147]. Regardless, the use of bacterial indicators alone is clearly insufficient
to prevent viral disease outbreaks stemming from shellfish consumption [148] and more
accurate data about enteric viruses could be provided by the addition of a viral indicator.

Regarding fish, a comparative study found somatic coliphages in Atlantic, farmed
and frozen fish, with 30%, 10%, and 20% of the samples testing positive, respectively; in
contrast E. coli was only found in 10% of the Atlantic fish samples [146].

Enteric bacteriophages have been proposed as potential fecal indicators in different
types of meat. Hsu et al. found somatic coliphages in 88% of ground meat and poultry
meat samples and F-specific coliphages in 63%. They also evaluated the risk of fecal
contamination at three control points (evisceration, washing and chilling) and observed
that the reduction of F-specific coliphages during these processing steps matched that of
FIB [149]. Somatic coliphages have also been reported in minced pork, minced chicken,
and ham, with 60%, 100%, and 40% of the samples testing positive, respectively. No E.
coli was found in ham samples, and only 30% of minced pork and 90% of minced chicken
samples tested positive for this bacterial indicator [150].

In a study of animal feeds, Maciorowski et al. analyzed animal feeds, feed ingredients,
and poultry diets for the presence of coliphages, finding somatic and F-specific coliphages
in all the tested samples, even after 14 months of storage at −20 ◦C [151].

Bacteriophages can also be used as fecal indicators in vegetables, as they have been
found in lettuce and cucumber [152]. In lettuce, the number of samples positive for E. coli
was slightly higher compared to somatic coliphages (50% and 40%, respectively); however,
20% of cucumber samples were positive for coliphages and none contained E. coli [152].

All these data suggest bacteriophages perform well as fecal indicators in food (Figure 1)
as they seem to remain longer in the different food matrices than bacteria.

5. Regulations and Future Perspectives

Bacteriophages, specifically coliphages, have been included as viral indicators of fecal
pollution in several water quality policies and guidelines over the last two decades, as
bacterial indicators have proven to be ineffective for predicting viral outbreaks in water
and food samples [153]. It is of particular importance that EU regulations for drinking
and reclaimed water have recently incorporated coliphages as parameters of microbial
quality. [132,133]. The number of regulations including bacteriophages can therefore be
expected to increase dramatically in the next decade, after member states of the EU adopt
this legislation. The current regulations and guidelines around the whole that include
bacteriophages as indicator organisms can be found in Table 1. Moreover, a consequence
of the COVID-19 pandemic is that interest in the control of viral contamination is likely
to increase, due to health concerns and the growing public awareness of viral infection,
though SARS-CoV2 is not a waterborne pathogen [154,155].

The inclusion of coliphages in regulations means that standardized techniques for
their enumeration need to be improved and optimized, to enable faster and simpler testing.
Considering the ongoing research in this field, it seems likely that streamlined user-friendly
kits providing results in a few hours at very reasonable costs will become available in the
near future [83].
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Regarding crAssphage, research is expected to grow in the coming years as new
phages from this family are isolated and host strains are described [48,49]. Studies of
particular interest will be focusing on the replication cycle of crAss-like bacteriophages,
their high persistence in the human gut microbiota, their prevalence in wastewater and
other aquatic environments, their significance for human intestinal physiology and disease,
and the development of culture techniques. Evidence from this research will help to
elucidate the true value and suitability of crAssphage as a fecal indicator and MST marker.

6. Conclusions

Bacteriophages are attractive as promising alternative fecal indicators to assess the risk
of viral contamination in natural and built environments. Further research is needed to facil-
itate their application, including the development of improved standardized methods, but
there is no doubt that they are already a valuable complement to existing methodologies.
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