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Abstract: Monkeypox is a self-limiting zoonotic viral disease and causes smallpox-like symptoms.
The disease has a case fatality ratio of 3–6% and, recently, a multi-country outbreak of the disease has
occurred. The currently available vaccines that have provided immunization against monkeypox
are classified as live attenuated vaccinia virus-based vaccines, which pose challenges of safety and
efficacy in chronic infections. In this study, we have used an immunoinformatics-aided design
of a multi-epitope vaccine (MEV) candidate by targeting monkeypox virus (MPXV) glycoproteins
and membrane proteins. From these proteins, seven epitopes (two T-helper cell epitopes, four T-
cytotoxic cell epitopes and one linear B cell epitopes) were finally selected and predicted as antigenic,
non-allergic, interferon-γ activating and non-toxic. These epitopes were linked to adjuvants to
design a non-allergic and antigenic candidate MPXV-MEV. Further, molecular docking and molecular
dynamics simulations predicted stable interactions between predicted MEV and human receptor
TLR5. Finally, the immune-simulation analysis showed that the candidate MPXV-MEV could elicit a
human immune response. The results obtained from these in silico experiments are promising but
require further validation through additional in vivo experiments.

Keywords: monkeypox; monkeypox virus; immunoinformatics; epitope-based vaccine; orthopoxvirus;
reverse vaccinology

1. Introduction

Monkeypox is a zoonotic viral infection with a 3–6% fatality rate and is caused by
the monkeypox virus (MPXV) [1,2]. Two subfamilies of the MPXV, namely West African
and Central African, are known but the mortality rate is observed to be higher with the
Central African subfamily of the virus [2]. Humans can be exposed to the MPXV through
respiratory droplets, body fluids, lesions of the infected person, interactions with infected
animals and contact with virus-contaminated fomites [3,4]. MPXV was isolated for the first
time in Denmark from the lesions of infected cynomolgus macaques, monkeys imported
from Singapore in 1958 [5]. Human infection with MPXV was first observed in an infant
with smallpox-like symptoms [5]. Since then, human cases of monkeypox have been
recorded in 11 Western and Central African countries such as Nigeria, Sierra Leone, and
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the Central African Republic [5–7]. The human transmission of MPXV could also be
attributed to the end of the smallpox vaccination program, which provided cross-immunity
against MPXV [8]. Recently, there has been a multi-country outbreak of human monkeypox
cases [9].

Although monkeypox is self-limiting, people with comorbidities and compromised
immunity, pregnant women, and the pediatric population are at higher risk. The protection
from MPXV in humans could be provided by the smallpox vaccine [5]. However, the small-
pox vaccination program has been stopped after the eradication of smallpox in 1980 [10].
ACAM2000, a live vaccinia virus vaccine, has been advised by the Advisory Committee on
Immunization Practices (USA) for the vaccination of the laboratory personnel that routinely
handle human infectious orthopoxviruses such as monkeypox, cowpox and variola viruses,
and the medical personnel dealing with patients infected with vaccinia virus [11]. How-
ever, ACAM2000 has been reported to have side effects such as post-vaccinal encephalitis,
eczema vaccinatum and progressive vaccinia [11].The use of ACAM2000 also poses safety
concerns since it contains live vaccinia virus [11]. Further, many antivirals which have been
employed for the treatment of orthopoxvirus, for instance, tecovirimat (SIGA Technologies,
New York, NY, USA), inhibit viral DNA replication [12,13]. Tecovirimat is effective against
monkeypox, variola, cowpox and vaccinia viruses in several animal models viz. ground
squirrels, mice and cynomolgus monkeys [12,13]. As per the guidelines from the Center for
Disease Control and Protection (CDC), USA, tecovirimat could be used for the treatment of
monkeypox in an outbreak. Similarly, cidofir and vaccinia immune globulin (VIG), which
are approved by the FDA for cytomegalo and vaccinia viruses, respectively, could also
be used for monkeypox during an outbreak [14,15]. Apart from the drugs approved by
the FDA, several approaches are being explored to intervene in the growth and outspread
of MPXV, for instance, human interferon-βa is found to inhibit MPXV production and
dissemination in mammalian cell lines [16]. Intriguingly, vaccinia virus LC16m8, which
lacks the expression of the B5R membrane protein, protects against MPXV after immuniza-
tion in cynomolgus monkeys [17]. Similarly, another attenuated vaccinia virus, NYCBH,
after deletion of an immune evasion gene, is found to be effective in cynomolgus monkeys
against monkeypox virus [18]. Nevertheless, there are no specific vaccines or antivirals
available for the monkeypox infection in humans. The SARS-CoV-2 pandemic has already
created the vigilance among scientific community to prepare beforehand for any highly
contagious human viruses. Thus, it is of the utmost important to find novel strategies
for developing potential therapies for monkeypox virus to prevent any such calamity in
the future.

Interestingly, with the recent advances in the field of immunoinformatics, the pace
of the vaccine development process has been relatively accelerated [19–24]. Based on im-
munoinformatics, we have identified different epitopes specifically for targeting multiple
serotypes of the dengue virus [24]. Further extending this exciting computational-based vac-
cine design approach, our team has recently designed a vaccine for canine circovirus [24,25].
In the present study, we targeted different glycoproteins and membrane proteins (Table 1)
of MPXV to identify immunogenic B-cell and CD4+ and CD8+ T-cell epitopes in order to
design a potential vaccine for the monkeypox virus.

The final predicted vaccine is a multiepitope vaccine (MEV) construct that comprises
all identified epitopes fused altogether to elicit an optimal immune response. Afterwards,
the structural, immunogenic and physicochemical parameters were evaluated for the
designed MPXV-MEV. Additionally, molecular docking was performed to investigate the
affinity of the vaccine construct towards the human toll-like receptor 5 (TLR5). Later, the
molecular dynamics (MD) simulations confirmed the stability of the MPXV-MEV construct
with the TLR5 receptor and the associated interactions. Further, immune simulations were
carried out to ascertain the immune response profile of the vaccine candidate.
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Table 1. Glycoproteins and membrane proteins of monkeypox virus strain W-Nigeria and their
antigenic and allergic potential.

GenBank Protein ID Protein Name Length (Amino Acids) Vaxijen Score Allergen (AllergenFP)

AIE40790.1
putative

membrane-associated
glycoprotein

1880 0.5262 (Antigenic) Allergen

AIE40786.1
IFN-alpha/beta-

receptor-like secreted
glycoprotein

352 0.5453 (Antigenic) Non-allergen

AIE40780.1
bifunctional 21 kDa

precursor protein of 18
kDa membrane protein

182 0.4395 (Antigenic) Allergen

AIE40778.1 EEV type-I membrane
glycoprotein 317 0.5786 (Antigenic) Non-allergen

AIE40774.1

bifunctional
hemagglutinin/type-I

membrane
glycoprotein

313 0.4638 (Antigenic) Allergen

AIE40766.1
putative type-I

membrane
glycoprotein

196 0.5230 (Antigenic) Non-allergen

AIE40764.1 bifunctional secreted
glycoprotein 221 0.3864 (Non-antigenic) Allergen

AIE40763.1 CD47-like putative
membrane protein 277 0.4324 (Antigenic) Non-allergen

AIE40759.1 EEV glycoprotein 168 0.3728 (Non-antigenic) Non-allergen

AIE40758.1
bifunctional EEV

membrane
phosphoglycoprotein

181 0.4998 (Antigenic) Allergen

AIE40739.1 IV and IMV membrane
protein 53 0.7480 (Antigenic) Non-allergen

AIE40738.1 phosphorylated IMV
membrane protein 90 0.4759 (Antigenic) Non-allergen

AIE40737.1 IMV membrane protein 70 0.5019 (Antigenic) Non-allergen

AIE40733.1 IMV membrane protein 100 0.3923 (Non-antigenic) Non-allergen

AIE40718.1 IMV membrane protein 304 0.5316 (Antigenic) Non-allergen

AIE40702.1 late 16 kDa putative
membrane protein 133 0.7559 (Antigenic) Non-allergen

AIE40669.1 membrane protein 273 0.4199 (Antigenic) Non-allergen

AIE40657.1 palmytilated EEV
membrane protein 372 0.4754 (Antigenic) Allergen

2. Methodology
2.1. Retrieval and Analysis of Protein Sequence

The sequence of the MPXV strain W-Nigeria (Accession number: KJ642615.1) was
obtained from the GenBank database. A total of 176 proteins in the proteome of MPXV
strain W-Nigeria were characterized, where we filtered only glycoproteins and membrane
proteins for further analysis, see Table 1. Further, the antigenicity and allergic potential of
all the chosen proteins were determined. Vaxijen v2.0 webserver was used to determine
the antigenicity [26]. Vaxijen v2.0 predicts the antigenic peptides with 70–89% accuracy
and employs the alignment-free approach, which is based on the auto cross covariance
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(ACC) transformation of protein sequences into uniform vectors of principal amino acid
properties. In the Vaxijen v2.0 webserver, the target organism selected was the virus and
the protein sequences in plain format were used as input. AllergenFP v1.0 webserver was
used to predict the allergic potential, since this server was found to be the most accurate
in identifying both allergens and non-allergens in comparison with different tools such as
AlgPred, AllerTOP, AllerHunter, and APPEL [27]. In the AllergenFP server, amino acid
sequences were provided as plain text (single letter code).

2.2. Prediction of T-Cell and B-Cell Epitopes and to Determine Their Antigenicity, Ctoxicity,
Allergenicity and Interferon-γ Activation Potential

To predict T-helper cell epitopes that might bind to MHC class II molecules, the
NETMHC 2.3 website was used, whereas for the identification of T- cytotoxic cell epitopes
that might bind to MHC class I molecules and elicit a cellular immune response, we used
the NETMHC 4.0 website [28]. The NETMHC 2.3 webserver was preferred over other
tools such as PickPocket, PRPPRED, MULTIPRED, ADT, and KISS since this webserver
was found to be better in the earlier investigations where all these different tools for
predicting peptides that bind to MHC were compared [29,30]. The protein sequences
were pasted in FASTA format in both NETMHC 2.3 and NETMHC 4.0 webservers and
inputs and a peptide length of 9 were selected. To predict CD4+ T cell epitopes, the
HLA alleles selected were DRB1_0101, DRB1_0301, DRB1_0401, DRB1_0701, DRB1_0801,
DRB1_0901, DRB1_1001, DRB1_1101, DRB1_1201, DRB1_1301, DRB1_1501, and DRB1_1602.
Further, to predict CD8+ T cells, the HLA alleles selected were HLA-A0101, HLA A0201,
HLA-A0301, HLA-A2402, HLA-A260, HLA-B0702, HLA-B0801, HLA-B2705, HLA-B3901,
HLA-B4001, and HLA-B5801. Default parameters of the NETMHC 2.3 and NETMHC 4.0
webservers were used for the threshold for both the strong and weak binders. The IEDB B
cell epitope prediction website’s Bepipred linear epitope prediction 2.0 approach was used
to predict the multiple linear B cell epitopes [31]. The Vaxijen v2.0 webserver was used to
determine the antigenicity of the predicted B-cell and T-cell epitopes [26]. The webservers
AllergenFP, ToxinPred and IFNepitope were used to determine the antigenic, toxic, allergic
and interferon-γ activation potential of the epitopes [27,32,33].

2.3. Anlysing Epitope Conservancy

The epitopes conservation was predicted in membrane proteins and glycoproteins of
the three monkeypox virus strains, namely MPXV-WRAIR7-61, Sierra Leone, and COP-
58, by employing the IEDB Epitope Conservancy Tool [34]. The sequences of epitopes
and the proteins from which the epitopes were identified for each strain were pasted as
input in FASTA format. The epitopes that were conserved were selected among different
monkeypox virus strains in order to overcome the limitations due to antigenic shift or drift.
The epitopes exhibiting 100% identity in sequences among the selected monkeypox strains
were selected since they possessed less probability of any mutation [34].

2.4. Designing a Vaccine Construct and to Determine Its Physiochemical Properties

Both the B cell and T cell epitopes which fulfilled the selection criterion of properties,
such as antigenic, non-toxic, non-allergic and interferon-γ activation, were linked together
using the GSS linker. Two adjuvants—flagellin protein (Salmonella typhimurium) and RS09—
were also linked to form the multiepitope vaccine construct using the GGS linker [35,36]. In
order to improve the stability of the MEV construct, Pan HLA DR-binding epitope was also
added [37]. The ProtParam online tool was used to determine the physiochemical properties
such as hydrophilicity, isoelectric point, number of amino acids, number of negatively or
positively charged residues, solubility, aliphatic index, extinction co-efficient, and half-
life [38]. Further, the webservers Vaxijen 2.0 and AllergenFP were used to determine the
antigenicity and allergic potential of the vaccine construct.



Viruses 2022, 14, 2374 5 of 18

2.5. Prediction of Immune Response Profile of MEV

The C-IMMSIM webserver (https://kraken.iac.rm.cnr.it/C-IMMSIM/, accessed on
10 August 2022) is a position-specific scoring matrices-based machine learning approach
and is used to investigate the immune response profile of a vaccine construct. This online
webserver was used to predict the immunogenicity and immune behavior towards the
candidate MPXV-MEV in the present study [39]. An interval of four weeks as the minimum
duration between the first two doses of the vaccine injection has been advised; however,
the interval can be extended to eight weeks or 3–6 months in some cases [40,41]. Thus, the
immune behavior of MPXV-MEV vaccine was analyzed using three injections at an interval
of four weeks [42,43]. Default parameters were kept except for the time. The time steps
used were kept equivalent to four and eight weeks.

2.6. Prediction of Binding Affinity of MPXV-MEV with TLR5 Using Molecular Modeling
and Docking

The Alphafoldv2.0 program was employed to predict the 3-D structures of both the
MPXV-MEV construct and immunogenic TLR5 [44,45]. Alphafoldv2.0, ProCheck and
ProSA web server were then used to validate the tertiary structures of MPXV-MEV and
TLR5 [46]. The pLDDT scores were available with Alphafoldv2.0 and the Ramachandran
plots and Z-scores were generated using the ProCheck and ProSA webservers [46].

The HADDOCK server [47] was used for docking MPXV-MEV to TLR5 using the
default parameters [47]. LQRVRELAVQ and EILDISRNQL sequences were predicted as
the potential binding regions in flagellin and human TLR5 [45]. Thus, during the docking
experiments, these sequences were defined as the part of ‘Active Residues’ while running
the HADDOCK program.

2.7. Molecular Dynamic Simulations of MPXV-MEV Complexed with TLR5

Afterwards, the GROMACS 2019 simulation program was used to perform the molec-
ular dynamic (MD) simulations [48]. The complex of TLR5 and MPXV-MEV was put into
a cubic box and solvated with TIP3P water molecules to create a solvent layer of 10 Å
thick. The parameters of the proteins were then modeled with Amber ff99SB-ILDN [49].
Then, an appropriate number of K+ ions were added to neutralize the charge. Further,
the Joung–Cheatham ion model was used to add extra K+Cl− ions to create the bulk ionic
strength, i.e., 0.15 M [50]. The simulation box had 228,291 water molecules, 615 K+ ions,
and 612 Cl− ions. The system had a total number of atoms of 701,665. The minimization
of the system was carried out with 50,000 steps using the steepest descent method with
1000 kJ/mol nm2 position restraint on heavy atoms of the protein. Further, minimization
was performed with no restraint on the protein. Later, equilibration of each system was
performed in the phased manner. As the first step, a 100 ps NVT simulation was performed
with restraint on protein heavy atoms. Secondly, a 100 ps NPT simulation with restraint
on protein heavy atoms was carried out. Production simulations were performed while
using the NPT ensemble for 100 ns. A temperature of 300 K was maintained with velocity
rescaling with a 0.1 ps coupling time. Parrinello–Rahman barostat was used to maintain the
pressure of 1 atm for NPT simulations with a coupling time of 2 ps [51]. Then, the leapfrog
algorithm was used to integrate the equations of motion with a time step of 2.0 fs. The
particle mesh Ewald (PME) summation was used to evaluate the total electrostatic inter-
actions [52]. Coulomb and Van der Waals cut-offs of 1.0 nm were performed. In order to
mimic the bulk behavior, the periodic boundary conditions in all directions were employed.
The LINCS algorithm constrained the bond lengths with hydrogen [53]. At an interval of
every 10 ps, the coordinates were kept collecting in the trajectory files. GROMACS tools
were used for the trajectory processing and for most of the analysis. Three independent
simulations, starting from different initial velocities and each for 100 ns, were performed.
PYMOL and VMD softwares were used to create the molecular graphics images [54,55].
In-house Python scripts were used to plot the graphs. Indeed, our team has successfully
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used a similar modeling and MD simulation to investigate the structural stability of protein
and nucleic acid systems [56–60].

3. Results
3.1. Protein Sequence Retrieval and Analysis

Out of 176 proteins, 18 proteins were identified. These proteins are classified as
glycoproteins and membrane proteins in the proteome of the monkeypox virus strain
W-Nigeria. Table 1 lists these proteins along with their predicted antigenic and allergic
potential. Filtering those proteins possessing both antigenic and non-allergic potential
resulted in the identification of 10 glycoproteins or membrane proteins, see Table 1.

3.2. Prediction of T Cell and B Cell Epitopes and Analysis of Their Antigenic, Allergic, Toxic and
Interferon-γ Activation Potential

Strong binder epitopes of the MHC alleles, i.e., MHC I and MHC II, were first identified.
The number of epitopes that were determined as strong binders for MHC I was 384 (see
Table S1). Similarly, the number of epitopes identified as strong binders for MHC II was
256 (see Table S2). Further, 15 B cell epitopes were predicted (see Table S3). Epitopes with
a Vaxijen antigen score ≥ to 1.0 along with other filtering parameters, such as antigenic,
non-allergic, non-toxic properties and interferon-γ potential, were finally selected for the
candidate monkeypox MEV design. Altogether, seven epitopes (two CD4+ T cell epitopes,
four CD8+ T cell epitopes and one linear B cell epitope) fulfilled the selection criterion and
were chosen for designing the final MPXV-MEV (Table 2). All the selected seven epitopes
had 100% sequence identity in the MPXV-WRAIR7-61, Sierra Leone, and COP-58 strains
of monkeypox virus. Further, the epitopes population coverage analysis was performed
using the IEDB population coverage analysis tool, see Supplementary Information for more
information. The MHC-II (CD4+ Tcell) epitopes, which are RIYFVSLSL and FSIGGVIHL
and MHC-I (CD8+ Tcell) epitopes, which are IYFVSLSLL, LKHKYGCSL, AYTSISVVF and
RYPIIDIKW, showed a world population coverage of 85.97% and 87.03% respectively.

Table 2. The epitopes identified for vaccine engineering along with the analysis of their toxic, allergic,
antigenic, and interferon-γ activation potential.

Epitope Peptide or Protein Vaxijen Antigenicity Allergenicity Toxicity Interferon
Activation

CD4+ T cell RIYFVSLSL/AIE40786.1 1.6615 Yes No No Yes
CD4+ T cell FSIGGVIHL/AIE40778.1 1.2283 Yes No No Yes
CD8+ T cell IYFVSLSLL/AIE40786.1 1.4551 Yes No No Yes
CD8+ T cell LKHKYGCSL/AIE40766.1 1.2793 Yes No No Yes
CD8+ T cell AYTSISVVF/AIE40763.1 1.1050 Yes No No Yes
CD8+ T cell RYPIIDIKW/AIE40702.1 2.5629 Yes No No Yes

B cell PFSAKCPPIE/AIE40786.1 1.1314 Yes No No Yes

3.3. Engineering Vaccine and to Determine Its Physiochemical Properties

The epitopes identified were conjugated using adjuvants and Pan HLA DR-binding
epitopes (PADRE) to develop the MEV construct. The final predicted vaccine construct has
390 residues (Figure 1). The MPXV-MEV construct was predicted as stable, antigenic and
non-allergic in nature. The physiochemical properties of the MEV construct, other than the
aforementioned, are provided in the Supplementary Information, see Table S4.
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3.4. Performing Modeling and Docking of TLR5 MPXV-MEV Construct

The 3D structures of both MPXV-MEV and the immunogenic TLR5 receptor were
predicted using the Alphafoldv2.0 program [44,45]. Since no experimental structure is avail-
able for TLR5, the structure of TLR5 (Uniprot id: D1CS82) was obtained from AlphaFold
prediction, which resulted in high pLDDT values with confidence scores >90% for most
of the residues, indicating high confidence for prediction, see Figure S1. We particularly
targeted the ectodomain residues (amino acids from 1–639) of the topological domain,
which are primarily involved in the interaction with the extracellular signal; however,
the transmembrane and TIR domain residues (amino acids from 640–836) are precluded
from consideration in our analyses. Next, the structural prediction of the MPXV-MEV
construct using Alphafold resulted in high pLDDT values with confidence scores > 90%
for the N- and C-terminal regions of the vaccine construct. However, a low confidence
score with pLDDT values of <50% were predicted for the regions where adjuvants/linkers
and epitope sequences were present (amino acids from142–303), see Figure S1. Further,
the quality of predicted structures was confirmed with a Ramachandran plot and the Z-
scores of the modelledTLR5 and MPXV-MEV construct from the ProSA webserver [46]. For
the MPXV-MEV construct, 96.7% of residues were observed in the favored regions; 2.9%
residues were identified in the allowed and generously allowed regions; however, 0.4%
residues were found under disallowed regions, see Figure 2A. Of the amino acids, 98.9%
were observed in the core acceptable region; however, the other 1.1% were observed under
the allowed region and generously allowed region for the TLR5 receptor, see Figure 2A.
In order to investigate the interaction between the MEV construct and TLR5 involved in
the immune response, molecular docking of MPXV-MEV was performed with TLR5 using
the HADDOCK 2.4 web server and the default parameters [44]. Since flagellin, a bacterial
adjuvant, specifically interacts with TLR5 which might invoke the innate immune response,
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an information-driven docking was performed, based on the information about specific
interacting residues, to drive the docking simulations [36]. An analogous approach using a
complementary hydropathy between the flagellin and TLR5 has previously been used for
predicting the potential binding regions and the structure of the overall complex [61]. In a
recent study, it has been shown that the potential binding regions identified for flagellin
and human TLR5 were LQRVRELAVQ and EILDISRNQL [45]. Thus, during the docking
experiments, these sequences were defined as the part of ‘Active Residues’ while running
the HADDOCK program. The top ranked cluster containing the lowest HADDOCK score
was selected as a final structure of the MPXV-MEV and TLR5 complex. The molecular
docking between the MPXV-MEV construct and the TLR5 receptor is shown in Figure 2B.
Further, we specifically computed the “distance range maps” for the docked complex using
the COCOMAPS tool, see Figure 2B. In order to define a contact, a cut-off distance of 5 Å
between two atoms was used. Forty-six contacts existed between hydrophilic residues, 50
were observed between hydrophilic and hydrophobic residues, and 11 existed in between
two hydrophobic residues.
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Figure 2. (A) Modeled 3D structures of (A) TLR5 and MPXY-MEV construct. Ramachandran plots
and Z-scores calculated by Pro-SA webserver below the predicted structures. (B) Docked structure of
MPXV-MEV and TLR5 as blue and red cartoons. The hotspot residues used for information-driven
docking illustrated as spheres in green and magenta colors for the MEV construct and TLR5 receptor,
respectively. Distance contact maps are also plotted, indicating the residues in contact between
MPXV-MEV and the TLR5 receptor along with two representative molecular interactions between
amino acid residues of TLR5 and the MPXV-MEV construct.
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3.5. Structural Stability of the MPXV-MEV Complexed with TLR5

MD simulations were performed to study the structural stability of the docked complex
of MPXV-MEV and TLR5 [60]. GROMACS software was used to perform three different
MD simulations, each 100 ns long, starting with different initial velocities [26], which
produced very similar results, see Figure S2. Herein, we discuss the results for one of the
simulations. To investigate the stability the MPXV-ME complexed with TLR5, the root
mean square deviation (RMSD) of the Cα atoms from their initial position was monitored
as a function of simulation time. It is evident from Figure 3A that the structure of the
complex stabilizes after 30ns simulation time. The RMSD calculated for the docked TLR5
and MPXV-MEV complex after initial 30 ns of simulations is 1.08 ± 0.1 nm. Further, RMSD
values were plotted separately for TLR5 and MPXV-MEV as well, see Figure 3A. Indeed,
TLR5 alone was considerably stable after 30 ns (see Figure 3A and Figure S2A), with
an average RMSD of 0.52 ± 0.04 nm. The predicted MPXV-MEV had flexibility with an
RMSD value of 1.17 ± 0.09 nm. However, the RMSD values observed for trial-2 of MPXV-
MEV are still not stable during the 100 ns simulation run, which may indicate a longer
simulation run is required for attaining stability. Root mean square fluctuation (RMSF)
was plotted separately for the TLR5 and the MPXV-MEV construct in order understand
the structure’s flexibility on a residue basis. The elevated RMS fluctuations were observed
for the highly flexible regions, see Figure 3B. It is evident that the Cα atoms of the entire
TLR5 structure have a limited flexibility with an average RMSF of 0.22 ± 0.12 nm. On the
other hand, a high fluctuation was found, particularly for the regions associated with N-
and C-terminal of flagellin in the MPXV-MEV construct with an RMSF of 0.41 ± 0.20 nm
and 0.38 ± 0.19 nm, respectively. Additionally, the number of intermolecular hydrogen
bonds in the complex of TLR5 and MPXV-MEV remained constant after 30ns simulation
time (Figure 3C). The buried surface area at the interface of the MPXV-MEV and TLR5
complex was stable throughout the simulation time, which clearly implies the stability of
interface interaction between MPXV-MEV and TLR5 (Figure 3D). Further, we calculated
the interaction energies between TLR5 and MPXV-MEV, i.e., the Lennard–Jones (E(LJ))
potential component, which stands for the Van der Waals interactions and the coulombic
component (E(Coul)), representing the electrostatics interaction. From Figure S3, it is
evident that both the electrostatic and LJ components contribute almost equally to the
stabilization of the overall TLR5 and MPXV-MEV complex, with electrostatics energy of
−714.65 ± 90.9 kcal/mol and an E(LJ) contribution of −665.89 ± 61.5 kcal/mol.

The superimposition of complex structures extracted every 20 ns during the simula-
tion time resulted in good overlap, with RMSD values below 1 nm (Figure 3E); a limited
flexibility was only observed in the terminal regions of the MPXV-MEV construct. An
interface analysis was performed using the COCOMAPS tool for the same selected snap-
shots [62,63] (see, Figure 3F). Distance range maps were specifically plotted. The dots
at the crossover of two residues belonging to the MPXV-MEV construct and to TLR5 are
represented as red, yellow, green and blue if any pair of their atoms is closer than 7, 10,
13 and 16 Å. It is evident from Figure 3F that the interface remains stable for the selected
snapshots in terms of inter-residue contacts, despite the observed peripheral flexibility of
the MPXV-MEV construct.

Further, the MDcons program was used to assess the stability of the complex between
MPXV-MEV and TLR5, and the conservation of inter-residue contacts (ICs) at the interface
along the simulation time was plotted [64–69]. The similarity between different snapshots
focused on the region of interest, which is the biomolecular interface, could be efficiently
measured by the conservation of ICs under dynamic conditions between macromolecules
giving a stable complex. Figure 4A,B illustrate a consensus map of 1000 MD snapshots
and distances along the simulation time for two selected conserved ICs, respectively. The
overall conservation of the ICs at the MPXV-MEV and TLR5 interface during the MD
simulations is illustrated in the MD consensus map which clearly indicates that many
contacts between the MPXV-MEV construct and TLR5 remained stable throughout the
simulation time (Figure 4A). MDcons analysis produced C50 and C70 values of 0.87 and
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0.51, implying that 87% and 51% of ICs were kept conserved for at least 50% and 70% of the
frames. Hence, quite a high conservation of the complex interface during the simulation
time was observed. The ICs remained stable over the simulation time and two such
examples are shown in Figure 4B. Notably, the H-bond existing between Tyr513 from
TLR5 and Arg93 from the N-terminal of flagellin on the MPXV-MEV construct remained
stable throughout the simulation time with an average Tyr513(OH)-Arg230(CZ) distance of
0.41 ± 0.05 nm. The hydrogen bonding interaction between Ser132 of TLR5 and Arg348
from the C-terminal of flagellin on the MPXV-MEV construct was also observed to remain
stable with an average Ser132(OG)-Arg348(CZ) distance of 0.44 ± 0.05 nm.
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Figure 3. (A) Backbone RMSD plots of the docked complex and the individual chains of TLR5 and
MPXV-MEV construct; (B) RMSF plots; (C) Hydrogen bonds analysis between TLR5 and MPXV-MEV
during MD simulations; (D) Buried area of TLR5 and MPXV-MEV construct; (E) Superimposition
of snapshots at every 20 ns of the TLR5 and MPXV-MEV constructs with their respective RMSD;
(F) Contact maps showing inter-molecular contacts where the dots at the crossover of two amino
acids have been colored in red, yellow, green and blue if any pair of atoms between two amino acids
is closer than 7, 10, 13 and 16 Å.
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the MPXV-MEV.

3.6. Immune Simulation

The immune simulation demonstrated that the first exposure to the candidate monkey-
pox MEV did not elevate the antibody titer significantly. However, the next two injections
considerably increased the antibody titer (IgM + IgG, IgM, IgG1 + IgG2, and IgG1) relative
to the first dose of MEV (Figure 5A). The third dose also elevated IgG2 titer. The C-IMMSIM
also determined that candidate monkeypox MEV has the potential to grow the total B-
lymphocytes population after each injection (Figure 5B). An increase in B isotype IgG1
and B isotype IgM were also predicted (Figure 1B). Further, the expression of B memory
cells was increased after each vaccine dose, implying a robust secondary immune response
activation (Figure 5B). The total population of CD4+ T l was also increased following every
vaccination. Moreover, the population of memory T cells was increased following each
vaccination (Figure 5C). However, the total CD4+ T cell population remained the same after
the second and third doses of MEV (Figure 5C). Furthermore, there was increase in the
population of active CD4+ T cells after the vaccination (Figure 5D). The resting and dupli-
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cating CD4+ T cells were increased after the first two injections; however, after the third
injection, their population slightly decreased (Figure 5D). Thus, a rise in memory B cells and
resting T cells after vaccination implies the activation of the adaptive immune response on
which the vaccination is based. The candidate MPXV-MEV vaccination also stimulated the
production of interleukin-10, interleukin-12, interferon-γ and TGF-β (Figure 5E). Initially,
an increase in these cytokines and interleukins was observed after the first two vaccinations;
however, their concentration was decreased after the third dose compared to the first two
shots (Figure 5E). Overall, the immune simulations predicted that candidate MPXV-MEV
vaccination could activate the immune response.
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4. Discussion

Monkeypox is an orthopoxvirus, which is responsible for infectious diseases such
as cowpox, smallpox, camelpox, and horsepox [70]. The monkeypox contains double-
stranded DNA which is approximately 197 kb and contains 190 non-overlapping open
reading frames [71]. Monkeypox virus has been detected in various animals such as
Gambian rats, Asian monkeys, rhesus macaques, prairie dogs and rope squirrels [72,73].
Moreover, Gambian-pouched rats have also been speculated to be the reservoir host species
of MPXV [74]. Monkeypox is reported to infect a broad range of hosts; intriguingly, the
natural host of the virus has still not been identified [73]. Either of the two modes of
transmission, i.e., animal-to-human or human-to-human, can infect humans [73]. The
symptoms include skin rashes, fever, fatigue, lesions, and lymphadenopathy [75]. Further
complications include dehydration, vomiting, conjunctivitis, encephalitis, pharyngitis,
tonsillitis, and diarrhea [75].
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The currently available vaccines that have provided immunization against monkeypox
include FDA approved ACAM2000 or NYCBH and LC16m8 which are under clinical trials.
These vaccines are live, attenuated vaccinia viruses which face challenges of safety and
efficacy in chronic infections [76,77]. Furthermore, there is a risk of virulence reversion
due to complementing mutations in vaccine recipients or production hosts during vaccine
viruses’ replication [76,77]. Moreover, in light of the recent multi-country monkeypox
outbreak and the lack of any specific treatment for the same, it has become imperative to
look for new ways to treat and protect the human population from monkeypox. Hence,
an immunoinfromatics approach seems to be exciting for designing a potential vaccine
candidate to explore an alternative to the live attenuated virus. Furthermore, the epitope-
based vaccines could help to overcome challenges such as genetic variations, antigenic
shift and antigenic drift. Previously, various epitope-based vaccine candidates against
pathogens such as bacteria, viruses, fungi, parasites and cancers have been designed using
an in silico immunoinformatics approach [23,42,78–88]. Recently, an MEV showing a T-cell
response for Q fever in cynomolgus macaques has been reported [79]. Quite recently,
immunoinformatics-based designs of vaccines have also been proposed, targeting various
proteins for MPXV [89–92].

The epitopes ISPDGCYSL and LTFDYVVTF, which were derived from the F8L protein
of the monkeypox virus, have been reported to activate the CD8+ T cell population and
the release of interferon-γ in rhesus macaques [93]. Interestingly, an epitope-based vaccine,
VennVax, exhibits 100% protective efficacy against vaccinia virus by activating T cell
response in the humanized mouse model. Interestingly, VennVax has recently been found
to be effective as an MPXV cure as well [94,95].

In the present study, the membrane proteins and glycoproteins were targeted for pre-
dicting antigenic epitopes to design a potential MEV candidate against monkeypox. These
proteins are major constituents of pathogenic viruses and play a significant role in immunity
and pathogenesis [96], and are involved in the attachment to the host cellular receptors
and virus–host membrane fusion [96]. In this study, seven epitopes (two cell epitopes, four
cell epitopes and one linear B cell epitope) possessed antigenicity, non-allergenicity, and
non-toxicity. Furthermore, these epitopes were also predicted to activate interferon-γ pro-
duction. Interferon-γ modulates both the innate and adaptive immunity while contributing
to the antiviral defense system [97]. Then, the selected epitopes were linked with adjuvants
and the PADRE sequence to design a novel monkeypox MEV candidate. Furthermore, the
candidate monkeypox MEV was predicted to be antigenic and non-allergic. Further, the
docking and MD simulations of MPXV-MEV complexed with the TLR5 receptor resulted
in a stable interaction pattern especially at the biological interface of this complex. The
computational analyses emphasize that the novel MPXV-MEV construct identified is a
potent immunogen which exhibits both non-allergenicity and non-toxicity. Interestingly,
the vaccine construct is dissimilar to human proteins (taxid: 9606; Homo sapiens) in a
protein–protein BLAST analysis, indicating that it could be safely used for humans.

5. Conclusions

The immunogenic and non-allergic glycoproteins and membrane proteins for MPXV
have been targeted in order to predict epitopes for T-cells and B-cells that could be used
to design a candidate MEV against MPXV. The predicted MPXV-MEV is antigenic and
non-allergic in nature and interacts strongly with human TLR5. In silico immune simulation
of the MEV construct predicted that the vaccine candidate could elicit an immune response
in humans.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112374/s1, Figure S1: Modeling of MPXV-MEV construct and
TLR5 receptor using AlphaFold; Figure S2: Molecular dynamics simulations results obtained from
three independent simulations for Root Mean Square Deviation (RMSD) for (A) TLR5 and (B) MAXV-
MEV. (C) Total number of hydrogen bonds between TLR5 and MPXV-MEV; Figure S3: Interaction
energy between TLR5 and MAXV-MEV obtained from three independent simulations; Table S1:
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Prediction of helper T cell epitopes and their antigenicity, allergenicity, toxicity and interferon-γ
inducing ability; Table S2: Prediction of cytotoxic T cell epitopes and their antigenicity, allergenicity,
toxicity and interferon-γ inducing ability; Table S3: Prediction of B cell epitopes and their antigenicity,
allergenicity, toxicity and interferon-γ inducing ability; Table S4: Physiochemical Properties of the
MPXV-MEV construct.
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