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Abstract: Perinatally infected children living with HIV (CLWH) face lifelong infection and associated
inflammatory injury. Chitinase-like 3 protein-1 (CHI3L1) is expressed by activated neutrophils and
may be a clinically informative marker of systemic inflammation in CLWH. We conducted a multi-
centre, cross-sectional study of CLWH, enrolled in the Early Pediatric Initiation Canadian Child
Cure Cohort Study (EPIC4). Plasma levels of CHI3L1, pro-inflammatory cytokines, and markers
of microbial translocation were measured by enzyme-linked immunosorbent assays. Longitudinal
clinical characteristics (viral load, neutrophil count, CD4+ and CD8+ T-lymphocyte counts, and
antiretroviral (ARV) regimen) were abstracted from patient medical records. One-hundred-and-five
(105) CLWH (median age 13 years, 62% female) were included in the study. Seventy-seven (81%) had
viral suppression on combination antiviral therapy (cART). The median CHI3L1 level was 25 µg/L
(IQR 19–39). CHI3L1 was directly correlated with neutrophil count (ρ = 0.22, p = 0.023) and inversely
correlated with CD4/CD8 lymphocyte ratio (ρ = −0.35, p = 0.00040). Children with detectable viral
load had higher levels of CHI3L1 (40 µg/L (interquartile range, IQR 33–44) versus 24 µg/L (IQR
19–35), p = 0.0047). CHI3L1 levels were also correlated with markers of microbial translocation soluble
CD14 (ρ = 0.26, p = 0.010) and lipopolysaccharide-binding protein (ρ = 0.23, p = 0.023). We did not
detect differences in CHI3L1 between different cART regimens. High levels of neutrophil activation
marker CHI3L1 are associated with poor virologic control, immune dysregulation, and microbial
translocation in CLWH on cART.

Keywords: child; HIV; chitinase-3-like protein 1; inflammation; neutrophil; microbial translocation

1. Introduction

While effective combination antiretroviral therapy (cART) has reduced HIV mortality
due to opportunistic infections, disorders associated with chronic inflammation and prema-
ture aging are now the leading causes of death in people living with HIV [1]. Neutrophils
are important propagators of inflammation during HIV infection [2]. Activated neutrophils
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contribute to a pro-inflammatory state by promoting macrophage activation, as well as
releasing pro-inflammatory cytokines/chemokines, reactive oxygen species (ROS), and neu-
trophil extracellular traps that cause tissue damage and apoptosis [2]. Several studies have
reported increased survival of neutrophils and ROS release in HIV patients on cART [3,4].
Neutrophils have been implicated in the pathogenesis of HIV, as activated neutrophils
bound to HIV particles accelerate infection of lymphocytes [5]. Neutrophil activation is also
associated with microbial translocation from the gut lumen to the systemic circulation [6],
which promotes inflammation and is associated with poor virologic control [7–10]. As
such, activated neutrophils in HIV patients on cART may contribute to a pro-inflammatory
state [3–5].

Chitinase-3-like protein 1 (CHI3L1), also known as YKL-40, is a secreted glycopro-
tein produced primarily by activated neutrophils, but also by other cells participating in
chronic inflammation: macrophages, fibroblast-like cells, T-lymphocytes, and endothe-
lial cells [11–13]. Overexpression of CHI3L1 is characteristic of various inflammatory
conditions, and correlates with the severity of coronary and carotid atherosclerosis, throm-
boembolism, pulmonary arterial hypertension, atrial fibrosis, and epicardial adipose tis-
sue [11,13]. In neutrophils, CHI3L1 is stored in granules and released upon neutrophil
activation [14], after which CHI3L1 binds the interleukin-13 receptor α2 (IL-13Rα2)-IL-13
complex and promotes inflammation through apoptosis, pyroptosis, and inflammasome
activation [15,16]. CHI3L1 mediates fibrosis and extracellular matrix (ECM) remodelling
via stromal cell and fibroblast activation, which may contribute to the pathogenesis of
inflammatory diseases, such as atherosclerosis [16,17].

The purpose of this study was to investigate the association between CHI3L1 and
markers of virologic control (viral load, CD4/CD8 ratio), inflammation (interleukin [IL]-6,
tumor necrosis factor [TNF], C-reactive protein [CRP]), and microbial translocation (soluble
CD14 [sCD14] and lipopolysaccharide binding protein [LBP]) in CLWH.

2. Materials and Methods
2.1. Study Design

We conducted a retrospective cross-sectional study evaluating clinical correlates of
HIV disease, chronic inflammation, gut translocation, and CHI3L1 serum level among
CLWH within the Early Pediatric Initiation Canada Child Cure Cohort (EPIC4) Study [18].
All participating institutions provided ethics approval. Adolescents provided their consent
to participate where deemed capable of consent. Parents of children provided informed
consent, and assent was also sought from children if developmentally appropriate.

2.2. Clinical Definitions

Undetectable viral load was defined as HIV RNA measurement below the quantifi-
cation limit by the clinical virology laboratory at each center (target not detected, <20,
or <40 copies/mL) on the day of the study visit. Sustained virologic suppression (SVS)
was defined as undetectable viral load for at least 6 months prior to the study visit. The
proportion of life with SVS was determined as the sum of all time periods during which SVS
was achieved in days (numerator) divided by participant age in days (denominator). Clini-
cal chart records were used to abstract data on current treatment regimen (antiretroviral
exposure).

2.3. Measurement of Biomarker Levels

Each clinical site collected whole blood in EDTA tubes, which was shipped to a central
laboratory within 24 h for processing. Whole blood samples were centrifuged to separate
plasma from cell pellets, and plasma samples were stored at −80 ◦C. Biomarker levels
were quantified using commercially available ELISA kits, according to manufacturer’s
instructions (R&D Duoset, Minneapolis, MN, USA). A microplate reader was used to
measure optical density; background signal was measured from blank wells on each plate,
then subtracted from all samples prior to analysis. A standard curve was subsequently used
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to determine biomarker concentrations from optical density measurements. All laboratory
assays were performed blinded to clinical data.

2.4. Statistical Analysis

Since the distributions of biomarker levels were not Gaussian, non-parametric statisti-
cal methods were used. Descriptive statistics used the median and interquartile range (IQR)
for continuous variables. The median CHI3L1 of the cohort was used to define patients with
low CHI3L1 and high CHI3L1 (Table 1). This method was used in previous studies, when
the normal range of a biomarker concentration is not well defined [19,20]. Correlations were
assessed using Spearman’s rank correlation coefficient (ρ). The independent predictive
value of CHI3L1 for the CD4/CD8 ratio and for markers of microbial translocation (sCD14
and LBP) was tested using multivariable linear regression models. Log-transformation of
CHI3L1, CD4/CD8 ratio, sCD14, and LBP was used to more closely approximate a normal
distribution of the data. Age, sex, and the neutrophil count were included as covariates
in the models. The adjusted association between CHI3L1 and the dependent variables
was expressed using the regression model coefficient (β) and its 95% confidence interval.
Analyses were performed using GraphPad Prism version 6 (GraphPad Software Inc., La
Jolla, CA, USA), and R (R Core Team, version 3.3.1).

Table 1. Characteristics of 105 children living with HIV, according to plasma chitinase-3-like-1
(CHI3L1) protein level.

Characteristic Overall Cohort
(N = 105)

Low CHI3L1 1

(N = 52)
High CHI3L1 1

(N = 53)
p-Value

Demographics
Age (yr), median (IQR) 13 (8.6–17) 13 (8.5–16) 14 (8.6–18) 0.28

<8 years, n (%) 22 (21) 10 (19) 12 (23) 0.70
8 to <12 years, n (%) 27 (26) 13 (25) 14 (26)
12 to <16 years, n (%) 20 (19) 9 (17) 11 (21)
≥16 years, n (%) 36 (34) 21 (40) 15 (28)

Female sex, n (%) 62 (59) 33 (63) 29 (55) 0.48
Ethnicity (mother), n (%) 0.16

African, Caribbean, or Black 67 (64) 38 (73) 29 (55)
White 12 (11) 8 (15) 4 (7.5)
First Nations 7 (6.7) 2 (3.8) 5 (9.4)
Other 16 (15) 4 (7.7) 12 (23)
Unknown 3 (2.9) 0 (0) 3 (5.7)

HIV Clade, n (%) 0.21
Clade A 4 (3.8) 0 (0) 4 (7.5)
Clade B 32 (30) 18 (35) 14 (26)
Clade C 21 (20) 10 (19) 11 (21)
Other 22 (21) 11 (21) 11 (21)
Unknown 26 (25) 13 (25) 13 (25)

Historical HIV control, median (IQR)
Age at initiation of any ARVs (yr) 2.1 (0.38–5.5) 3.4 (0.84–5.5) 1.7 (0.36–5.3) 0.32
Undetectable viral load, n (%) 84 (86) 46 (96) 38 (76) 0.0026
Proportion SVS, n (%) 81 (77) 45 (87) 36 (68) 0.041

Age at SVS (yr) 2 6.6 (3–11) 6.6 (3.8–12) 6.6 (2.4–8.9) 0.27
Duration of SVS (yr) 2 6.0 (3–8.4) 4.9 (2.4–7.3) 6.1 (3.7–9.8) 0.11

Current cART regimen, n (%) 0.096
NNRTI-based 41 (39) 22 (42) 19 (36)
Protease-inhibitor-based 23 (22) 11 (21) 12 (23)
Integrase inhibitor-based 17 (16) 12 (23) 5 (9.4)
No ARVs 10 (9.5) 2 (3.8) 8 (15)
Other 3 14 (13) 5 (9.6) 9 (17)
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Table 1. Cont.

Characteristic Overall Cohort
(N = 105)

Low CHI3L1 1

(N = 52)
High CHI3L1 1

(N = 53)
p-Value

Immunologic variables, median (IQR)
Neutrophil count (×109/L) 2.2 (1.6–3.1) 2.0 (1.3–2.7) 2.3 (1.8–3.5) 0.041
Neutrophil percent 41 (33–52) 38 (32–50) 43 (36–57) 0.11
CD4+ T-cell count (×109/L) 770 (550–1100) 830 (590–1100) 690 (510–990) 0.13
CD4+ T-cell percent 37 (30–42) 40 (35–43) 33 (26–40) 0.0011
CD4 lifetime nadir (×109/L) 440 (280–570) 440 (290–570) 440 (250–610) 0.79
CD4 lifetime nadir percent 20 (14–29) 23 (15–29) 19 (13–26) 0.12
CD8+ T-cell count (×109/L) 740 (520–1000) 620 (460–860) 810 (600–1100) 0.0071
CD8+ T-cell percent 33 (27–38) 30 (25–35) 36 (29–44) 0.00039

SVS, sustained virologic suppression; cART, combination antiretroviral therapy; IQR, interquartile range; NNRTI,
non-nucleoside reverse transcriptase inhibitor. 1 High CHI3L1 was defined as a plasma concentration ≥ sample
median (25 µg/L). 2 Among those with VS (n = 81). 3 Other cART regimens included: lopinavir (LPV) + ritonavir
(boost) (RTVb) + raltegravir (RAL) (n = 2); atazanavir (ATZ) + RTVb + RAL (n = 1); ATZ + elvitegravir/cobicistat
(EVG/COBI) (n = 1); darunavir (DRV) + EVG/COBI (n = 1); etravirine (ETR) + RAL (n = 1); RAL + maraviroc
(n = 1); ETR + DRV + RTV + dolutegravir (DTG) (n = 1); ETR + DRV + RTVb + RAL (n = 1); and unknown (n = 5).
Bars with whiskers represent median and interquartile range.

3. Results

A total of 105 CLWH were included, with study visits between February 2015 and
December 2016. Characteristics of the cohort are shown in Table 1.

The median plasma concentration of CHI3L1 was 25 µg/L (IQR 19 to 39). Among
children with high CHI3L1 (≥sample median), the proportion with undetectable viral
load was lower, SVS was lower, the neutrophil count was higher, the frequency of CD4+ T
lymphocytes was lower, and the frequency of CD8+ T lymphocytes was higher (Table 1).
We also observed a statistically significant correlation between the neutrophil count and
CHI3L1 levels (ρ = 0.22, p = 0.023, Figure 1). Of note, there was a non-statistically signif-
icant difference in the CHI3L1 levels according to ethnicity. Among patients of African,
Caribbean, or Black (ACB) ethnicity, the CHI3L1 was 24 µg/L (IQR 18 to 34) compared
to 29 µg/L (IQR 20 to 47) among other ethnicities (p = 0.13). The neutrophil count was
1.9 × 109/L (IQR 1.3–2.7) among ACB patients and 2.4 × 109/L (2.0–3.5) among other
ethnicities (p = 0.0018).
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Figure 1. Plasma CHI3L1 level is correlated with neutrophil count. The concentration of CHI3L1
was measured by enzyme-linked immunosorbent assay (ELISA), and neutrophil counts were taken
from patient clinical records. Non-parametric Spearman’s rank correlation coefficient (ρ) and the
associated p-values are indicated.

We observed higher levels of CHI3L1 among patients with detectable viral load
(Figure 2A). Furthermore, CHI3L1 was inversely correlated with the CD4/CD8 ratio, a
marker of immune reconstitution following effective cART [21] (ρ = −0.35, p = 0.00040,
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Figure 2B). In a multivariable linear regression model adjusting for the effects of age, sex,
and neutrophil count, CHI3L1 remained a statistically significant predictor of the CD4/CD8
ratio (β= −0.29, 95%CI −0.44 to −0.072, p = 0.0021). However, there was no statistically
significant difference in CHI3L1 levels between children with and without SVS (p = 0.12).
There was no statistically significant correlation between CHI3L1 levels and the proportion
of life with SVS (p = 0.59).
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Figure 2. CHI3L1 is associated with poor virologic control among children living with HIV. (A) 

Patients with detectable viral load (solid circles) had significantly more CHI3L1 than those with 
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Figure 2. CHI3L1 is associated with poor virologic control among children living with HIV.
(A) Patients with detectable viral load (solid circles) had significantly more CHI3L1 than those
with undetectable viral load (open circles) (** p = 0.0047). (B) CHI3L1 and CD4/CD8 ratio were
inversely correlated. Concentrations of CHI3L1 were measured by ELISA, and CD4/CD8 lymphocyte
counts were taken from patient clinical chart records. Non-parametric Spearman’s rank correlation
coefficient (ρ) and the associated p-values are indicated.

We next examined whether CHI3L1 levels were associated with other markers of
systemic inflammation. We did not observe statistically significant associations between
CHI3L1 levels and those of inflammatory cytokines IL-6 (ρ = −0.020, p = 0.84) and TNF
(ρ = −0.15, p = 0.13), or acute phase reactant CRP (ρ = 0.12, p = 0.24). Unlike CHI3L1,
IL-6, TNF and CRP levels were similar in patients with detectable versus undetectable VL
(p > 0.05 for all differences between groups). IL-6 and CRP levels were not correlated with
the CD4/CD8 ratio (p > 0.05 for both correlation coefficients).
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We observed a statistically significant correlation between levels of CHI3L1 and ex-
pression of sCD14 (ρ = 0.26, p = 0.010, Figure 3A), as well as LBP (ρ = 0.23, p = 0.023,
Figure 3B). In multivariable linear regression models adjusting for the effects of age, sex,
and neutrophil count, CHI3L1 remained a statistically significant predictor of sCD14 lev-
els (β = 0.24, 95%CI 0.069–0.40, p = 0.0060) and LBP levels (β = 0.15, 95%CI 0.0046–0.28,
p = 0.043).
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Figure 3. CHI3L1 is correlated with markers of microbial translocation. CHI3L1 was directly corre-
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Figure 3. CHI3L1 is correlated with markers of microbial translocation. CHI3L1 was directly
correlated with (A) sCD14 (ρ = 0.26, p = 0.010), and (B) LBP (ρ = 0.23, p = 0.023). Concentrations of all
biomarkers were measured with an ELISA. Non-parametric Spearman’s rank correlation coefficient
(ρ) and the associated p-values are indicated.

We examined whether CHI3L1 or neutrophil count was associated with cART regimen.
We found no associations between the NRTI class or the cART core agent and the neutrophil
count or CHI3L1 (Supplementary Figure S1).

4. Discussion

In this study, we found that CHI3L1 levels were associated with higher neutrophil
count, poor virologic control (detectable viral load, low CD4/CD8 ratio), and markers
of microbial translocation (sCD14 and LBP) in CLWH (Figure 4). Although statistically
significant, correlations with CHI3L1 were weak or moderate (ρ between 0.2 and 0.4),
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suggesting that other factors besides CHI3L1 are involved in virologic control and microbial
translocation. The role of CHI3L1 was studied in several chronic inflammatory diseases and
cancers; our study extends these findings, demonstrating an association between CHI3L1
and poor virologic control in pediatric HIV infection. Its potential role in the pathogenesis
of chronic inflammation in HIV requires further study.
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lipopolysaccharide binding protein. * p < 0.05; ** p < 0.01; *** p < 0.001.

The median CHI3L1 level among CLWH in our study was 25 µg/L (IQR 19 to 39).
This is similar to healthy adult controls, based on a study using the same commercial ELISA
assay (median 36 µg/L) [22]. On the other hand, CHI3L1 levels in CLWH were lower
than in patients with severe acute infections including sepsis (median > 1000 µg/L) [23],
SARS-CoV-2 (361 µg/L) [24], and severe malaria (200 µg/L) [25]. Levels were also lower
compared to adults with hepatitis B and chronic liver fibrosis (median 460.8 µg/L) [26].
This suggests that the level of CHI3L1 among outpatients with chronic HIV in our study
reflects a low level of systemic inflammation, relative to patients hospitalized with acute
life-threatening infections or another chronic viral infection (hepatitis B).

CHI3L1 levels were higher in patients with a detectable viral load and in those with a
low CD4/CD8 ratio. Incomplete suppression of viral replication may contribute to systemic
inflammation, which may explain the association of CHI3L1 with VL. The CD4/CD8
ratio is frequently used as a marker of immune reconstitution after cART initiation in
HIV [21,27,28]. We found that high CHI3L1 levels were associated with detectable viral
load and lower CD4/CD8 ratio (Figure 2). Of note, a persistently low CD4/CD8 ratio is
also independently associated with precursor conditions associated with cardiovascular
disease (CVD), such as carotid intima-media thickness and arterial stiffness [29,30]. Given
its role in inflammation and its association with low CD4/CD8 ratio, it is tempting to
speculate that CHI3L1 may also be a clinically informative marker for CVD risk in CLWH.
On the other hand, CHI3L1 levels were not correlated with longer-term and lifelong viral
suppression (SVS and proportion of life under SVS). Therefore, CHI3L1 may reflect the
acute inflammatory state, rather than chronic or cumulative inflammatory injury.

Lower CHI3L1 levels were associated with African, Caribbean or Black (ACB) ethnicity,
although this difference was not statistically significant (Table 1). Lower neutrophil counts
in ACB patients (1.9 × 109/L (IQR 1.3–2.7) versus 2.4 × 109/L (IQR 2.0–3.5), p = 0.0018) may
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explain this finding. Of note, benign ethnic neutropenia, due to the Duffy null [Fy(a-b-)]
phenotype, is common among individuals of sub-Saharan African ancestry and is not
associated with an increased risk of infection [31].

CHI3L1 is a member of the glycoside hydrolase family 18—a group of enzymes that
hydrolyze glycosidic bonds in amino polysaccharides [11]. Within this family, CHI3L1
belongs to a group of non-enzymatic chitinase-like proteins that bind chitin, but unlike
chitinases, lack enzymatic activity [12,13]. CHI3L1 is expressed primarily by neutrophils,
and is stored in intracellular granules before being released upon neutrophil activation
during an innate immune response [12,14]. Secreted CHI3L1 binds the interleukin-13
receptor α2 (IL-13Rα2)-IL-13 complex, activating the MAPK/Erk, Akt, and Wnt/β-catenin
signaling pathways to trigger a pro-inflammatory response [15,16]. Our study found a
direct correlation between CHI3L1 levels and neutrophil count, consistent with a neutrophil
source of CHI3L1 (Figure 1). Although antiretroviral medications may affect inflammatory
markers [32,33] or neutrophils [4], we did not observe an effect of cART regimen on CHI3L1
levels or neutrophil counts (Figure S1). Our cross-sectional study was not designed to
examine CHI3L1 regulation and signaling; however, our observation of elevated CHI3L1
in CLWH with poor virologic control is consistent with its known pro-inflammatory mech-
anism of action.

Microbial translocation from the gut lumen to the circulation is a driver of systemic
inflammation in HIV patients [9]. Due to inflammatory gut dysbiosis in HIV, intestinal
barrier function may be compromised, allowing microbial products such as lipopolysac-
charide (LPS) to enter the systemic circulation [7–10]. LPS binds to Toll-like receptor 4
(TLR4), as well as co-receptors CD14 and LBP, to promote monocyte/macrophage-mediated
inflammation [7–10]. We found that CHI3L1 levels were positively correlated with levels
of sCD14 and LBP, two markers of microbial translocation (Figure 3). Circulating sCD14
and LBP are also associated with morbidity/mortality, CD8 cell activation, and impaired
CD4 cell recovery in patients on cART, suggesting that microbial translocation may alter
the immune profile and contribute to poor virologic control in HIV [9,10]. Recent reports
suggest that activation of neutrophils in chronic HIV contributes to mucosal inflammation
and increased microbial translocation, despite cART [6]. We speculate that CHI3L1 may
participate in the cycle of neutrophil activation and microbial translocation in chronic HIV.

We did not find an association between CHI3L1 and levels of classic inflammatory
cytokines IL-6, TNF, or the acute phase reactant CRP. Although CHI3L1 secretion by
neutrophils can be induced by IL-6 and TNF, it is also induced locally through other
pathways by macrophages and neutrophils in infected tissue [11,34]. Therefore, CHI3L1
may represent an independent pro-inflammatory pathway and may be an informative
index of “silent” inflammation that is not detected by more commonly used measures of
inflammation such as IL-6, TNF, or CRP. Identifying pathways of inflammation that are
not currently measured in clinical practice, or that elude standard cytokine panels, may
improve prediction and monitoring of chronic inflammation in HIV. A proposed conceptual
framework, summarizing the observed associations between CHI3L1 and virologic control,
microbial translocation, and systemic inflammation in CLWH is shown in Figure 4.

Our study has several limitations. The cross-sectional study design limits our ability
to make causal inferences between CHI3L1, markers of virologic control, and inflammation.
Therefore, a prospective cohort study following these markers in CLWH should be con-
sidered to assess the relation between CHI3L1 and lifelong virologic control. Long-term
prospective studies are similarly required to investigate the clinical significance of CHI3L1
(e.g., if it predicts later complications of systemic inflammation such as CVD). CHI3L1 was
measured at a single time point, which could lead to error in case of intercurrent illness at
the time of sampling. It would be desirable to have multiple measurements (longitudinal
study) to address this limitation. It would also be desirable to have a control group of
healthy children without HIV infection to compare CHI3L1 levels in normal individuals to
CLWH in our cohort. The number of patients on integrase strand transfer inhibitors was
small in our study, reflecting a historical cohort with a higher use of protease inhibitors
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than would be seen in modern practice. Finally, our findings should be extrapolated with
caution to treatment centres in low- and middle-income countries, where a large burden of
HIV occurs. Further studies in these countries are warranted to assess the global relevance
of CHI3L1 in CLWH. Strengths of this study include (a) generalizability of findings to
pediatric HIV care centres in high-income countries thanks to the multicentre study design;
(b) detailed historical virologic and clinical data for our cohort; and (c) high proportion of
CLWH with SVS on cART.

In summary, we have shown that CHI3L1 is associated with poor virologic control,
immune dysregulation, and microbial translocation in CLWH. The clinical significance of
elevated CHI3L1 levels in CLWH is not known; however, chronic immune activation and
inflammation contribute to the pathogenesis of CVD in the context of HIV infection [30,35].
CLWH develop premature atherosclerosis, dyslipidemias, increased arterial stiffness, in-
creased carotid intimal media thickness, coronary arteriopathy, and congestive heart fail-
ure [30]. High levels of CHI3L1 may therefore be a poor prognostic marker in people living
with HIV, in whom CVD are a leading cause of death [1]. Given the interactions of CHI3L1
and inflammation, we posit that CHI3L1 may be a useful tool to monitor systemic inflam-
mation, with potential predictive value for inflammatory injury or CVD events. Recent
studies have suggested that CHI3L1 may be a therapeutic target in a broad range of condi-
tions, including COVID-19, bone metabolism, and breast cancer [36–38]. We suggest that
antibody-based and small molecule CHI3L1 inhibitors could also be tested as inflammatory
modulators in HIV. Future studies are needed to elucidate the mechanism of immune activa-
tion involving CHI3L1 in HIV. This may guide further research into improved management
of long-term, non-infectious complications of chronic HIV infection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14122602/s1, Figure S1: cART regimen is not associated with
differences in CHI3L1 and neutrophil count.
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