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Abstract: Significant advances in the field of HIV-1 therapeutics to achieve antiretroviral treatment
(ART)-free remission and cure for persons living with HIV-1 are being made with the advent of
broadly neutralizing antibodies and very early ART in perinatal infection. The need for HIV-1
remission and cure arises due to the inability of ART to eradicate the major reservoir for HIV-1 in
resting memory CD4+ T cells (the latent reservoir), and the strict adherence to lifelong treatment. To
measure the efficacy of these cure interventions on reservoir size and to dissect reservoir dynamics,
assays that are sensitive and specific to intact proviruses are critical. In this review, we provided a
broad overview of some of the key interventions underway to purge the reservoir in adults living
with HIV-1 and ones under study in pediatric populations to reduce and control the latent reservoir,
primarily focusing on very early treatment in combination with broadly neutralizing antibodies.
We also summarized assays currently in use to measure HIV-1 reservoirs and their feasibility and
considerations for studies in children.
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1. Introduction

An estimated 38.4 million people were living with HIV-1 (PLWH) in 2021, of whom
1.7 million were children under the age of 15 [1]. Antiretroviral therapy (ART) is effective at
suppressing HIV-1 replication such that the plasma viremia levels fall below the detection
limits of clinical assays. The suppression can last for decades and enables PLWH to live
without severe disease progression [2–4]. However, ART is limited in that it is unable to fully
eliminate HIV-1 from the body due to the establishment of viral latency in resting memory
CD4+ T cells [5–9]. The HIV-1 latent reservoir is the population of cells or anatomical sites
that allow the persistence of replication-competent proviruses for life even in patients on
effective ART [10–13]. These cells harbor HIV-1 proviruses capable of producing viral RNA
and proteins following stimulation by antigens or activating agents, leading to production
of infectious virions. Reservoirs are relatively stable as they are protected from ART and
the immune system. Currently, research shows that the reservoir resides mostly in resting
memory CD4+ T cells. However, there is increasing evidence that naïve CD4+ T cells can
also harbor replication-competent provirus [5,8,12–23].

Studies in adults living with HIV-1 who were on durable effective ART for up to
7 years showed that the latent reservoir decays slowly with a half-life of 44 months, which
indicated that a person would have to stay on ART for approximately 73.4 years to fully
eradicate a reservoir size of approximately one million latently infected cells [5,7,16]. When
ART is initiated early during acute HIV-1 infection, the size of the reservoir is smaller
compared to when ART is initiated during chronic infection. However, even with early
ART and a small reservoir size, viral rebound is observed upon treatment interruption,
which attests to the major barrier HIV-1 reservoir cells pose to HIV-1 cure [24–30]. Typically,
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ART interruption results in a rebound in viremia within 2–4 weeks which supports the
long-term persistence of an inducible reservoir [6,8,24,25,31,32].

In children living with perinatal HIV-1 infection, the size of the latent reservoir is
not smaller than in adults if ART is started during chronic infection [33]. However, in
perinatal infection, the latent reservoir becomes reduced over time with early effective ART
initiated at <3 months of age and with very early ART started between birth and seven
days of age in neonates with in utero infections [34–36]. Strict adherence to the prescribed
regimen is required for sustained virologic suppression (SVS), and to prevent the selection
of drug-resistant HIV-1. This is particularly difficult to achieve in children [37]. Several
factors affecting adherence include, but are not limited to care giver adherence, ART side
effects, and sustained accessibility to antiretroviral drugs (ARVs), along with the need for
frequent follow-up appointments to assess ART efficacy [38,39]. Long-term use of ART is
also associated with adverse side effects [40–43], and, importantly, stigma [44]. Altogether,
these factors highlight the need for novel treatments in order to achieve ART-free remission
and cure that can allow PLWH to not need lifelong ART for SVS, as highlighted below.
Studies are underway towards finding new treatments to eliminate HIV-1 reservoirs for
ART free remission and a cure of HIV-1, where ART can be stopped and SVS continued off
ART [45,46].

ART-free remission in the case of perinatal HIV-1 infection can be defined as the
ability to sustain virologic suppression in the absence of ART for one or more years, while
maintaining normal CD4+ T cell levels and immune responses to childhood vaccines [47].
A few cases of ART-free remission have been reported in perinatal infections with very
early ART (a girl—the Mississippi baby) [35], and with early ART (one girl-the French
Adolescent) [34] and one boy (the South African boy) [36]. A subset of adults treated
during acute infection in the VISCONTI Cohort experienced years of ART-free remission,
also referred to as post-treatment controllers (PTCs) [48], which are distinct from elite
controllers [49,50], thereby offering optimism towards long-term control of HIV-1 off ART.
Notably, cases of HIV-1 cure have been reported to date in two adult men [51–53] and
potential cure in one woman [54–56] through stem cell transplantation with CCR5 delta
32 homozygous cells, as part of treatment for malignancies they developed while on ART.
More recently, cases of “natural” HIV-1 cures were identified in two women who were not
on ART. In these two women, the persistent proviruses were found to be at exceedingly
low levels and overwhelmingly defective [57,58]. These unique cases offer hope for HIV-1
cures and provide mechanistic insights into achieving this goal for more PLWH.

1.1. Pediatric HIV-1 Infection

HIV-1 can be transmitted from a mother to her infant via three routes: in utero,
intrapartum, or postpartum through breastfeeding [59–61]. With the use of ART during
pregnancy, mother-to-child transmission rates have fallen drastically compared to the
pre-ART era. However, vertical HIV-1 transmission still occurs due to seroconversion of
the mother during pregnancy, poor adherence to ART or no ART during pregnancy and
the breastfeeding period [1,62].

1.2. Distinctive Features of Perinatal Infection

The immunologic environment of the fetus in utero is tolerogenic, anti-inflammatory [63,64],
and is biased towards Th17, Treg and Th2 lineages instead of the pro-inflammatory Th1
lineage [64–68], with potential implications for reservoir size and its stability. The anti-
inflammatory environment promotes low immune activation, and low expression of CCR5
on CD4+ T cells, thereby potentially limiting HIV-1 reservoir establishment [65,68]. Perina-
tal HIV-1 infections allow for rapid ART initiation (within 48 h of life to 3 months of age),
which can pave the way for smaller reservoir size by restricting viral replication [68–70],
while also providing an environment suitable for the introduction of immunotherapeutics
that can potentially control the HIV-1 reservoir.



Viruses 2022, 14, 2608 3 of 25

1.3. Maintenance and Expansion of the Reservoir

An important aspect of the HIV-1 reservoir is the contribution of clonal expansion
of the cells that harbor the reservoir [71–73]. Clonal expansion is an umbrella term that
refers to three mechanisms: homeostatic proliferation, antigen driven proliferation, and
integration into or in close proximity to genes involved in cell growth [74–77]. Homeostatic
proliferation occurs as a result of exposure to cytokines such as IL-7 and IL-15 [78–82].
Antigen driven proliferation occurs through repeated exposure to cognate antigens and
has been shown to drive proliferation regardless of integration site [77]. HIV-1 proviruses
have a propensity to integrate into active genes [83,84], such as genes associated with cell
growth and proliferation (STAT5B, BACH2, MLK1), contributing to the maintenance of
the reservoir over time [71,73,85] which altogether provide an unsurmountable barrier to
HIV-1 eradication.

2. Therapies for HIV-1 Infection

Since the start of the HIV-1 epidemic, significant advances were made to find suitable
life sustaining treatment options for PLWH, including children. With the discovery of
the latent reservoir, the shift from lifelong treatment with ART to sustain control of HIV-1
to achieving ART free remission has been crucial. With this goal in mind, several novel
interventions are under intense investigation, primarily in adults [45,86]. A few strategies
are under investigation in the pediatric population for which very early ART with im-
munotherapeutics are the most feasible and promising. These interventions are described
in Figure 1 and the major clinical trials in the pediatric population are summarized in
Table 1 [86].
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Figure 1. Various cure strategies to eradicate HIV-1 infection. Upon infecting the cell, HIV moves to
the nucleus where it inserts its cDNA genome into the host genome to form the proviral reservoir.
The reservoir is persistent and quiescent and poses a barrier to cure. It needs to be eradicated or reduced
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substantially to achieve cure or ART free remission. There are several cure interventions currently
under study namely “shock and kill”, “block and lock” and gene editing. “Shock and kill” involves
the use of latency reversing agents that forces the provirus out of latency and allows it to become
transcriptionally active, and with some agents produce virions that can then allow for clearance
by the immune system. Broadly neutralizing antibodies (bNAbs), in combination with “shock and
kill” strategies may facilitate such immune -mediated clearance. The “block and lock” approach is
a more recent approach and involves using latency promoting agents that modify the epigenetic
environment of the provirus to keep it in a state of deep latency such that it is not reactivated. Gene
editing utilizes different strategies to modify the CCR5 receptor on CD4+ T cells making the cells
resistant to infection by HIV-1 R5 tropic strains. Very early and early ART in perinatal infection
reduce HIV-1 reservoirs over time and in combination with immune strategies may promote ART-free
remission and cure. (Figure created with BioRender.com).

Table 1. Clinical trials towards HIV-1 remission in children. (adapted from the Treatment Action
Group (TAG HIV Science) website) [86].

Trial/Protocol
Name Trial Number Age Range for

Eligibility Intervention Country Goal

IMPAACT 2008 NCT03208231 0 to 12 weeks of
age

Combination of
Early ART and

VRC01

Botswana, Brazil,
Malawi,

Zimbabwe

Early clearance of
HIV-1 infected
cells in infancy

IMPAACT 2015 NCT03416790 13 to 24 years of
age Long-term ART United States

Central nervous
system reservoir
characterization

IMPAACT 2039 In development 3–12 years of age

HIVconsvX
vaccines

with/without
triple bNAbs

To be determined

Safety,
Immunogenicity

efficacy of
HIVconsX vaccines

with/without
bNABs to control
viremia off ART

IMPAACT 2028 NCT05154513 1 year and older

Follow up study of
HIV persistence
biomarkers in

remission and cure
trials (received

Early or Very Early
ART)

Botswana, Brazil,
Haiti, Kenya,

Malawi, South
Africa, Tanzania,

Thailand, Uganda,
United States,

Zimbabwe

Reservoir and
immune biomarker
profile following

cure interventions

P1107 NCT02140944 12 months and
older

Cord blood
transplantation

with CCR5 delta 32
stem cells

United States HIV cure

P1115 NCT02140255 Up to 10 days of
life

Very early ART of
neonates

with/without
BNABs

Argentina, Brazil,
Haiti, Kenya,

Malawi, Puerto
Rico, South Africa,

United States,
Tanzania, Thailand,
Uganda, Zambia,

Zimbabwe

ART free remission

EIT (Early Infant
HIV Treatment) NCT02369406 0 to 56 days of life Very Early ART Botswana ART free remission

BioRender.com
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Table 1. Cont.

Trial/Protocol Name Trial Number Age Range for
Eligibility Intervention Country Goal

LEOPARD (Latency
and Early Neonatal

Provision of
Antiretroviral Drugs

Clinical Trial)

NCT02431975 Up to 48 h of life Very Early ART South Africa ART free remission

Tatelo Study NCT03707977 96 weeks to 7 years Early ART +
combination bNAbs Botswana

Safety and efficacy of
dual bNAb VRC01LS

and 10-1074 to
control viraemia off

ART

HIV-Netherlands
Australia, Thailand

Research
Collaboration

NCT00476606 1 day to 20 years Early ART Thailand

Evaluate
immunological and
clinical outcomes of

early ART

HVRRICANE Trial NCT04301154 9 years or older

ART + HIVIS-DNA
vaccine +

MVA-CMDR boost
with or without
TLR-4 agonist

South Africa

Safety and effects of
using primer boost
vaccine regimens

with/without TLR 4
agonist

Antiretroviral
Regime for Viral

Eradication in
Newborns

NCT02712801 0–1 day of life Very Early ART China HIV Cure

2.1. Current Interventions under Investigation for Pediatric HIV-1 Remission and Cure
2.1.1. Very Early and Early Antiretroviral Therapy in Neonates to Reduce HIV-1 Reservoirs
to Achieve Remission

The WHO recommends that ART in children should be initiated when the diagnosis
of HIV-1 is confirmed, regardless of virologic and immunologic status as supported by
studies showing the life-saving effects of ART with reductions in mortality and disease
progression [69,87–90]. Very early antiretroviral therapy refers to ART initiation during
the first few hours to days of life, but requires access to early infant testing with quick
turn-around [35]. Studies on early and very early ART initiation in perinatal infection across
different cohorts continue to show that ART initiation before six months of age is beneficial
in reducing time to suppression of viremia and the reservoir size, which in a few pediatric
cases has substantially delayed the time to rebound post treatment cessation [70,91–103].
This was first reported in the Mississippi baby, who experienced 27 months of ART-free
remission starting at 18 months of age following triple antiretroviral drug initiation at 30 h
of life [35]. In two other children, the French adolescent and the South African boy, with
perinatally acquired HIV-1, post-treatment control occurred with early ART initiated at
three and two months of life and stopped at five–six years and less than one year of life,
respectively [34,36]. The details for the three cases of remission are described in Table 2.
However, for most children treated from early infancy who experience markedly reduced
reservoir size, virus rebound occurs within two–four weeks when ART is stopped [104,105].

2.1.2. Broadly Neutralizing Antibodies for Use in Perinatal HIV-1 Infection to Achieve
Remission

Recently, it was shown that in very early treated children, substitution of ART with a
combination of broadly neutralizing antibodies (bNAbs) VRC01LS and 10-1074 was well
tolerated [106], and the dual bNAb therapy permitted maintenance of virologic suppression
for 24 weeks in 44% of such very early-treated children [107]. The results of this proof-of-
concept study support the notion that reservoir reduction through early ART may enable
long-term control with an immunotherapeutic intervention such as combination of bNAbs,
although more studies are required.



Viruses 2022, 14, 2608 6 of 25

Table 2. Comparison of the three cases of ART-free remission in perinatal HIV-1.

Profiles Mississippi Baby (2013) [35] French Adolescent
(2017) [34]

South African Child
(2019) [36]

Intervention Very Early ART Early ART Early ART

Age at ART initiation 30 h 3 months 2 months

Sex Female Female Male

Duration of
intervention 18 months 5.8–6.8 years 40 weeks

Age at remission
detection 23 months 18.6 years 9.5 years

Duration of remission 27.6 months >12 years 8.5 years

Biomarker profile:
HIV DNA

(Log10 copies per million
PBMCs)

Nondetectable
(<0.43)

Detectable
(2.2)

Detectable
(0.69)

HIV-1 Serostatus Seronegative Seropositive Indeterminate
Low level Viremia Undetectable Detectable Detectable
Inducible reservoir Not detectable Detectable Detectable

HIV subtype B H C

bNAbs target conserved regions of HIV-1 Env epitopes, regardless of genetic variations
within different HIV-1 subtypes leading to virus neutralization [108]. During the process
of neutralization, the antibodies and HIV-1 virions form antigen-antibody complexes that
promote immune clearance [109]. In one study of bNAb VRC01 in adults, 1 out of 14 adults
achieved the goal of remaining off ART after 24 weeks of interruption (NCT02664415) [110].
With monotherapy, baseline resistance and selection of resistance are major limitations to the
use of single bNAbs for ART-free remission and cure [111]. Hence, the use of dual or triple
bNAbs, including bispecific antibodies, is being actively investigated in adult populations.
Notably, a combination of two bNAbs, 3BNC117 and 10-1074, prolonged viral suppression
for 20 or more weeks in 76% of the participants (NCT03526848) [112]. In addition, vector-
based delivery of bNAbs via Adeno-Associated Virus (AAV) is being explored for long-term
production of bNAbs [113]. In a proof-of-concept clinical trial (NCT03374202), all 8 adult
participants were able to produce VRC07 with AAV delivery; 4 had stable concentrations
of VRC07 production for up to three years, which suggests that gene therapy treatments
may provide a long-term source of bNAbs [113,114]. Studies for use of bNAbs in HIV
prevention in HIV-1 exposed neonates are ongoing and so far have shown that VRC01 was
well tolerated and safe for use in this cohort (NCT02256631) [115]. The overall safety profile
of bNAbs make them highly attractive therapies for HIV-1 prevention, remission, and cure
for pediatric populations.

2.2. Interventions under Study to Achieve ART Free Remission and Cure
2.2.1. Epigenetic and Provirus Targeted Therapies

The main purpose of epigenetic and provirus targeted therapies is to either target
latent proviruses to express themselves through reversal of HIV-1 latency or to permanently
silence the provirus, which are referred to as “shock and kill” or “block and lock” strategies,
respectively [45]. Both strategies rely on understanding the establishment of HIV-1 latency.
The “shock and kill” strategy has been studied in adults living with HIV-1 [116]. With this
strategy, latency reversal agents (LRAs) can induce the latent provirus to become transcrip-
tionally active and possibly lead to virus production, thereby allowing cells harboring the
reservoir to be recognized and cleared by the immune system [116]. A comprehensive list
of the LRA candidates in clinical trials in humans is maintained by the Treatment Action
Group [86]. This list includes Vorinostat, Panobinostat and Romidepsin, which are histone
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deacetylase inhibitors (HDACi). No significant reductions in the reservoir size have been
observed in clinical trials despite evidence of induction of HIV-1 transcription in vivo. This
suggests that a combination of therapies will be required to eliminate the HIV-1 reser-
voir [45,116]. In a recent study, the eCLEAR study, it was shown that a combination of
Romidepsin with a broadly neutralizing antibody given at the time of ART initiation led to
a greater decrease in intact proviruses compared with ART only [117]. In general, the LRAs
studied so far have been shown to be well tolerated [118–120]. However, none of the clinical
trials based on the sixteen LRA candidates include children in the study population [86].
The HDACis have off-target effects, with activation of cellular RNA transcription of normal
cells, and have not been studied in pediatric populations [121]. Of note, not all latent
viruses can be induced and eliminated through this strategy; these uninduced reservoir
cells may still contribute to viral rebound after ART interruption [122].

“Shock and Kill” strategies have shown to be challenging in eliminating HIV-1 reser-
voir cells. Hence, research on the block-and-lock strategy is emerging [123]. Proteins such
as the Tat protein that are required for reactivation and do not have human homologs
are attractive targets for intervention [124]. Tat recruits and activates RNA Polymerase II
(RNAP II) for HIV-1 transcriptional elongation by recruiting a general RNAP II elongation
factor, P-TEFb, which consists of CDK9 and Cyclin T1 [125–127]. Both CDK9 and Cyclin
T1 are down-regulated during HIV-1 latency in primary resting memory CD4+ cells, and
yet are required for the reactivation of latent HIV-1 proviruses [128,129]. As Tat is critical
for the reversal of HIV-1 latency, studies are utilizing Tat inhibitors as an approach to
permanently silence HIV-1 proviruses [124]. Didehydro-Cortistatin A (dCA), a natural
steroidal alkaloid cortistatin A analog, is under investigation due to its Tat-suppressive
function [130]. However, there are currently no therapeutic agents available to target the
Tat protein.

2.2.2. Immune System Targeted Treatment

Latency reversal may also be manipulated with drugs targeting immune pathways
involved in the establishment and persistence of HIV-1 [116,123]. One such pathway is the
JAK-STAT pathway, which is activated in HIV-1 infected macrophages and lymphocytes
and is found to cause production of virions [131–134]. Two FDA-approved JAK-STAT in-
hibitors, Ruxolitinib and Tofacitinib, were found to be potent inhibitors of HIV-1 replication
and virus reactivation in vitro [135]. A clinical trial of Ruxolitinib in ART treated adults
(NCT02475655) showed that Ruxolitinib was well tolerated and associated with decreased
markers of immune activation, but with no effect on total HIV-1 DNA or cell-associated
HIV-1 RNA [136]. However, this medication is FDA-approved for use in individuals 9 years
of age and older with intermediate or high-risk myelofibrosis and may be suitable in older
children and youth living with perinatal HIV-1, if a decrease in the reservoir size is observed
with these medicines [136].

Another attractive pathway to perturb HIV-1 latency involves the heat shock response
(HSR) pathway which has multiple potential targets such as heat shock protein (HSP) 90,
HSP20, HSP27, and heat shock factor 1 (HSF-1) that can be investigated [137–139]. HSPs
are chaperone proteins that are involved in the production and folding of viral proteins to
stabilize them [139]. A study testing Thiostrepton (TSR), a proteasome inhibitor in HIV-
infected CD4+ T cell lines, revealed that the up-regulation of HSPs, which subsequently
activated p-TEFb and the NF-KappaB (NF-κB) pathway, resulted in the reactivation of
latent HIV-1 proviruses [140]. The effect of HSP90 on the reactivation of HIV-1 was further
confirmed using the JLAT cell line [141]. Owing to these characteristics, HSPs may serve as
targets for either “block-and-lock” or “shock-and-kill” strategies.

Novel pathways that are involved in HIV-1 persistence are still being uncovered,
including the mTOR (mammalian target of rapamycin) pathway which was first identified
as relevant to HIV-1 persistence by a genome-wide shRNA screen [142]. In vitro evidence
indicated that the inhibition of mTOR would result in suppression of latency reversal by
blocking the transcription of Tat and Tat-mediated-elongation of HIV-1 [142]. The use
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of mTOR inhibitors to promote the silencing of HIV-1 was further explored in a clinical
trial (NCT02429869) that utilized Everolimus in solid organ transplant recipients with
controlled HIV-1 infection. Everolimus is an mTOR inhibitor that is frequently used as an
immunosuppressant to prevent rejection of transplanted organs [143]. The study showed
that the effect of Everolimus on cell-associated HIV-1 DNA and RNA concentrations was
not evident across the cohort. However, in the participants who maintained trough levels
consistently >5 ng/mL during the first two months of the treatment showed trends of
decreasing cell-associated HIV-1 RNA concentrations even six months after cessation of
Everolimus therapy. The authors showed that Everolimus reduced PD-1 expression, which
might be an added benefit of the Everolimus therapy in HIV-1 infection. A few caveats to
note: there was no control group in the study and the participants were on more than one
immunosuppressive drugs that may have also impacted the observed results, implying the
need for additional studies of the effects of Everolimus on basal levels of HIV-1 transcription
and their implications for reservoir reduction [143].

HIV-1 evades the immune system by up-regulating the immune checkpoint ligand
PD-L1 on the surfaces of antigen-presenting cells [144,145]. The high expression of PD-1
supports an integral role in HIV-1 latency [146]. PD-1 blockade has been shown to promote
HIV-1 latency reversal in both in vitro and in vivo studies [146,147]. Hence, PD-1 and
PD-L1 inhibitors are being explored as therapeutic targets [148].

Latency reversal agents that are attractive for studies in pediatric populations but not
yet studied are Toll-like receptor (TLR) agonists. As described previously, the reactivation of
HIV-1 from latency involves the activation of the NF-κB pathway [140]. TLR signaling path-
ways are known to trigger the NF-κB pathway [149], making TLR agonists potential LRAs
with immune modulating function [150]. So far, agonists of TLR1/2 (in central memory
cells), TLR5 (in central memory CD4+ T cells), TLR7 (in vitro using ART-suppressive donor
cells), TLR9 (using CD4+ autologous cells) have all shown the ability to increase expression
of latent HIV-1 in CD4+ T cell models [151–154]. In a recent clinical trial, Vesatolimod, a
TLR-7 agonist, was reported to activate T cells and Natural Killer (NK) cells in adults on
ART, but no significant change in plasma HIV-1 RNA concentrations was observed when
compared to the placebo group (NCT02858401) [155]. In adult non-human primate models
(NHP) the combination of TLR7 agonist Vesatolimod and an Env-targeting bNAb, PGT121,
suppressed plasma viremia in 4 out of 8 animals after 24 weeks of ART discontinuation and
one animal rebounded initially but later re-suppressed, while all 7 animals in the placebo
group injected with saline rebounded after 17 weeks of ART interruption [156].

A recently described group of activators of the non-canonical NF-κB activation path-
way, namely the second mitochondrial-derived activator of caspases (SMAC) mimetics,
may also serve as potential LRAs [157]. SMAC mimetics activate the NF-κB pathway
by inhibiting an upstream inhibitor, the cellular inhibitor of apoptosis protein 1 (cIAP-1).
Activation of cIAP-1 represses the production of p52, a key component in the non-canonical
NF-κB pathway [158]. A study showed that AZD5582 a SMAC mimetic, efficiently reversed
latency in vivo in BLT humanized mice and also in adult rhesus macaques on continuous
ART [157]. The same group later indicated that CD8+ T cell depletion enhanced the latency
reversal effects of AZD5582, leading them to conclude that CD8+ T cells play a critical
role in maintaining Simian Immunodeficiency Virus (SIV) latency [159]. Moreover, they
showed that in infant rhesus macaques, the response pattern to AZD5582 differed, with
some non-canonical NF-κB proteins such as NFKB2 and RELB showing less upregulation
than in the adult NHP model [160]. These findings highlight the need for infant NHP
studies in parallel with adult NHP studies to examine differences between pediatric and
adult infections inducing HIV-1 reactivation [159].

Another area currently under investigation is the use of therapeutic vaccines to elimi-
nate reservoir cells and maintain reservoir control off ART. A clinical trial (NCT02997969) in
adults (18 to 40 years) showed that after participants received a clade C HIV DNA vaccine,
an increase in V1/V2 antibody concentration and an increase in CD4+ T cell response
to Env was observed [161]. In one study, transient decrease in HIV-1 reservoir size was
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seen with MVA and Fowlpox therapeutic immunizations in adolescents living with peri-
natal and non-perinatal infections [162–164]. A proof-of-concept clinical trial utilizing the
HIVIS DNA vaccine followed by MVA-CMDR along with Human Papilloma Virus vaccine
that contains a TLR-4 agonist in older children is completed and will examine effects of
this intervention on reservoir size. The results from this trial will provide information
on the use of therapeutic vaccines in perinatal HIV-1 infections to reduce reservoir size
(NCT04301154).

2.2.3. Gene Editing Based Treatment

Over the last decade, three cases of HIV-1 remission have been reported in patients
that received Hematopoietic stem cell transplantation (HSCT) from donor with the rare
CCR5 delta 32 mutation as a treatment for the malignancies developed while infected
with HIV-1 [51–53,56]. These unique cases of long-term remission give researchers hope
for eradication of HIV-1 using transplantation, but this approach remains challenging
due to graft vs host disease, and the rarity of the CCR5 delta 32 allele in the human
population [165]. Owing to these roadblocks, researchers are proposing to mimic the results
seen in the HSCT cases with gene editing.

There are various strategies available to enable gene editing such as RNA interfer-
ence (RNAi), Zinc finger nucleases (ZFNs), Transcription activator-like effector nucleases
(TALENs), base editing, and clustered regulatory interspaced short palindromic repeats
(CRISPR). ZFNs, CRISPR and TALENs rely on introducing double stranded breaks in the
DNA which are repaired by either non-homologous DNA end joining (NHEJ) or homology-
directed repair (HDR), which introduce indels and modify the function of the edited gene.
RNAi involves the use of small interfering RNAs (siRNA) and short hairpin RNAs (shRNA)
to bind to the viral transcripts and suppress translation [166]. Base editing uses proteins
that can help target deaminases such as cytosine and adenine deaminases to the target site
and modify the base without introducing double stranded breaks [167]. These strategies
have been used to edit HIV-1 genes in primary CD4+ T cells and are being investigated
for use in adults [86]. However, gene editing strategies need to be further evaluated for
tolerability, feasibility, accessibility, ethical use, and efficacy, as well as potential undesirable
outcomes such as off-target effects [166,167]. These factors need to be considered and more
research will be required before these therapies can be approved for use in HIV-1 infections
and subsequently adapted for use in pediatric HIV-1 infections.

In conclusion, the field of HIV-1 cure research is progressing with numerous potential
interventions to eliminate and control the latent reservoir that precludes cure. The most
promising strategies for pediatric populations include very early and early ART to reduce
HIV-1 reservoir size paving the way for immunotherapeutic control of viremic rebound.
The differences in the immune milieu and pathogenesis between pediatric and adult
populations need to be considered as interventions are adapted for use in children.

3. Assays to Measure the HIV-1 Reservoir

Many assays exist to measure the HIV-1 reservoir in CD4+ T cells, but there are
features that limit their broader use in clinical trials. It is therefore important to have
an assay or a suite of assays that can reliably quantify the reservoir before and after
treatment interventions to determine treatment efficacy. Assays that are ideal for the
pediatric population would not require large specimen volume, and specifically measure
the reservoir and not the predominant species of defective proviruses, characteristic of
HIV-1 infection [10,13,14,168]. Table 3 and Figure 2 summarize the various assays used to
measure the reservoir.
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Table 3. Different assays for reservoir measurement.

Assay Measure Advantages Disadvantages

Culture based assay

Quantitative Viral Outgrowth
Assay (qVOA)

[5,12,22,168–170]

Replication competent
infectious virus

Minimal estimate of the latent
reservoir, reproducible

Long turnaround time (21 days),
laborious, not all intact proviruses

are induced, large cell number
required, expensive

Tat-Rev Inducing Limiting
Dilution Assay (TILDA)

[14,171,172]

Transcriptionally
competent virus

Shorter turnaround time than
QVOA, no RNA extraction

required, sensitive,
reproducible, specific to HIV

Cannot differentiate between
transcripts from intact and

defective proviruses, not all intact
proviruses are induced

Molecular assay

Quantitative PCR (qPCR)
[10,168,170,173,174]

Total HIV-1 proviral
DNA

Low volume required, cost
effective, short turnaround

time, high throughput

Overestimates size of reservoir,
cannot differentiate between intact
vs defective and integrated vs non-

integrated forms, relative
quantification via standard curves

Alu PCR
[173,175–177]

Total integrated HIV-1
proviral DNA

Can differentiate between
integrated and non-integrated

forms, cost effective, short
turnaround time, high

throughput

Overestimates size of reservoir,
cannot differentiate between intact
vs defective, relative quantification

via standard curves

Droplet digital PCR (ddPCR)
[14,170,178]

Total HIV-1 proviral
DNA

Low volume required, high
sensitivity, high throughput,
short turnaround time, cost

effective, more accurate than
qPCR due to absolute

quantification

Overestimates size of reservoir,
cannot differentiate between intact
vs defective and integrated vs non-

integrated forms

Intact proviral DNA assay
(IPDA)

[14,179,180]

Intact and defective
proviruses

Low volume required, high
sensitivity, high throughput,
short turnaround time, cost
effective, can differentiate

between intact, 5′ defective, 3′

defective and hypermutated

Overestimates size of the reservoir,
cannot differentiate between

integrated vs non-integrated forms,
subtype B specific

Quadraplex quantitative PCR
(Q4PCR)
[181–183]

Intact and defective
proviruses

Provides information on
genetic intactness of provirus,

low volume required,
sensitive, can differentiate

between intact and defective
proviruses, high throughput

compared to conventional
near full- length genome

sequencing

Cannot differentiate between
integrated vs non-integrated forms,
subtype B specific, relies on initial

long-distance PCR so not
quantitative as a standalone assay,

low throughput, expensive

5 Target-Intact Proviral DNA
Assay

(5T-IPDA)
[184]

Intact and defective
proviruses

Low volume required, high
sensitivity, high throughput,
short turnaround time, cost
effective, can differentiate

between intact and defective
proviruses

Overestimates size of reservoir,
cannot differentiate between

integrated vs non-integrated forms,
complex analysis, require 2 sets of

controls, subtype B specific

Cross Subtype-IPDA
(CS-IPDA)

[185]

Intact and defective
proviruses

Similar to 5T-IPDA and can
work across different subtypes

A, B, C, D, CRF_01
Similar to 5T-IPDA
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Table 3. Cont.

Assay Measure Advantages Disadvantages

Proviral Landscape Analysis

Near full-length individual
proviral sequencing (FLIP-seq)

[11,76,183,186]

Intact and defective
proviruses

Provides information on genetic
intactness of provirus

Low throughput, expensive, complex,
time consuming, cannot amplify intact

proviruses at the same frequency as
defective proviruses due to inefficiency

of the initial long-distance PCR

Matched integration site and
proviral sequencing (MIP-seq))

[85,183,187]

Intact and defective
proviruses;

integration site of
proviruses

Provides information on
integration site and clonal

expansion, genetic intactness of
provirus

Similar to FLIP-seq

Parallel HIV-1 RNA, integration
site and proviral sequencing

(PRIP-seq)
[188]

Intact and defective
proviruses, integration site

and transcriptional
competence of provirus

Provides information on the
genetic intactness, integration site,

clonality and transcriptional
competence of a provirus

Similar to FLIP-seq

1 

Figure 2. Assays used to measure the HIV-1 reservoir. HIV enters the cell nucleus and forms the
proviral reservoir by inserting the cDNA of its genome into the host genome. The proviral reservoir is
complex and made of several different species which can be measured using different assays that fall
under two categories: Tissue culture-based assays and Molecular assays. Tissue culture-based assays
(on the left) can measure the transcriptional competence of the provirus (TILDA) or the replication
competence and infectivity of the provirus (QVOA). Molecular assays (on the right) can provide the
total concentration of infected cells (single-plex ddPCR) or differentiate between intact and defective
proviruses (multi-plex ddPCR). Molecular assays can also be used to study the dynamics of the
proviral landscape using near full-length PCR and next generation sequencing technology. All of
these assays provide key information about the reservoir dynamics and can be useful in developing
and measuring the efficacy of cure interventions. (Figure created with BioRender.com).
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3.1. Classical Assays for HIV-1 Reservoir Measurement
3.1.1. Culture Based Assays
Quantitative Viral Outgrowth Assay

The quantitative viral outgrowth assay (QVOA) was the first assay used to identify
the latent reservoir for HIV-1 in resting memory CD4+ T cells in PLWH [5,6,8,33,169].
QVOA was used to demonstrate the incurable feature of HIV-1 and the need for lifelong
ART [5,7] and is considered to be the gold standard for measuring the induced, infectious
latent reservoir [12]. Briefly, purified resting CD4+ T cells are stimulated ex vivo in lim-
iting dilution with mitogens in the presence of irradiated feeders and activated CD4+ T
cell lymphoblasts for 14–21 days to quantify the frequency of intact induced infectious
proviruses. Infectious virus is detected in the culture supernatant using an Enzyme Linked
Immunosorbent Assay (ELISA) for the capsid protein p24, and the size of the latent reser-
voir is measured in infectious units per million (IUPM) using Poisson distribution [5,169].
In perinatal infection, ART initiated during chronic infection at a median of 8 years of age
the size of the reservoir was found to be similar to adults at approximately 1.0 IUPM [33].
However, when ART is initiated in infancy and virologic suppression is sustained through
early adolescence, the reservoir becomes smaller over time, and often at frequencies con-
sistently undetectable at <0.1 IUPM [33,93,163,189]. The QVOA is challenging for use in
clinical trials aimed at cure interventions, due to its complexity, cost, large blood volume
requirement (180 mL in adults; 3–5 mL in infants and 15–50 mL in older children and
adolescents) and labor-intensive nature. However, it still remains a prime minimal esti-
mate assay for studying the replication-competent latent reservoir in PLWH, including
children [12,22,33,93,163,168,170,190–193].

Tat/Rev Induced Limiting Dilution Assay

The Tat/Rev induced limiting dilution assay (TILDA) was developed to circumvent
the complexity and large blood volume required for QVOA, and as a way to measure
instead, the frequency of transcriptionally competent proviruses [171]. In the TILDA,
1–2 million total CD4+ T cells prepared in limiting dilution are stimulated with PMA and
ionomycin for 12 h, followed by a nested reverse transcriptase quantitative polymerase
chain reaction (RT-qPCR) for the multiply spliced HIV-1 RNA Tat/Rev transcripts. In
comparing the frequency of latently infected CD4+ T cells between TILDA, and QVOA
it was noted that the TILDA gave 48-fold higher values than QVOA in adult infections.
Notably, the standard TILDA does not maximally detect the inducible reservoir in perinatal
compared with adult infections, which can be overcome with the Enhanced TILDA that uses
a combination stimulation approach with PMA, ionomycin and PHA and incubation for
18 h instead of 12 h [171,172]. The TILDA is less labor-intensive and less costly than QVOA;
and is more discriminating by providing information on transcriptional competence of
HIV-1 proviruses persisting under ART. The lower CD4+ cell requirement makes the TILDA
feasible for application in clinical trials that will evaluate the effects of cure strategies on
the transcriptionally competent latent reservoir with the caveat that that HIV-1 subtype
specific primers are required [14].

3.2. Molecular Assays
3.2.1. Quantitative PCR

The complexity and labor-intensive nature of the QVOA made it necessary to develop
simpler assays to study the size of the HIV-1 reservoir. Among them was adaptation of
quantitative PCR (qPCR) to measure HIV-1 DNA [168]. The qPCR is based on amplification
of short amplicons in the conserved regions of HIV-1 genes such as pol or gag [173]. The re-
sults are interpreted by generating a standard curve from plasmid controls and calculating
the relative quantities of HIV-1 DNA copies [168,170,174]. Due to the small amplicon size,
PCR assays are sensitive, but single amplicon-based PCRs cannot differentiate between in-
tact and defective proviruses, and therefore are an imprecise measure of reservoir size, since
the latter dominate the proviral landscape [194]. Intact HIV-1 proviral genomes lack fatal
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small and large deletions, insertions, premature stop codons or hypermutations [13,179]
while defective HIV-1 proviral genomes are not capable of producing infectious virions
due to large deletions spanning one or more regions of the genome, insertions, frameshift
mutations, hypermutations mediated by APOBEC3G/F, and mutations that affect viral
fitness [194,195].

Additionally, these assays also quantify non-integrated HIV-1 present as 2LTR circles,
which in perinatal infection, are present in high concentrations in the first two years of
treatment in infancy [189], further leading to overestimates of reservoir size. Importantly,
however, single amplicon-based HIV-1 DNA PCR assays provide a near maximal estimate
of the frequency of HIV-1infected cells [10,168] and have been used extensively to study
the decay of cell-associated DNA in both adult and perinatal infections and over long-term
ART [34–36,69,95,98–100,103,192,196–200]. qPCR methods are hindered by the need for
plasmid controls from which the HIV-1 DNA load is derived, which introduces variability
across laboratories [168]. In addition, the number of cells analyzed is calculated from
amount of DNA added to the reaction.

3.2.2. Alu PCR

To counter the inability of standard PCRs to differentiate between integrated and
non-integrated forms, a different type of qPCR was developed which makes use of the Alu
regions found in the human genome and targets GAG-LTR from HIV-1 to help specifically
detect integrated HIV-1 DNA [176,177]. Similar to a qPCR, a standard curve is required for
quantification of results which can be inefficient as not all Alu sequences will be in close
proximity to the HIV-1 genome causing errors in detection. Therefore, there is need for a
correction factor to account for this issue [173,175]. Alu-PCR is less studied in perinatal
infections [95,103].

3.2.3. Single-Plex Droplet Digital PCR

Droplet digital PCR (ddPCR) has revolutionized HIV-1 DNA quantitation as it permits
an absolute quantification of HIV-1 provirus without the need for standard curves [178].
ddPCR uses droplets in oil emulsion to form thousands of nano-sized droplets such that
each droplet is its own PCR reaction, giving a more precise quantitative signal. The ddPCR
targets conserved regions in the 5′ LTR and either gag or pol in the HIV-1 genome. Upon
comparison with QVOA, it was found that in adults the frequency of infected cells detected
by ddPCR was 300-fold higher than the size of latent reservoir measured by QVOA [170],
highlighting the preponderance of defective HIV-1 proviruses persisting on ART. One of
the advantages of ddPCR over qPCR is that the number of cells analyzed can be easily
determined via a PCR reaction that targets the housekeeping gene RNase P30 (RPP30)
which is run alongside the HIV-1 specific PCR [178]. Initiation of ART early in perinatal
infections has proven to be beneficial in lowering the proviral loads. However, sometimes
the proviral loads are very low and need a more sensitive method than qPCR to detect
1–2 copies/million cells [45,47,201]. The ddPCR allows this for this quantification due to
its high resolution and sensitivity across HIV-1 subtypes, which are critically important for
cure studies underway in perinatal infections [70,91–93,96,101,189,190,202].

3.3. Recently Developed Assays for Reservoir Measurement
3.3.1. Molecular Assays
Intact Proviral DNA Assay

The intact proviral DNA assay (IPDA) is a multi-plex ddPCR assay designed to
quantify the latent reservoir. In the IPDA, two regions of the HIV-1 genome are targeted:
the packaging sequence (psi, Ψ) upstream of the gag and the Rev Response Element (RRE)
in the env gene. These two regions were chosen based on near full-length genome sequence
(nFGS) analyses and bioinformatics where it was shown that any deletions in these regions
indicate a high probability that the HIV-1 genome is defective. The IPDA also includes a
double quencher probe for hypermutations near the env region (most variable region) [179].
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A strong correlation between the size of the reservoir measured by QVOA and intact
proviral copies per million cells as inferred by the IPDA was found, suggesting that this
molecular assay provides a good estimate of the latent reservoir size [203]. Measurement
of proviral load in perinatal infections using single-plex ddPCR or qPCR so far have been
beneficial in providing the near total concentration of HIV-1 which is important [70,91,196].
However, to develop and assess cure interventions for the pediatric population dissection
of the reservoir dynamics is imperative. The IPDA is able to achieve this due to its ability
to differentiate between intact and defective proviruses and its requirement for low blood
volume. Hence it serves as an important tool for studying the reservoir in pediatric
infections where collection of large blood volumes may not always be feasible. However,
the use of short amplicons in IPDA to determine the integrity of the genome can lead to
over-estimation of the number of intact proviruses if the defects in the genome do not
overlap the regions covered by the primers. The IPDA described here is only validated for
HIV-1 subtype B, thereby limiting its use for study in non-subtype B HIV-1 infection.

Cross Subtype Intact Proviral DNA Assay

Recently, a modified version of the conventional 2-target IPDA was developed and
subsequently adapted for multiple HIV-1 subtypes. The modified version of the IPDA
targets five regions (5T) in the HIV-1 genome namely, 5′ end of pol, tat, 3′ end of pol, gag
and env regions. A special feature of this assay includes also determining the number of
T cells analyzed via a third PCR reaction (as a part of the RPP30 PCRs) that detects the
region of the T-cell receptor (TCR), which is deleted in mature thymocytes (delta D) [184].
The 5T-IPDA was optimized for subtype B. However, the highest disease burden is in
Africa where subtype B is not the predominate subtype. Subtype differences may lead
to differences in sequences and regions that are predictive of intactness of the genome.
Therefore, developing an IPDA that can be used for several subtypes can circumvent
this problem. The 5T-IPDA served as a springboard for the development of the cross-
subtype IPDA which targets only the 3′ pol, gag and env regions. The cross-subtype PCR
is reported to differentiate intact and defective genomes in participants with living with
HIV-1 subtypes A, B, C, D and CRF_01 [185], a critical advance for the field, if validated
bioinformatically as was done by the group that developed the conventional 2-target
IPDA [179]. The cross subtype IPDA was recently examined in Kenyan infants with HIV-1
Subtype A infection [185].

3.4. Flow Cytometry
HIV-1 Flow

HIV-1 flow is a recently developed technique that involves stimulation of cells with
PMA and Ionomycin followed by flow cytometry to determine the translational competency
of HIV-1- infected cells and their immunophenotype [204]. In HIV-1 Flow, isolated and
stimulated CD4+ T cells are labeled with two anti-p24 antibodies to detect cells infected
with translationally competent HIV-1. The cells are also labelled with a series of cell surface
marker antibodies to determine CD4+ T cell subsets, activation, and exhaustion [204]. The
combination of antibodies in HIV-1 flow allows for simultaneous probing of cells that
are positive for p24 and their phenotype making it a potentially useful tool to study the
reservoir and especially in pediatric populations where blood volume is limited.

3.5. Proviral Landscape Analysis
3.5.1. Near Full-Length Individual Proviral Sequencing

Sequencing approaches are extremely helpful in characterizing the reservoir of HIV-1
since they can help differentiate between defective and intact proviruses, provide infor-
mation about clonal expansion, integration sites, HIV-1 diversity, and immune escape,
allowing for assessment of the efficacy of immunotherapeutic interventions. Near full-
length individual proviral sequencing (FLIP-seq) involves the amplification of the provirus
using an outer PCR with HIV-1 specific primers to generate near full-length HIV-1 followed
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by nested PCRs, either as a near full-length inner 9 kb product or in segments as subge-
nomic regions and next generation sequencing (NGS) is performed, and the sequences
generated are assembled to yield the proviral landscape [11,194,195,205]. The FLIP-seq
can determine whether a provirus is genetically intact or defective and the locations of
the defects contained by the provirus, along with hypermutation, and assessment of the
contribution of clonal expansion to reservoir maintenance [11,76,186]. Near full-length
sequencing has been used in perinatal infections showing paucity of intact proviruses over
long-term early ART in perinatal infections [93,97] and more recently preferential deletion
of intact proviruses with very early ART of neonates [202]. However, as the FLIP-seq assay
depends on an initial outer 9 kb long distance PCR, it can underestimate the amount of
intact provirus due to the inefficiency of the outer 9 kb PCR which needs to be considered
when using sequencing approaches for quantitative analyses of reservoir size [183].

3.5.2. Quadruplex Quantitative PCR

The quadruplex quantitative PCR assay also known as Q4PCR, was developed using
in-silico analysis of hundreds of proviral sequences from the Los Alamos Database. It
consists of performing a limiting dilution of HIV-1 DNA on which a gag specific qPCR
is performed to determine limiting dilution, followed by a near full-length outer PCR.
The products of the outer PCR are then subjected to a multi-plex qPCR reaction where
four regions of the HIV-1 genome: env, pol, psi (Ψ) and gag are interrogated [182]. The
nested inner PCR followed by next generation sequencing are only done on samples
that show a positive qPCR reaction for two or more regions of the HIV-1 genome. This
approach of sequence verification increases the probability of the assay to detect truly intact
proviruses by eliminating the proviruses that are classified as intact in the qPCR but may
have defects in the regions not overlapping the primers [181]. The Q4PCR allows for a less
sequence-intensive approach, and therefore less costly approach to distinguish intact and
defective proviruses.

3.5.3. Matched Integration Site Analysis and Proviral Sequencing

Matched Integration site analysis and proviral sequencing (MIP-seq) is newer tech-
nique that involves amplifying the proviruses using multiple displacement amplification
(MDA) at a single genome level followed by NGS to allow for integration site analysis at the
single provirus level and their linkages. MIP-seq therefore provides information about the
intactness of the provirus as well as its chromosomal integration site [85,187]. Sequencing
techniques are able to characterize the full proviral landscape, including integration sites,
sequence intact proviruses and are complement to the cruder and more feasible assays such
as IPDA to characterize the reservoir [179].

3.5.4. Parallel HIV-1 RNA, Integration Site and Proviral Sequencing

The parallel HIV-1 RNA, integration site, and proviral sequencing (PRIP-seq) assay is a
modification of the FLIP-SEQ and MIP-SEQ assays. The PRIP-seq has multiple components,
in addition to providing sequence intactness of a provirus (FLIP-seq) and its integration
site data (MIP-seq), it is also able to study the transcriptional competence of the provirus
in parallel. Therefore, at the proviral level, one can investigate how the integration site,
proviral sequence and translational competence intermix and play a role in the stability of
proviral reservoir cells [188].

4. Conclusions

In summary, the field of HIV-1 cure therapeutics is rapidly evolving for both pediatric
and adult populations living with HIV-1, and for which the testing landscape is advancing.
In current clinical trials involving the pediatric population, plasma HIV-1 RNA is the
biomarker for viral suppression and HIV-1 DNA is the biomarker used to determine size of
the reservoir, using RT-qPCR, qPCR and ddPCR assays. The qPCR and ddPCR quantify
the near maximal number of infected cells giving a total HIV-1 DNA readout and have
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been thoroughly validated across multiple HIV-1 subtypes in past clinical trials and have
shown to be highly sensitive in cases where the HIV-1 proviral load was exceedingly small.
Further validation of assays such as the IPDA and TILDA will improve our understanding
of the intact and inducible reservoir in perinatal HIV-1 infections. Altogether, each reservoir
measurement approach will enhance our understanding of HIV-1 persistence and its
relevance to HIV-1 cure research and its therapeutics, particularly for immunotherapeutics.
Special considerations are needed for clinical trial endpoints for the pediatric population
where blood volume is limited and where therapies can lead to very low infected cell
frequencies that are still largely dominated by defective proviruses, and yet not signifying
HIV-1 remission or cure.
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