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Abstract: Prions are infectious proteins, mostly having a self-propagating amyloid (filamentous
protein polymer) structure consisting of an abnormal form of a normally soluble protein. These prions
arise spontaneously in the cell without known reason, and their effects were generally considered to
be fatal based on prion diseases in humans or mammals. However, the wide array of prion studies in
yeast including filamentous fungi revealed that their effects can range widely, from lethal to very
mild (even cryptic) or functional, depending on the nature of the prion protein and the specific prion
variant (or strain) made by the same prion protein but with a different conformation. This prion
biology is affected by an array of molecular chaperone systems, such as Hsp40, Hsp70, Hsp104, and
combinations of them. In parallel with the systems required for prion propagation, yeast has multiple
anti-prion systems, constantly working in the normal cell without overproduction of or a deficiency
in any protein, which have negative effects on prions by blocking their formation, curing many
prions after they arise, preventing prion infections, and reducing the cytotoxicity produced by prions.
From the protectors of nascent polypeptides (Ssb1/2p, Zuo1p, and Ssz1p) to the protein sequesterase
(Btn2p), the disaggregator (Hsp104), and the mysterious Cur1p, normal levels of each can cure the
prion variants arising in its absence. The controllers of mRNA quality, nonsense-mediated mRNA
decay proteins (Upf1, 2, 3), can cure newly formed prion variants by association with a prion-forming
protein. The regulator of the inositol pyrophosphate metabolic pathway (Siw14p) cures certain
prion variants by lowering the levels of certain organic compounds. Some of these proteins have
other cellular functions (e.g., Btn2), while others produce an anti-prion effect through their primary
role in the normal cell (e.g., ribosomal chaperones). Thus, these anti-prion actions are the innate
defense strategy against prions. Here, we outline the anti-prion systems in yeast that produce innate
immunity to prions by a multi-layered operation targeting each step of prion development.

Keywords: yeast; prion; amyloid; anti-prion system

1. What Are Prions?

Prions are infectious agents, like other pathogenic agents such as fungi, bacteria, and
viruses. The characteristic most distinguishing prions from other infectious agents is that
they are ‘proteinaceous’, consisting of proteins exclusively and without the requirement of
any accompanying nucleic acid [1,2]. Proteins, like other biochemical molecules, can exist
in different states, even abnormal forms, from misfolded monomers to amorphous aggre-
gates and amyloids (which are not amorphous). Most known prions are self-propagating
amyloids (filamentous β-sheet-rich polymers) of normally soluble proteins, except for the
non-amyloid prions [BETA] and [SMAUG+] of yeast [3–9]. These transmissible (infec-
tious) self-propagating amyloids are biochemically very stable (resistant to UV light, heat,
and protease), non-chromosomally inherited, and sometimes can cause cytotoxicity to the
cell [10–14].

The first emergence of what are now known to be prion diseases cannot be determined
clearly. There are several records about scrapie in sheep in the mid-18th century [15], long
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before the word ‘prion’ was suggested by Prusiner [1]. These descriptions of sheep and goat
disease seem to be the same in clinical appearance as modern scrapie. The Chinese character
痒 , meaning pruritis, was even suggested to be evidence of scrapie (which also refers to
sheep pruritis) in ancient times because this character is composed of disease (
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The first emergence of what are now known to be prion diseases cannot be deter-
mined clearly. There are several records about scrapie in sheep in the mid-18th century 
[15], long before the word ‘prion’ was suggested by Prusiner [1]. These descriptions of 
sheep and goat disease seem to be the same in clinical appearance as modern scrapie. The 
Chinese character 痒, meaning pruritis, was even suggested to be evidence of scrapie 
(which also refers to sheep pruritis) in ancient times because this character is composed 
of disease (疒) and sheep (羊) [16]. The initial evidence of an infectious protein was the 
extreme UV resistance of the scrapie agent [11,17]. The transmissible spongiform enceph-
alopathies (human Creutzfeldt–Jakob disease (CJD) and scrapie) were first connected with 
the normal cell surface protein PrP when PrP was found to be essentially the only protein 
in purified infectious material from infected animals [18,19]. We now know a great deal 
about these diseases. In addition, many of the human-amyloid-based neurodegenerative 
diseases, such as Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral scle-
rosis (ALS), and type II (late-onset) diabetes, share common aspects with the PrP-related 
prion diseases [20–22]. 

The discovery of prions in Saccharomyces cerevisiae and studies about them have also 
led to an acceleration of our understanding of those diseases [2,23–25]. Although our 
knowledge of prions and prion diseases has increased since the mid-18th century, it is 
difficult to answer the question of the evolutionary origin of prions or prion diseases. The 
answer is likely that there is always a chance of prions or prion diseases appearing while 
proteins are being synthesized from ribosomes, even during ancient times, since appar-
ently most proteins are capable of forming amyloid structures under some conditions [26]. 

2. What Do Prions Do in the Host? 
The [URE3] [2] and [PSI+] [27] prions arise spontaneously at a low frequency/rate (~1 

per 106 cells) in S. cerevisiae. The frequency of a prion arising increases on overproduction 
of the prion protein [2] and in the presence of [PIN+] (for [PSI+] inducibility, [PIN+] can 
cross-seed [PSI+]), the prion of Rnq1p [28,29]. These prions, spontaneously obtained and 
induced, generally have the same features, both biologically and biochemically, although 
their proportions can vary. Various cellular conditions, including the absence or overpro-
duction of a particular cellular protein [30,31] and special features of the prion do-
main/protein [32–38] (e.g., high content of specific amino acids or the minimum length of 
the prion protein sequence for prion generation), affect the frequency of prion formation. 
However, unlike prion propagation, which is understood in principle, it remains unclear 
how the normal prion protein is converted to the prion form, thus generating a new prion. 

After the still-mysterious alteration of the prion protein to initiate the prion, the nor-
mal protein molecules undergo the same structural alteration by a templating mechanism 
of prion protein conformation. The templating mechanism was suggested by the results 
of studies on the amyloid structure using solid-state nuclear magnetic resonance (NMR) 
analysis and mass-per-length determination of filaments of the prion domains (the amy-
loid-forming part of the prion protein) from prion proteins Sup35p, Ure2p, and Rnq1p 
[39–45]. 

The common architecture of three different yeast prion amyloids (a folded, in-regis-
ter, parallel β-sheet) suggested a mechanism of transferring the conformational infor-
mation (the same location of folds by interactions of identical side chains) from molecules 
in the amyloid to molecules newly joining the amyloid for the elongation of the filament 
[33,34,44,46–48]. In this sense, the protein molecules can template their own conformation 
and drive the joining of new monomers to the ends of the filaments, just like DNA tem-
plates its own sequence [35,49]. The architecture also enables us to explain more about the 
different prion variants (strains), formed from the same given sequence of prion proteins, 
in terms of the intensity of their prion phenotype (e.g., strong or weak, stable or unstable). 
These different variants have different conformations (turns/folds at different locations in 
the protein sequence), but each variant can propagate its own unique folding pattern [46–

) and sheep
(羊 ) [16]. The initial evidence of an infectious protein was the extreme UV resistance of the
scrapie agent [11,17]. The transmissible spongiform encephalopathies (human Creutzfeldt–
Jakob disease (CJD) and scrapie) were first connected with the normal cell surface protein PrP
when PrP was found to be essentially the only protein in purified infectious material from
infected animals [18,19]. We now know a great deal about these diseases. In addition, many
of the human-amyloid-based neurodegenerative diseases, such as Alzheimer’s disease (AD),
Parkinson’s disease, amyotrophic lateral sclerosis (ALS), and type II (late-onset) diabetes,
share common aspects with the PrP-related prion diseases [20–22].

The discovery of prions in Saccharomyces cerevisiae and studies about them have also
led to an acceleration of our understanding of those diseases [2,23–25]. Although our
knowledge of prions and prion diseases has increased since the mid-18th century, it is
difficult to answer the question of the evolutionary origin of prions or prion diseases. The
answer is likely that there is always a chance of prions or prion diseases appearing while
proteins are being synthesized from ribosomes, even during ancient times, since apparently
most proteins are capable of forming amyloid structures under some conditions [26].

2. What Do Prions Do in the Host?

The [URE3] [2] and [PSI+] [27] prions arise spontaneously at a low frequency/rate
(~1 per 106 cells) in S. cerevisiae. The frequency of a prion arising increases on overproduc-
tion of the prion protein [2] and in the presence of [PIN+] (for [PSI+] inducibility, [PIN+]
can cross-seed [PSI+]), the prion of Rnq1p [28,29]. These prions, spontaneously obtained
and induced, generally have the same features, both biologically and biochemically, al-
though their proportions can vary. Various cellular conditions, including the absence or
overproduction of a particular cellular protein [30,31] and special features of the prion
domain/protein [32–38] (e.g., high content of specific amino acids or the minimum length
of the prion protein sequence for prion generation), affect the frequency of prion formation.
However, unlike prion propagation, which is understood in principle, it remains unclear
how the normal prion protein is converted to the prion form, thus generating a new prion.

After the still-mysterious alteration of the prion protein to initiate the prion, the normal
protein molecules undergo the same structural alteration by a templating mechanism of
prion protein conformation. The templating mechanism was suggested by the results
of studies on the amyloid structure using solid-state nuclear magnetic resonance (NMR)
analysis and mass-per-length determination of filaments of the prion domains (the amyloid-
forming part of the prion protein) from prion proteins Sup35p, Ure2p, and Rnq1p [39–45].

The common architecture of three different yeast prion amyloids (a folded, in-register,
parallel β-sheet) suggested a mechanism of transferring the conformational information (the
same location of folds by interactions of identical side chains) from molecules in the amyloid
to molecules newly joining the amyloid for the elongation of the filament [33,34,44,46–48].
In this sense, the protein molecules can template their own conformation and drive the
joining of new monomers to the ends of the filaments, just like DNA templates its own
sequence [35,49]. The architecture also enables us to explain more about the different prion
variants (strains), formed from the same given sequence of prion proteins, in terms of
the intensity of their prion phenotype (e.g., strong or weak, stable or unstable). These
different variants have different conformations (turns/folds at different locations in the
protein sequence), but each variant can propagate its own unique folding pattern [46–48].
The architecture of the prion amyloid also supports the extraordinary trait of a prion as
a non-chromosomal genetic element that is cytoplasmically inherited (extra-nuclear or
extra-chromosomal inheritance). The yeast prions [PSI+] and [URE3] were first reported as
unusual genetic elements based on classical yeast genetics experiments showing 4 prion:0
prion-free segregation in meiosis [9,11] that were later discovered to be prions based on
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three genetic criteria [2]. The first is that curing a virus or plasmid is irreversible as long as
it does not re-infect the cured cells. A prion may be cured by some treatment, but it should
arise again in the cured cells at a low frequency because the normal form of the protein is
still there. The second is that overexpression of the normal form of the prion protein should
increase the frequency at which the prion arises. The third is that the prion form will likely
not function like the normal form, so prion-carrying cells should have a phenotype that
is similar to recessive mutants in the gene for the prion protein [2]. Note that the normal
function of Rnq1p, which forms the [PIN+] prion [28,29,50], is not yet known, so one cannot
tell whether the third criterion is satisfied in this case.

Thus, this phenotype similarity between the prion and recessive mutants in a gene
required for propagation of the prion (the prion protein gene) is evidence that the non-
chromosomal genetic elements are prions [2].

3. How Does the Host Cell Deal with Prions?

Although they can infect from the outside, prions are also an inside-the-cell risk unlike
other infectious agents, such as fungi, bacteria, and viruses, which must come from the
outside. The yeast host has evolved active protection systems against this threat from the
inside: prion generation and prion propagation [25]. Although artificial overproduction of
or a deficiency in a certain cellular component may cause the loss of a prion, several systems
have been discovered that, at their normal expression levels, without overproduction of
or a deficiency in any component, deal with prions by blocking their generation and even
by inhibiting their propagation after they arise. These have been referred to as “anti-prion
systems” [25] (Table 1).

Table 1. Anti-prion systems and components in yeast.

Protein Target Prion Mechanism Reference

Btn2p [URE3]
Prion curing by
sequestration of amyloid
filaments

[51,52]

Cur1p [URE3] Prion curing with
unknown mechanisms [51,52]

Hsp104 [PSI+] Blocking generation and
propagation [53,54]

Siw14p [PSI+]
Prion curing by the
regulation of inositol
poly/pyrophosphates

[55]

Upf1, 2, 3p [PSI+] Prion curing by complex
formation with Sup35p [56]

Ssb1/2p, Zuo1p, Ssz1p [PSI+]

Prion curing by the
protection of
polypeptides from
misfolding

[57]

Prion protein
polymorphisms [PSI+]

Intraspecies barrier to
prion transmission by
prion protein sequence
differences

[58]

Sis1p [PSI+]
Reducing a prion’s
toxicity by helping Sup35
solubility

[59,60]

Lug1p [URE3]

Reduction in a prion’s
toxicity due to a
functional defect of
Ure2p in [URE3] cells.

[61]



Viruses 2022, 14, 1945 4 of 11

3.1. Btn2p and Cur1p Act on the [URE3] Prion

Btn2p and its paralog Cur1p were first reported to cure [URE3] in a screen for proteins
whose overproduction can cure the prion [51]. While the curing is happening, Btn2p was
localized to one specific place in the cell with all the of Ure2 amyloid filaments, and this
suggested that the progeny cells without prion filaments ([URE3] prion curing) resulted
from the sequestration of filaments by Btn2p [51]. This curing by overproduction of
Btn2p or Cur1p was found to require Hsp42, a small chaperone known to collect cellular
aggregates [52]. Btn2p was also reported to cure an artificial prion and transfers some
non-prion aggregates to a specific site in cells [62–64].

To test whether Btn2p and Cur1p were actively working in normal cells, [URE3] prions
were isolated in btn2∆cur1∆ cells. While prion generation was increased by about 5-fold,
>90% of [URE3] variants isolated in the double mutant had a relatively smaller prion seed
(propagon) number and could be cured by reintroduction of either BTN2 or CUR1 [52]. The
[URE3] variants arising in btn2∆cur1∆ cells can be eliminated by normal expression levels
of Btn2p or Cur1p, indicating that the [URE3] prion arises frequently in wild-type (WT)
cells but is usually curable by normal levels of Btn2p and Cur1p [52]. These findings set
the pattern that we used in searching for other “anti-prion systems” that constantly block
prion generation and inhibit their propagation in normal cells.

3.2. Hsp104 at the Normal Level Acting on the [PSI+] Prion

Hsp104 is a specific disaggregating chaperone that works with Hsp70s and Hsp40s to
tweeze monomers from a protein aggregate, allowing the molecule a second chance at the
correct folding through the action of Hsp70s [65,66]. This tweezing activity, by breaking the
amyloid filaments into pieces, is essential for the propagation of the amyloid-based prions in
yeast [53,67–70]. However, overproduction of Hsp104 cures [PSI+] efficiently [53]. Although
many outstanding studies have been conducted to investigate the curing mechanism by
Hsp104 overproduction, there still remains controversy. The proposed mechanisms include
(1) solubilizing the filaments by the extraction of monomers from the filament ends [71],
(2) an asymmetrical distribution (segregation) of amyloid filaments between daughter
cells [72], and (3) inhibiting other chaperones’ accessibility to the filaments by Hsp104’s
occupation of an amyloid cleavage site [73,74].

Deletion or mutation of the N-terminal domain, hsp104∆N or hsp104T160M, eliminates
the overproduction-mediated [PSI+] curing ability of Hsp104 without affecting its prion-
propagation-supporting activity [67]. This finding indicated that the two activities of
Hsp104, prion curing and propagation, were distinct, and thus enabled investigation of
whether Hsp104, at its normal level, has an “anti-prion system” effect (concept described
above) on the [PSI+] prion. In hsp104T160M cells, the frequency of the spontaneous appear-
ance of [PSI+] was elevated by approximately 13-fold, and about half of the [PSI+] variants
isolated in the mutants were destabilized in cells with the HSP104 WT allele but not in
hsp104T160M cells (stably maintained) [54]. This finding indicated that many [PSI+] variants
arising in an hsp104T160M host can propagate in the mutant background but not in the pres-
ence of Hsp104 curing activity from WT Hsp104. However, not all of the 13-fold increase in
the frequency of [PSI+] is accounted for by the variants that are destabilized in the wild
type. The mutation also increased the generation of [PSI+]s that are not hypersensitive to
Hsp104 (such as the [PSI+] variants that are usually studied) [54]. This shows that Hsp104
is involved in prion generation as well as prion propagation.

3.3. Inositol Polyphosphates Acting on [PSI+] Prion Propagation

A yeast-genetics-based screen was conducted to find anti-prion components that
can block the generation and inhibit the propagation of [PSI+] variants at their normal
expression level. Siw14p was found in the screen, and further detailed analysis revealed
that about half of the [PSI+] prion variants arising in siw14∆ cells were eliminated by the
restored SIW14 gene controlled by its own promoter on a CEN plasmid [55].
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Siw14p is a pyrophosphatase specific for 5-diphosphoinositol pentakisphosphate (5PP-
IP5) in the inositol polyphosphate synthesis system [75]. This study also showed that
at least one of the inositol polyphosphates (IPs), IP6, 5PP-IP5, and 5PP-IP4 are essential
for efficient propagation of most [PSI+] variants [55]. These findings suggest that Siw14p
controls [PSI+] propagation by limiting the level of 5PP-IP5.

3.4. Nonsense-Mediated mRNA Decay Proteins Acting on [PSI+]

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism
for mRNA quality control. NMD promotes the degradation of aberrant mRNA with a
premature termination codon [76], and the core components of NMD are Upf1p, Upf2p, and
Upf3p, which are normally found in a complexed form with Sup35p on the ribosome [77,78].
In the same screen described above, Upf1p and Upf3p were frequently detected [56].
Together with Upf2p, all three Upf proteins form a trimeric Upf complex playing a key role
in NMD [79]. In the absence of any one of these three functionally related proteins, both
spontaneous and induced [PSI+] frequency were increased by 10–15 fold, and most [PSI+]
variants arising in each upf mutant were destabilized by simple restoration of the UPF
allele [51]. This curing of [PSI+] variants did not have a clear correlation with any of the Upf
protein activities, such as helicase, ATPase, or RNA-binding in NMD, but required Sup35p
binding and Upf complex formation for efficient prion curing [56]. Upf1p is associated with
the Sup35p amyloid both in vitro (co-purification with the Sup35 amyloid [77]) and in vivo
(co-localized with [PSI+] prion aggregates [56]). An in vitro Sup35p amyloid formation
assay showed that even a decinormal amount of purified Upf1p was sufficient to arrest
[PSI+] amyloid growth, while Ure2p amyloid formation was not affected. Taken together,
these findings indicated a direct and exclusive inhibitory effect of Upf1p on [PSI+] amyloid
filaments by competing with the Sup35p monomer or by binding to the ends of the growing
amyloid filaments [56].

3.5. Ribosome-Associated Chaperones Acting on the [PSI+] Prion

The nearly identical Hsp70 family members Ssb1p and Ssb2p mainly associate with
translating ribosomes and newly synthesized nascent polypeptides as they emerge from
the ribosome [80]. The Hsp40 Zuo1p (DnaJ homolog) and the Hsp70 Ssz1p (DnaK ho-
molog) form a stable heterodimeric ribosome-associated complex (RAC) that is required
for the ribosomal association of Ssb1/2p [81,82]. These ribosome-associated chaperones,
Ssb1/2p, and RAC, in concert, function to protect newly synthesized nascent polypeptides
from misfolding or aggregation [83]. Thus, ssb1/2∆ (double), zuo1∆, and ssz1∆ showed
remarkably similar phenotypes, such as growth defects, cold sensitivity, and sensitivity to
translation inhibitors due to their functional relation [80–82].

Deletion of both SSB1 and SSB2 or of ZUO1 or of SSZ1 was reported to elevate
both spontaneous and induced [PSI+] generation [84–86]. Curing of [PSI+] by Hsp104
overproduction was impaired in an ssb1/2∆ strain, but enhanced in zuo1∆ and ssz1∆
strains [84,85]. The release of Ssb1/2p from ribosomes in zuo1∆ or ssz1∆ cells results in
the destabilization of [PSI+] propagation, while ribosome-associated Ssb1/2p lowers the
frequency of [PSI+] generation [85,87]. The restoration of Ssb1p to normal levels was
unable to destabilize any of the [PSI+] variants arising in an ssb1/2∆ strain, and thus this
SSB–RAC system was thought to be only a blocker of [PSI+] prion formation [84]. However,
Ssb1/2p at normal levels also impacts [PSI+] maintenance during heat stress by impairing
the proliferation of prion aggregates in post-stress divisions [88]. This shows that Ssb1/2p
have anti-prion activity that is involved in both prion propagation and prion generation.

The re-examination of the roles of the SSB–RAC system in both the generation and
propagation of [PSI+] prions confirmed again the elevation of spontaneous and induced
[PSI+] frequency by over 10 fold in the absence of Ssb1/2p, Zuo1p, or Ssz1 and showed that
more than half of the [PSI+] variants arising in each mutant were cured by the restoration
of each component [57]. The [PSI+] prions generated in cells lacking SSB1/2 have a different
propagation ability compared with [PSI+] prions generated in strains lacking ZUO1 or
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SSZ1. This difference may be a result of the different cellular environments produced
by the ribosome association and the accessibility of each chaperone [57]. The anti-prion
activity and negative effects on the generation and propagation of [PSI+] prions of ribosome-
associated chaperones can be explained by their cellular function in the proper folding of
nascent polypeptides, but it was surprising that there was no effect on another yeast prion,
[URE3], in either generation or propagation [57]. Taken together, the exclusive effect of the
SSB–RAC-based anti-prion system on the [PSI+] prion and the functional relation of these
chaperones in translation termination may suggest that the system directly affects Sup35p,
the protein whose amyloid form is [PSI+].

3.6. Anti-Prion Systems Turn an Avalanche of Prions into a Flurry

The intraspecies transmission barrier refers to the barricade, produced by the polymor-
phism of the PrP protein sequence, against efficient transmission of sheep scrapie to goats
or mice [89]. In yeast species, the same types of barriers, produced by the polymorphism of
Sup35p sequences, were also reported [58,90–93].

Within isolates of wild S. cerevisiae, there are sequence polymorphisms of Sup35p
that are each able to give rise to [PSI+], but transmission to cells expressing a different
polymorph was found to be inefficient compared with transmission between cells with
the same polymorph [58]. This polymorphism-based intraspecies barrier suggests that
the polymorphism of the prion protein is selected during evolution because it prevents
infection by the [PSI+] prion.

The yeast protein Sis1, an Hsp40/DnaJ homolog, has essential roles in cell viability,
protein refolding, and the ubiquitin–proteasome system [94,95]. Sis1p was also shown to
be required for the propagation of [PSI+], [URE3], and [PIN+] [96] by functioning with
Hsp70 Ssa proteins and the cooperation with Hsp104 for the efficient fragmentation of
prion amyloid filaments [65]. The C-terminal domain (CTD) of Sis1p was found to be
dispensable for cell growth without [PSI+] but becomes essential with [PSI+] [59]. Thus,
the CTD of Sis1p seems to protect the cells from the toxicity produced by [PSI+], and does
so by preventing the amyloid from soaking up all the Sup35p monomer [60].

A genetic screen using Hermes transposon mutagenesis and next-generation sequenc-
ing to find the Sis1p analog system responsible for preventing the toxicity of [URE3]
revealed that disruption by the transposon of LUG1 (YLR352W) led to a severe growth
defect in the presence of a mild variant of the [URE3] prion [61]. Lug1p is an F-box pro-
tein that functions in substrate selection for efficient ubiquitination by a cullin-containing
ligase [97,98]. In the absence of [URE3], lug1∆ strains grow normally, but they show se-
vere growth defects in the presence of the prion [61]. Thus, Lug1p can protect cells from
the detrimental effects produced by the [URE3] prion by reducing the pathogenicity of
the prion.

Three systems, the intraspecies transmission barrier, Sis1p, and Lug1p, do not perfectly
fit with the concept of the anti-prion system, i.e., blocking the generation and propagation
of prions at the same time in a normal cell. However, all three relieve the deleterious effects
of prions as prion infection blockers or lethality blockers. Together with the anti−prion
systems described above, they all comprise a multi-layered defense system against threats
of prions (Figure 1).
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Figure 1. The multi−layered anti−prion system. Prions are attenuated by anti−prion systems at
multiple levels, such as formation, transmission, propagation, segregation, and pathogenesis, and are
affected (blocked) by at least one system. Most recently, the cooperation of some of these systems was
reported to repress the generation or propagation of [PSI+] prions. * Btn2p and Cur1p have different
effects on different yeast prions, [PSI+], and [URE3], but are listed here as anti-prion systems.

Before these systems were discovered, spontaneous prion generation was thought to
be a very rare event with a frequency of about 10−6. Triple mutants with anti-prion defects
in Hsp104, the ribosome-associated chaperone Ssz1, and the NMD protein Upf1 generate
the [PSI+] prion at ~5000 times the rate of a wild type with the same [PIN+] variant [99].
In the triple mutant, most of the [PSI+] isolates are cured by replacing any one of these
three defective genes, showing that Hsp104, the ribosome-associated chaperones, and the
Upf proteins are three independently acting anti-prion systems [99]. We now believe that
prions arise more frequently (~5 × 10−3) than was previously thought but that most prions
are cured right after they arise, before being detected (Figure 1).

4. Conclusions

The existence of an array of yeast anti-prion systems evidently confirms that these
prions are not considered ‘good’ or ‘beneficial’ to yeast, but this does not mean that all the
prions have detrimental effects on the host. The [Het-s] prion of the filamentous fungus
Podosopora anserina is a non-chromosomal determinant of vegetative incompatibility by
a self–nonself recognition that restricts the transmission of harmful fungal viruses by
regulating heterokaryon formation [100]. This [Het-s] prion is widespread in wild strains
and, together with its functional partner NWD2, triggers a cell death process [101] in the
first few fused incompatible cells, thereby saving most of the cells of both colonies from a
potentially viral pathology. Thus, the [Het-s] prion is a ‘functional prion’, beneficial to the
clone in which this form of programmed cell death occurs.

Most recently, the yeast-RNA-binding protein Vts1p was reported to convert into the
[SMAUG+] state that can regulate meiosis in response to environmental stimulation [9,102].
This [SMAUG+]/[smaug−] state affects the survival of yeast cells under the condition of
transient or long-term nutrient depletion. A non-amyloid-forming [SMAUG+] behaves
as a prion and delays the initiation of meiosis and sporulation during starvation [9,102].
Thus, these new findings may support our notion above that prions are not necessarily
‘infectious misfolding diseases’ but may be ‘pathogenic’ in a specific condition.

Most human pathogenic amyloids have the same architecture (a folded, in-resister,
parallel β-sheet) as the structurally characterized yeast prions [103,104]. Moreover, the
common human amyloidoses AD, ALS (Lou Gehrig’s disease), PD, and type II diabetes
seem to be prion diseases [22,105]. Studies on prions and anti-prion systems in a simple
eukaryote yeast have extended our understanding of the nature of prions and should
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play important roles in finding analogous systems in humans or mammals to overcome
amyloid-based prion diseases.
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