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Abstract: African swine fever virus (ASFV) is the causative agent of African swine fever (ASF),
resulting in up to 100% mortality in pigs. Although endemic in most sub-Saharan African countries,
where all known ASFV genotypes have been reported, the disease has caused pandemics of significant
economic impact in Eurasia, and no vaccines or therapeutics are available to date. In endeavors
to develop live-attenuated vaccines against ASF, deletions of several of the ~170 ASFV genes have
shown contrasting results depending on the genotype of the investigated ASFV. Here, we report the
in vivo outcome of a single deletion of the A238L (5EL) gene and double deletions of A238L (5EL) and
EP402R (CD2v) genes from the genome of a highly virulent genotype IX ASFV isolate. Domestic pigs
were intramuscularly inoculated with (i) ASFV-Ke-∆A238L to assess the safety of A238L deletion and
(ii) ASFV-Ke-∆EP402R∆A238L to investigate protection against challenge with the virulent wildtype
ASFV-Ke virus. While A238L (5EL) gene deletion did not yield complete attenuation, co-deletion of
A238L (5EL) and EP402R (CD2v) improved the safety profile of the single deletions, eliciting both
humoral and cellular immune responses and conferred partial protection against challenge with the
virulent wildtype ASFV-Ke virus.
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1. Introduction

African swine fever (ASF) is a viral disease that results in up to 100% mortality in
pigs depending on the genotype of the virus. The disease is endemic in most sub-Saharan
African countries, where all the twenty-four African swine fever virus (ASFV) genotypes
have been reported [1]. However, in Asia, Hispaniola, and Europe, where the disease
currently causes dramatic losses, genotype II ASFV dominates. However, the emergence of
genotype I ASFV in domestic pigs has recently been reported, particularly in the Henan
and Shandong provinces of China [2]. Genotype I also remains prevalent in Sardinia (Italy).

The biological complexity of the virus and the dearth of knowledge about the mecha-
nism of antiviral immune responses hampers the development of safe and efficacious vac-
cines. Despite decades of intense research, there is currently no commercial vaccine against
ASF, although Vietnam has recently granted a commercial permit for local distribution of
a live-attenuated ASF vaccine [3]. One approach employed to develop vaccine candidates
against ASF is genetic attenuation of ASFV isolates through deletion of viral genes which
are not essential for in vitro virus replication, and which are implicated in counteracting
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host immune responses. Some deletions have been shown to attenuate the virus and induce
protection against homologous [4–7] and occasionally heterologous [8] challenges.

Among the numerous ASFV genes involved in evading host defence systems, A238L
(5EL) encodes a protein with homology to IkB, the inhibitor of NFκB [9,10]. The A238L gene
inhibits NFAT-regulated gene transcription in vivo and in vitro by inhibiting calcineurin
phosphatase activity [11,12]. Since NFκB and NFAT pathways are involved in immune re-
sponses, their inhibition by A238L potentially suppresses the synthesis of pro-inflammatory
cytokines. For instance, Salguero et al. demonstrated significantly enhanced expression
of TNF-α mRNA in the PBMC from pigs inoculated with a ∆A238L virus, reinforcing the
role of this gene in inhibiting the NFκB pathway of cytokine expression [13]. Similarly,
Granja et al. presented evidence that A238L inhibits the activation of TNF-α by modulating
NF-kB, NF-AT, and c-Jun transactivation [14]. Further, A238L inhibits the expression of the
inflammatory regulators cyclooxygenase-2 (COX-2) [15,16] and TNF-α [16] and through
inhibition of p65/RelA acetylation and p300 transactivation [17].

Additionally, a negative correlation between mRNA expression of the A238L gene
and some cytokines has been observed in porcine macrophages infected with the highly-
virulent L60 ASFV (ASFV/L60) [18], suggesting that the virulence of ASFV isolates may
depend on their capacity to regulate the expression of the macrophage-derived cytokines
relevant for the development of host protective responses. Deletion of the A238L gene in
genotype IX ASFV does not alter the in vitro growth of the virus [19], as in genotype II
Pol18/28298/Out111 [20] and genotype XII Malawi Lil-20/1 [21]. Furthermore, deletion
of A238L in the highly virulent ASFV E-70 isolate does not result in attenuation, as no
significant differences were observed in the clinical signs or pathology compared to the wild-
type [13]. Similarly, growth characteristics in porcine macrophages and in vivo virulence
phenotype (clinical outcome) of Malawi Lil-20/1-∆A238L (5EL) were indistinguishable
from those of the parental virus [21].

ASFV EP402R encodes CD2v, a protein with significant structural homology to the
lymphocyte adhesion molecule CD2, which is required for the binding of erythrocytes
to infected cells [22,23]. This was demonstrated by the hemadsorption of swine RBCs
to Vero cells transiently expressing ASFV CD2v [23] and the loss of the hemadsorbing
ability of the virus after genetic disruption of the EP402R gene [22]. Naturally occurring
ASFV isolates with mutations or deletions in the EP402R gene have been shown to display
a non-hemadsorbing phenotype [24–30]. Deletion of EP402R does not affect in vitro virus
growth [19,22,31,32].

Deletion of the NL [33–35], 9GL [5,36], and UK [35–37] genes of ASFV suggest that
the phenotypic outcome of deletion of specific virus genes is dependent on the genetic
background of the parental virus. Deletion of the EP402R gene results in different pheno-
typic outcomes in vivo depending on the ASFV strain. However, deletion of the EP402R
gene leads to complete attenuation of the virulent BA71 strain in pigs [8], the deletion of
the same gene in ASFV Georgia 2010 [38], Malawi Lil-20/1 [31], and CN/GS/2018 [39]
does not attenuate virulence in swine. Using the Kenyan genotype IX ASFV background,
Hemmink et al. observed that deletion of EP402R resulted in reduced mortality and severity
of clinical symptoms, albeit with retention of a degree of virulence [40].

To increase the safety profile of single deletion ASFV vaccine candidates, additional
gene deletions have been included with diverse outcomes; some ASFV gene deletions like
∆9GL [5] and ∆MGF360/505 [36] confer protection on their own but lose the protective
ability when co-deleted [36]. Conversely, simultaneous deletion of the 9GL and UK genes
from the Georgia 2007 isolate offers increased safety and protection against homologous
challenges [4].

In this study, we first examined whether the deletion of A238L in genotype IX ASFV-
Kenya-1033 isolate (ASFV-Ke-IX-1033-∆A238L) [19] leads to a reduction in virulence upon
infection of domestic pigs. Secondly, as the single deletion of the EP402R (CD2v) gene
had already been tested [40], we assessed whether co-deletion A238L (5EL) and EP402R
(CD2v) genes in the same virus (ASFV-Ke-IX-1033-∆EP402R∆A238L) [19] led to a reduction
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in virulence and whether immunity induced by this virus can protect against parental
virus challenge.

2. Materials and Methods
2.1. Viruses

All the viruses used in this study have been reported previously, and their origins, the
methodologies for generating them, their genomic sequences, and in vitro growth kinetics
described [19,41–44].

Briefly, ASFV-Kenya-IX-1033, herein referred to as ASFV-Ke, is a genotype IX field
isolate from the spleen of an infected domestic pig from the Busia district of western
Kenya [41,42]. The isolate is highly virulent and genetically stable after passage in wild
boar lung cell line (WSL) [44]. ASFV-Ke-∆EP402R is a modified DsRed-expressing ASFV-Ke
virus with the deletion of the EP402R (CD2v) gene [43]. ASFV-Ke-∆A238L and ASFV-Ke-
∆EP402R∆A238L viruses are single- and double-deletion mutants, respectively, generated
using the CRISPR/Cas9 approach [19].

2.2. Animal Experiments

Animal experiments were conducted in the ABSL2+ facility at the International Live-
stock Research Institute (ILRI, Nairobi, Kenya). Pigs, which were crosses between Duroc
and Large White, weighing between 45 and 70 kg, were ear-tagged, weighed, dewormed,
and vaccinated for foot and mouth disease (FMD) and held in a quarantine facility for at
least twenty-one days and acclimatized for seven more days prior to the start of the exper-
iment. As FMD is endemic in the region, it is standard practice to vaccinate susceptible
species when they arrive in the quarantine unit. Only healthy animals, as determined by
clinical examinations, seronegative for ASFV, and negative by p72 qPCR, were included
in the study. For the attenuation experiment (IACUC2021-10), two groups of three pigs
were each inoculated intramuscularly with 102 TCID50 of ASFV-Ke-∆A238L or 102 HAD50
ASFV-Ke and observed for 21 days to assess the safety of the deletion mutant. For the
protection experiment (IACUC2020-11), two groups of nine pigs were each inoculated
intramuscularly with 103 TCID50 dose of ASFV-Ke-∆EP402R∆A238L or PBS. Eight pigs per
group were challenged intramuscularly on day 31 with 102 HAD50 of wild type ASFV-Ke.
Baseline samples were collected prior to inoculation on day 0 and subsequently at periodic
intervals; days 3, 5, 7, 10, 14, and 21 post-inoculation for the IACUC2021-10, days 3, 7, 14,
21, and 28 post-inoculation, and days 3, 5, 7, 10, 14, 21 post-challenge for IACUC2020-11.
These were used to determine in vivo viral loads and antibody levels at different time
points. Heparinized blood was collected on day 28 to determine the immune responses
of the different animal cohorts to the viruses used for vaccination compared to controls.
Animals were monitored daily for clinical signs and scored according to King et al. [45].
Animals were euthanized when pre-determined humane end-point criteria were reached
or at the end of the study.

2.3. PBMC Isolation

Peripheral blood mononuclear cells (PBMCs) were isolated from 20 mL of blood
collected in heparinized vacutainer tubes (Ref: 368480, BD) using the Ficoll-PaqueTM (GE
Healthcare, Uppsala, Sweden) density gradient centrifugation. Briefly, heparinized blood
was mixed with an equal volume of sterile PBS, layered on Ficoll-Paque, and centrifuged at
1650× g for 30 min at room temperature with no brakes. The interphase layer containing
PBMCs was harvested, washed with sterile 1 × PBS, and spun at 670× g for 10 min with
brakes on. The pellet was resuspended in 10 mL of tris-ammonium chloride and incubated
in a water bath set at 37 ◦C for 10 min to lyse residual RBCs. The cell suspension was
spun at 300× g for 10 min to remove residual platelets. The cell pellet was washed twice
by suspending in 1 × PBS and spun at 300× g for 10 min. Isolated PBMCs were 40 µm-
filtered to remove fat and resuspended in 20 mL of RPMI medium supplemented with
10% fetal bovine serum (Ref: A4766, GIBCO), 1% L-glutamine (Ref: 21051040, Thermo
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Fisher Scientific, Waltham, MA, USA), and 1% Penicillin/Streptomycin (Ref: HP10.1, Roth).
PBMCs were counted in a Neubauer chamber using the Trypan Blue dye exclusion method.

2.4. Porcine IFNγ ELISPOT

ELISPOT plates (Millipore, Ref MAHAS4510) were coated overnight at 40 ◦C with
100 µL per well of mouse anti-pig IFNγ clone P2G10 capture antibody (Ref: 559961, BD
Pharmingen) diluted 1:1000 in 0.2 µm-filtered carbonate buffer. The plates were washed
five times using sterile 1 × PBS (200 µL per well) and blocked with 4% skimmed milk
(Marvel, Premier Foods group, Thame, UK) for 2 h at room temperature. The plates were
washed five times with PBS before adding 50 µL of antigens; Concanavalin A (10 ug/mL),
wildtype ASFV-Ke (MOI = 0.1. Five hundred thousand PBMCs from each animal were
seeded in the respective wells and plates were incubated for 20 h at 37 ◦C with 5% CO2.

Plates were developed by washing five times with 200 µL per well of PBS-Tween
(0.05% Tween-20 diluted in 1 × PBS). Biotinylated mouse anti-pig IFNγ primary antibody
(100 µL), clone P2C11 (BD Pharmingen) diluted 1:2000 in PBS was added per well and
incubated for 2 h at room temperature. Plates were washed five times using PBS-Tween,
before adding 100µL of the secondary antibody, streptavidin alkaline phosphatase (Invitro-
gen), diluted 1:1000 in PBS. After 1 h incubation at room temperature, the plates were then
washed in PBS-Tween. Thereafter, 50 µL of the SIGMAFASTTM BCIP®/NBT substrate (Ref:
B5655, Sigma) was added per well and incubated for 20 min in the dark. The plates were
washed with tap water to stop the reaction and then immersed in 1% formaldehyde solution
for 10 min to inactivate residual viruses. Finally, the plates were washed in tap water and
kept in the dark to air dry. The spots were counted using the AID classic ELISPOT reader
(AID AutoImmun Diagnostika GmbH. Results were reported as spot-forming units (SFU)
per 1 × 106 PBMC.

2.5. Porcine Anti-p72 ELISA

Five millilitres of blood were collected from each animal in serum separating vacu-
tainer tubes (BD) and centrifuged at 1200× g for 10 min to separate serum. ASFV anti-p72
antibodies were detected by blocking ELISA using the INgezim PPA Compac Kit (INGE-
NASA, Madrid, Spain) as per the manufacturer’s instructions. The optical densities of
the developed plates were read immediately at 450 nm wavelength using the Synergy
HTX multi-mode reader (Ref: S12FA, BioTeK, Winooski, VT, USA). The quality control
analysis and percent blocking were determined according to the manufacturer’s protocol.
Samples were considered positive if the percentage blocking was above the 50% blocking
cut-off value.

2.6. Real-Time Quantitative PCR for the Detection of ASFV Genome

Viremia in experimentally inoculated animals was quantified at different days post-
infection using quantitative PCR (qPCR). Genomic DNA was extracted from 200 µL of
EDTA anti-coagulated blood using a Zymo Quick-DNA miniprep DNA extraction kit
(Ref: D3025, Zymo research, Irvine, CA, USA). For the detection of ASFV genome copies
in tissues, approximately 0.01 g to 0.025 g of splenic, submandibular, and gastrohepatic
lymph tissue was weighed and DNA extracted using the Qiagen DNeasy Blood and Tissue
Kits (Cat# 69506, Qiagen, Hilden, Germany). qPCR was performed using QuantStudioTM

5 system (Applied Biosystems, Waltham, MA, United States). Each reaction was conducted
in duplicates in a 10 µL reaction mixture containing 2.23 µL nuclease-free water, 5 µL
EXPRESS qPCR Supermix (Invitrogen, Waltham, MA, USA), 0.3 µL of forward primer
(10 µM), 0.3 µL of reverse primer (10 µM), 0.15 µL of TaqMan® probe (10 µM), 0.02 µL of
ROX reference dye, and 2 µL template DNA. The plasmid standard dilutions, primers,
and qPCR conditions are described by Abkallo et al. [19]. Data, in eds file format, were
exported and analysed on a QuantStudio™ design and analysis software (Applied Biosys-
tems, United States). Results were analysed on GraphPad Prism (version 6) for Windows
(GraphPad Software, San Diego, CA, USA).
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3. Results
3.1. Safety of ASFV-Ke-∆A238L in Pigs

To assess the safety of ASFV-Ke-∆A238L, two groups of three pigs were each intra-
muscularly inoculated with either the parental wildtype virus ASFV-Ke or the A238L
gene-deleted mutant (ASFV-Ke-∆A238L), and were observed for 21 days or until humane
end-point criteria were reached. The pigs in the ASFV-Ke wildtype control group all de-
veloped fever (>40 ◦C) and clinical signs typical of ASF and were euthanised 5- or 6-days
post-inoculation (Figures 1A and S1). In contrast, two out of three pigs of the ASFV-Ke-
∆A238L group survived the experiment (Figures 1B and S1A). The non-surviving pig in
the ASFV-Ke-∆A238L group was euthanised on day 9 post-inoculation. High amounts
(up to 1.7 × 109 copies/mL) of viral DNA were detected in the blood of all ASFV-Ke
group members until day 5 pi, while much lower copy numbers were detected in ASFV-
Ke-∆A238L group (Figure 2). Additionally, there was a delay in the increase in viral
genome copies in the ASFV-Ke-∆A238L group (Figure 2), probably due to slower replica-
tion of the deletion mutant, or the ability of the innate host immune response to suppress
virus growth. The body temperature in the ASFV-Ke-∆A238L group increased above
the 40 ◦C threshold on day 7 post-inoculation and declined gradually until normalis-
ing (≤40 ◦C) on day 14 and 17 post-inoculation (Figure 1B). On average, body tempera-
ture increased more rapidly, and clinical scores were much higher in the ASFV-Ke group
than in the ASFV-Ke-A238L group (Figure 1C,F). Together, these observations indicate
that the ASFV-Ke virus is highly virulent in pigs, whereas ASFV-Ke-∆A238L is modera-
tely attenuated.
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Figure 1. Body temperature and clinical scores: Rectal temperatures in individual pigs inoculated
with 102 HAD50 of ASFV-Ke (A) or 102 TCID50 ASFV-Ke-∆A238L (B). Mean +/− SEM of rectal
temperatures in ASFV-Ke (black) and ASFV-Ke-∆A238L (maroon) groups (C). Cumulative clinical
scores in pigs inoculated with ASFV-Ke (D) or ASFV-Ke-∆A238L (E). Mean +/− SEM of cumulative
clinical scores in ASFV-Ke (black) and ASFV-Ke-∆A238L (maroon) groups (F).
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Figure 2. Virus replication in the blood (viral genome copies) after inoculation with 102 TCID50 of
ASFV-Ke (black) or ASFV-Ke-∆A238L (maroon).

3.2. Induction of ASFV-Specific Humoral Response in ASFV-Ke-∆A238L-Inoculated Pigs

Antibody responses to ASFV-Ke-∆A238L virus were measured using a commercial
competitive ELISA in sera obtained at different days post-inoculation. From day 14 post-
inoculation, samples from the two surviving pigs showed 89.5% and 72.4% blocking, which
is above the 50% positivity threshold (Figure 3). The antibody response was maintained
until the end of the observation period (day 21 post-inoculation), illustrating induction of
ASFV-specific humoral immune response by the ASFV-Ke-∆A238L virus.
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Figure 3. ASFV-specific antibody response after inoculation with ASFV-Ke-∆A238L. The percentage
of blocking by p72-specific serum antibodies at indicated times was tested using a commercial
competitive ELISA. The threshold range is indicated by a grey bar.

3.3. Safety and Protective Efficacy of ASFV-Ke-∆EP402R∆A238L Double Deletion Mutant

To assess the safety and immunogenicity of the double deletion mutant (ASFV-Ke-
∆EP402R∆A238L), a group of nine pigs were intramuscularly (i.m.) immunised with
103 TCID50 dose of the ASFV-Ke-∆EP402R∆A238L virus. In parallel, another group of nine
pigs were mock-immunised with PBS (control). Both groups were observed for 30 days
until challenge i.m. with 102 HAD50 of the virulent wildtype ASFV-Ke.
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After immunisation, the majority of the ASFV-Ke-∆EP402R∆A238L-immunised pigs
maintained normal temperature (seven out of nine pigs) and low clinical scores (all
pigs) during the 30-day follow-up period (Figure 4B,E), indicating that the ASFV-Ke-
∆EP402R∆A238L double deletion mutant is safe, and attenuated to a greater degree than
the single mutants. No viral DNA was detected in blood of eight pigs, and one pig had
viral genome copies below the threshold value (Figure 5), indicating that the pigs were able
to limit viral replication in vivo.
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Figure 4. Body temperatures and clinical scores: Rectal temperatures in individual pigs mock-
immunised with PBS (A) or immunised with 102 TCID50 of ASFV-Ke-∆EP402R∆A238L (B) before
and after challenge with ASFV-Ke. Mean +/− SEM of rectal temperatures in PBS (blue) and ASFV-Ke-
∆EP402R∆A238L (red) (C) and ASFV-Ke challenged groups. Cumulative clinical scores in pigs mock-
immunised with PBS (D) or ASFV-Ke-∆EP402R∆A238L-immunised (E) and ASFV-Ke challenged
groups. Mean +/− SEM of cumulative clinical scores in mock-immunised (blue) and ASFV-Ke-
∆EP402R∆A238L-immunised (red) (F) and ASFV-Ke challenged groups.
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ASFV-Ke-∆EP402R∆A238L (red) and subsequent challenge with ASFV-Ke (A). Detection of virus
DNA in tissues prepared post-mortem from animals immunised with PBS (blue) or ASFV-Ke-
∆EP402R∆A238L (red) after challenge with ASFV-Ke (B).
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Prior to challenge infection, one randomly selected animal was removed from each
group to meet the approved animal number of eight. After challenge with the virulent
wildtype ASFV-Ke, fifty percent of the ASFV-Ke-∆EP402R∆A238L-immunised pigs sur-
vived the study duration, while the other 50% reached their humane end-point criteria on
days 6, 7, and 12 post-challenge (Figure S1B). Five pigs in the ASFV-Ke-∆EP402R∆A238L-
immunised group exhibited an increase in body temperature and developed clinical signs
consistent with ASF (Figure 4B,E). However, three pigs in the same group maintained
normal body temperature, and no clinical signs were observed (Figure 4B,E). All control
(PBS-immunised) pigs were euthanised by day 7 post-challenge after reaching the humane
end-point (Figures 4A,D and S1B). Higher copy numbers of viral DNA were detected
in both groups by day 3 post-challenge (Figure 5). However, by day 10 post-challenge,
viral DNA copies declined to zero in three of the four surviving pigs in the ASFV-Ke-
∆EP402R∆A238L-immunised group (Figure 5A). On average, clinical scores and tempera-
tures in the ASFV-Ke-∆EP402R∆A238L-immunised group were much lower compared to
the mock-immunised group. ASFV DNA was undetectable in both the submandibular and
gastrohepatic lymph nodes and low in the spleen tissues of ASFV-Ke-∆EP402R∆A238L-
immunised pigs (Figure 5B). In contrast, ASFV genome copy numbers were much higher
in the spleens of mock-immunised pigs (Figure 5B).

3.4. Induction of ASFV-Specific Humoral and Cellular Responses in
ASFV-Ke-∆EP402R∆A238L-Immunised Group

Analysis of ASFV-specific antibodies to ASFV-Ke-∆EP402R∆A238L was performed
using a commercial competitive ELISA. Antibody responses were detected and firmly
established in all animals by day 14 post-immunisation, with 100% blocking seen in six of
nine pigs (Figure 6B). Antibody titres were maintained in all pigs throughout the experi-
ment, demonstrating that ASFV-Ke-∆EP402R∆A238L immunisation induced ASFV-specific
humoral responses.
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Figure 6. ASFV-specific antibody and cellular immune responses: percentage of blocking by p72-
specific serum antibodies after mock-immunisation with PBS (A) or immunisation with ASFV-Ke-
∆EP402R∆A238L (B) determined using a commercial blocking ELISA. Mean+/−SEM of percentage
blocking in PBS- or ASFV-Ke-∆EP402R∆A238L-immunised groups (C). IFNγ ELISPOT using PBMC
isolated from animals at day 28 after immunisation with PBS (blue) or ASFV-Ke-∆EP402R∆A238L
(red) and stimulation with either medium or ASFV-Ke wild type (wt) infection at an MOI of 0.1 (D).

To investigate the induction of ASFV-specific cellular immune response in pigs immu-
nised with ASFV-Ke-∆EP402R∆A238L, an ELISpot assay was used to measure the number
of cells producing IFN-γ. ASFV-specific IFN-γ-producing cells (up to ~940 spots per mil-
lion cells) were detected in PBMC of seven of the ASFV-Ke-∆EP402R∆A238L-immunised
pigs (Figure 6D). The remaining two pigs in the ASFV-Ke-∆EP402R∆A238L-immunised
group did not have detectable ASF-specific IFN-γ responses. No ASFV-specific IFN-γ
responses were found in mock-immunised animals. The ELISA and ELISpot results show
that ASFV-Ke-∆EP402R∆A238L virus is immunogenic.
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4. Discussion

In studies of ASFV gene function, and in order to generate live-attenuated vaccines
(LAV) against ASF, targeted disruption or deletion of viral genes is a standard prac-
tice [4–7,31,36,38,46,47]. Previous studies have led to different attenuation and protection re-
sults depending on the genotype and virulence of the virus isolates studied [8,31,38,39,46,47].
An ideal LAV should have an acceptable safety profile (reduced or absent clinical signs)
and be able to provoke robust protection against challenge infection with wild type ASFV.
To evaluate whether deletion of A238L in genotype IX ASFV reduces virulence compared to
the parental strain, pigs were inoculated with the wild type ASFV-Ke or ASFV-Ke-∆A238L
and monitored for clinical manifestation of infection. Although both groups developed
clinical signs consistent with ASF, clinical scores were, on average, much higher in the
ASFV-Ke group compared to the ASFV-Ke-∆A238L group.

Additionally, the deletion of the A238L gene from the genotype IX ASFV-Ke delayed
the onset of clinical signs by three days in the infected pigs. In line with this, there
was a substantial decrease and delay in the detection of ASFV DNA in the blood of
ASFV-Ke-∆A238L-inoculated pigs. This observation reveals partial attenuation of the
ASFV-Ke-∆A238L mutant, and differs from observations in ASFV E-70 and ASFV Malawi
Lil-20/1 isolates, in which A238L deletion had no significant phenotypic outcome in vitro
or in vivo [13,21]. Reduced clinical scores and reduced rate of viral multiplication in pigs
inoculated with the ASFV-Ke-∆A238L may also point to enhanced innate immune responses
against the mutant virus, which supports the proposed immune evasion functions of
A238L [13].

Since single deletions of the EP402R gene [40] and A238L did not independently yield
complete attenuation in ASFV-Ke, we investigated the attenuation and protection profiles of
an A238L and EP402R double deletion mutant. Compared to ASFV-Ke-∆A238L-inoculated
pigs, ASFV-Ke-∆EP402R∆A238L-inoculated pigs maintained normal temperature, exhib-
ited mild clinical scores, and were able to limit ASFV replication. These observations
suggest that the ASFV-Ke-∆EP402R∆A238L double deletion mutant is safer than the ASFV-
Ke-∆A238L single deletion mutant. However, comparing this ∆EP402R∆A238L double
deletion with the ∆EP402R single deletion [40], the double deletion is not superior to the
∆EP402R single deletion.

Upon being challenged with the highly virulent wildtype ASFV-Ke virus, three out
of eight (37.5%) of the ASFV-Ke-∆EP402R∆A238L-immunised pigs maintained normal
temperature and developed no clinical signs besides limiting viral replication in the blood.
Additionally, ASFV genome copy numbers were significantly lower in the spleens of ASFV-
Ke-∆EP402R∆A238L-immunised pigs than in the mock-immunised control pigs, showing
that immunised pigs can inhibit virus replication efficiently. However, only half of the
pigs were sufficiently protected against a lethal challenge which was less than obtained
with ASFV-Ke-∆EP402R single deletion mutant, where only one out of eight animals was
lost [40]. Thus, additional deletion of A238L apparently reduces the protective efficacy of
the EP402R (CD2v) single knockout virus. Similar phenomena have been described for the
ASFV Georgia strain where the addition of a CD2v deletion and/or a C-type lectin-like
deletion to a 9GL deleted virus abrogated protection [46].

In conclusion, the single knockout ASFV-Ke-∆A238L was not sufficiently attenuated
to develop as a vaccine on its own, and the double knockout ASFV-Ke-∆EP402R∆A238L,
while sufficiently attenuated, did not confer adequate protection. These results demonstrate
the delicate balance between attenuation and protection observed in gene-deleted ASFV
viruses. However, these problems could possibly be mitigated by higher vaccine doses or
booster injections, although this may not be optimal in resource-constrained settings, such
as sub-Saharan Africa.
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Ke (black)- or ASFV-Ke-∆A238L (maroon)-inoculated pigs (A), and PBS (blue)- or ASFV-Ke-∆
EP402R∆A238L (red)-immunised pigs after challenge with wildtype ASFV-Ke (B).
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