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Abstract: Viral vectors have emerged as powerful tools for delivering and expressing foreign genes,
playing a pivotal role in gene therapy. Among these vectors, cytomegalovirus (CMV) stands out as a
promising viral vector due to its distinctive attributes including large packaging capacity, ability to
achieve superinfection, broad host range, capacity to induce CD8+ T cell responses, lack of integration
into the host genome, and other qualities that make it an appealing vector candidate. Engineered
attenuated CMV strains such as Towne and AD169 that have a ~15 kb genomic DNA deletion caused
by virus passage guarantee human safety. CMV’s large genome enables the efficient incorporation of
substantial foreign genes as demonstrated by CMV vector-based therapies for SIV, tuberculosis, cancer,
malaria, aging, COVID-19, and more. CMV is capable of reinfecting hosts regardless of prior infection
or immunity, making it highly suitable for multiple vector administrations. In addition to its broad
cellular tropism and sustained high-level gene expression, CMV triggers robust, virus-specific CD8+

T cell responses, offering a significant advantage as a vaccine vector. To date, successful development
and testing of murine CMV (MCMV) and rhesus CMV (RhCMV) vectors in animal models have
demonstrated the efficacy of CMV-based vectors. These investigations have explored the potential of
CMV vectors for vaccines against HIV, cancer, tuberculosis, malaria, and other infectious pathogens,
as well as for other gene therapy applications. Moreover, the generation of single-cycle replication
CMV vectors, produced by deleting essential genes, ensures robust safety in an immunocompromised
population. The results of these studies emphasize CMV’s effectiveness as a gene delivery vehicle
and shed light on the future applications of a CMV vector. While challenges such as production
complexities and storage limitations need to be addressed, ongoing efforts to bridge the gap between
animal models and human translation continue to fuel the optimism surrounding CMV-based vectors.
This review will outline the properties of CMV vectors and discuss their future applications as well
as possible limitations.

Keywords: HCMV; cytomegalovirus; CMV; viral vector; gene therapy; vaccine vector; rhesus CMV;
murine CMV; bacterial artificial chromosomes

1. Introduction

Viral vectors are engineered versions of a virus that are precisely manipulated to
effectively express foreign genes into host cells by taking advantage of the inherent gene
transfer capability of viruses. Cytomegalovirus (CMV), a member of the herpesvirus family
with a large double-stranded genome, has emerged as a novel and promising viral vector
candidate for gene delivery due to its distinctive attributes and associated advantages.
The complete CMV genome has been cloned into a plasmid, forming a bacterial artificial
chromosome (BAC) that can be engineered to express foreign genes [1,2]. CMV holds a
large packaging capacity that enables the accommodation of multiple foreign genes within
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its genome. Moreover, CMV can evade pre-existing immunity to induce strong T-cell
responses. Numerous studies have found CMV-based vectors to be a versatile vehicle
that can express genes related to malaria [3], TB [4,5], cancer [6,7], HIV [8,9], COVID-19,
immunocontraception, aging, influenza, and other important applications. Crucially, CMV
does not integrate into the host genome. Single-cycle CMV vectors generated by the
deletion of essential genes can be utilized in an immunocompromised population due to
robust inhibition of virus replication [10,11]. They are widely recognized as highly efficient
gene transfer agents and find applications across diverse domains, ranging from genetic
research to therapeutic interventions [12].

CMV has a large genome of approximately 230 to 240 kbp in length. It is highly species-
specific, meaning that the virus is tightly restricted to its natural host. For instance, human
cytomegalovirus (HCMV) only infects humans and rhesus CMV (RhCMV) only infects
rhesus macaques or evolutionarily similar species. HCMV exhibits unique behavior by
establishing lifelong latent infection that often remains asymptomatic. In immunocompro-
mised individuals, HCMV reactivates and may cause severe and potentially life-threatening
diseases, posing a major threat to the host’s health [13]. This has spurred extensive research
into the virus’ infection, pathogenicity, immunity, and biology. Specific aspects of CMV
conveniently resolve common limitations of other viral vector candidates, including chal-
lenges related to immune interference and packaging capacity [14]. Nonetheless, CMV also
has several limitations that warrant consideration for its potential as a viral vector.

Several other herpesviruses, such as herpes simplex virus (HSV-1) [15], have also been
harnessed as viral vectors. HSV-1 can infect epithelial and brain cells, making it a valuable
tool for delivering treatments for neurological diseases. HSV-1 establishes latency in sensory
ganglia [16] and can persist throughout the host’s lifetime. HSV-1 has been remarkably
successful in delivering target genes to nervous system cells [17,18]. A replication-defective
HSV-1 vector has ensured excellent safety in animals treated with it [19,20]. The versatility
of the HSV-1 vector is further illustrated by its success in delivering treatments for bacterial
diseases [21], HIV [22], cancer [23], Parkinson’s disease [24], Alzheimer’s disease [25],
chronic pain [26], and other debilitating conditions.

In gene therapy, adenovirus, lentivirus, and adeno-associated virus (AAV) vectors
have played crucial roles [27,28]. Adenovirus (Ad) vectors, for instance, have been widely
used in gene therapies, including applications in cancer treatment and COVID-19 thera-
pies [29]. Notably, the FDA recently approved an AAV-based gene therapy for Duchenne
muscular dystrophy [30], reaching a significant milestone in gene therapy research. Table 1
provides a comprehensive review of CMV vector-based gene therapies and other viral
vector-based gene therapies. According to global clinical trial reports, there are currently
over 1000 ongoing clinical trials that harness viral vectors as a platform for gene therapy
(http://www.abedia.com/wiley/vectors.php (accessed on 20 August 2023)). These clinical
trials include ~575 adenovirus-based clinical trials, ~250 AAV-based clinical trials, and
~315 lentivirus-based clinical trials [31]. The current landscape of gene therapy research
suggests that viral vectors represent an exceptional foundation for advancing gene therapy
applications. This review aims to concisely summarize ongoing research on CMV-based
vectors and discuss future applications of CMV-vectored gene therapy, with a particular
emphasis on its role in vaccine vector developments.

2. Properties of Cytomegalovirus Vectors

CMV possesses unique assets that make it an attractive platform for gene delivery. It
has infected a large percentage of the human population, totaling around 60% to 70% of
adults in industrialized countries and almost 100% in developing countries [13]. Because
CMV has been introduced to a large portion of the population and studied extensively, its
pathogenicity and pathophysiology are well-known. Thus, a CMV-based vector will not
cause additional unknown disease burdens within its host. Moreover, CMV has emerged
as an ideal vector for viral vector-based gene therapy and vaccines because it has a large
packaging capacity, possesses a broad cell tropism, can achieve secondary infection despite

http://www.abedia.com/wiley/vectors.php


Viruses 2023, 15, 2043 3 of 17

previous immunity, has high productivity in cell cultures known to have a stable viral
genome, is safe and well-tolerated in humans, and induces long-term memory inflation
(Figure 1).
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CMV’s favorable safety profile is of significant importance. Despite the virus’ potential
to cause severe diseases in immunocompromised individuals or birth defects during
congenital infection, CMV’s safety concern has been largely reduced. This is due to the use
of attenuated CMV virus strains that lack pathogenicity, such as laboratory-adapted strains
AD169 and Towne, as foundations to create viral vectors. Clinical evaluations of these virus
strains have found these attenuated strains to be safe and well-tolerated, ensuring safe
translation to humans [32–34]. Further investigation of the live attenuated virus AD169 in
clinical evaluation as a live attenuated virus has demonstrated that the virus does not
cause any active infection in human subjects. Even when administered at doses as high as
300,000 pfu, AD169 did not elicit any pathological symptoms or result in viral shedding.

Additionally, a distinguishing feature of CMV lies in its substantial packaging capacity.
CMV’s large genome of approximately 230 kbp in size, along with its multiple dispensable
genes, allows a large number of foreign genes to be inserted into the CMV genome without
compromising essential viral replication in vitro [35]. In comparison to viruses that have
a smaller genome, CMV vectors deliver significantly larger pieces of DNA to targeted
host cells. The laboratory-adapted strains Towne and AD169 lack a ~13 and a 15-kb
segment, respectively, in the UL/b′ region, enabling the accommodation of a considerable
number of foreign genes [36]. While these strains cannot replicate in vivo, they grow well
in tissue culture, making them well-suited as foundations for viral vectors. Furthermore,
CMV does not integrate into the genome of host cells, therefore alleviating concerns of
genomic instability.

CMV vectors also resolve the key issue of virus immunity. Commonly, adaptive
immune responses to viruses block secondary infections by the same or similar pathogens,
preventing viruses from reinfecting a host. However, CMV is a notable exception as it is
capable of achieving secondary infection, or superinfection, despite previous CMV exposure
and immunity [37]. A study using rhesus macaques and RhCMV has revealed that CMV
achieves this by evading CD8+ T cell immune responses through major histocompatibility
complex class I (MHC-1) interference [38]. Notably, US2-11 glycoproteins play a major role
in promoting evasion of CD8+ T cells in vivo, contributing to infections in individuals who
should be CMV-resistant [38]. Although this ability to persistently reinfect hosts hinders the
development of a CMV vaccine per se, it offers an avenue for CMV vectors to perpetually
deliver genes to hosts regardless of prior immunity.

Within its host, CMV infects a wide range of cell types both in vivo and in vitro, in-
cluding but not limited to epithelial cells, connective tissue cells, hepatocytes, and vascular
endothelial cells, demonstrating a broad cell tropism [39]. This diverse infectivity translates
to CMV’s capacity to provoke disease in multiple organs and tissues [40]. Noteworthy
findings indicate that the HCMV gH/gL core complexes facilitate entry into the cell and
adapt based on the cell type, with alternate gH/gL complexes influencing cell tropism,
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the entry pathway, and virus dissemination [41]. Due to its broad cell tropism, CMV is a
versatile vector suitable for a wide range of applications. For instance, because CMV can
naturally infect hematopoietic progenitor cells, it is a promising candidate for gene transfer
into hematopoietic cells [42].

CMV promotes high and consistent gene expression within its host. Expression of
CMV genes is temporally regulated, designated as immediate-early (IE), early (E), and
late (L) gene expression phases [43]. HCMV’s major IE (MIE) genes include UL123 (IE1)
and UL122 (IE2) which encode crucial proteins for regulating viral gene expression [44–46].
IE1 is imperative for replication at a low multiplicity of infection (MOI), while IE2 is
required for early viral gene expression and viral replication [47–50]. Promoters derived
from the enhancer region of the CMV IE promoter strongly drive transgene expression
in mammalian cells due to their robust and persistent gene expression and compatibility
with multiple cell types [51,52]. Within gene therapy applications, CMV promoters have
been extensively studied in clinical trials because of this characteristic [53,54]. Accordingly,
the CMV MIE promoter is frequently included in CMV vectors to drive expression of the
foreign gene they carry, provoking constitutive and stable gene expression.

Viral vectors are frequently utilized as viral platforms for delivering immunogens to
hosts, demonstrating unique potential in vaccine development. In this aspect, CMV vectors
have a unique potential to treat various pathogens, cancers, and other diseases. CMV
periodically reactivates from latency, triggering a large, virus-specific CD8+ T cell response,
a phenomenon known as “memory inflation” [55]. These CD8+ T cells play important roles
in immune defense, eliminating pathogens and tumors by secreting cytotoxic effector cells
that clear infection [56]. When CMV induces memory inflation, it maintains CMV-specific
T cells that consist of approximately 5–10% of all T cells in a healthy host [57–59]. CMV-
driven T cells do not show signs of exhaustion and are capable of migrating to almost all
body tissues while maintaining functionality, stimulating a sustained and strong cellular
immune response against infectious diseases and cancer [58,60]. Due to this unique ability
to elicit memory inflation as well as sustain long-lived effector memory T cell responses,
CMV holds a significant advantage as a vaccine vector. Furthermore, CMV vectors may be
genetically tailored to deliver diverse CD8+ T cell responses that target each individual
disease, maximizing the immune responses to infections [61].

The overall properties of a CMV-based vector, as discussed previously, are concisely
summarized in Figure 1.

2.1. Single-Cycle Replication CMV Vectors

To ensure the safety of viral vectors in clinical applications, it is imperative to develop
non-replicating CMV vectors, as these vectors cannot propagate in vivo and possess an
excellent safety profile. Live-attenuated viruses, though promising, have been reported
to reactivate even after immune suppression [62], raising significant concerns. As an
alternative to live-attenuated viruses, single-cycle replication MCMV and RhCMV vectors
have been engineered to effectively address these issues. Research shows that these vectors
are non-pathogenic and do not spread to adjacent sites after initial infection [10,11], ensuring
a satisfactory safety profile.

For instance, the deletion of the Rh10 gene in a RhCMV vector has reduced in vivo
pathogenicity and replication in a study, yielding a live-attenuated RhCMV vector [63].
The removed Rh10 gene is known to encode the tegument protein pp150. Using this live
attenuated RhCMV/SIV vector, a robust and protective immune response against SIV was
generated [64], and importantly, RhCMV was unable to spread to new subjects. Another
study demonstrated that the deletion of a gL gene from RhCMV can produce a single-cycle
viral vector that induces a strong RhCMV-specific immune response [11].

Similarly, a single-cycle MCMV vector was generated by deleting an essential M94
gene (MCMV-∆94). This vector, expressing ovalbumin (AVA), triggered strong cellular
and humoral immune responses [10]. Additionally, the research found that a recombinant
MULT-1MCMV generated by expressing a high-affinity immune receptor ligand is capable
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of inducing a strong, protective immune response against the target antigen expressed
within the vector. The extensive investigation conducted on live-attenuated, single-cycle
CMV vectors highlights their potential as a novel platform for expressing diverse antigens
for vaccine and gene therapy applications while offering an enhanced safety profile.

2.2. CMV as a Self-Disseminating or Transmissible Vaccine Vector

The emergence of new viruses through zoonotic transmission presents a significant
health concern, requiring preemptive measures to prevent potential epidemics or pan-
demics. To curb the transmission of viruses from animal to human (zoonosis), the vac-
cination of small animals that harbor viruses has been proposed. For this purpose, self-
disseminating vectors have been considered as vaccine delivery vehicles. They could
allow immunized animals to transmit the vaccine vector to non-immunized individuals via
contagious or behavioral routes, reducing both costs and efforts [65]. However, identifying
a transmissible vector that can escape pre-existing immunity and infect new hosts is a
significant challenge. CMV stands out as a candidate for such as role, given its superinfec-
tion capability and the lack of protective immunity in previously immunized subjects [66].
Recent developments in the field have demonstrated the feasibility of using CMV as a
transmissible vector for generating vaccines against a broad spectrum of pathogens.

In fact, a method has recently been devised for DNA viruses to enable the production
of DNA virus vaccines for the vaccination of small animals. This method involves using a
chemical approach to produce chemically attenuated DNA viruses for vaccine develop-
ment [67]. Furthermore, a recent study has showcased the effectiveness of a CMV-vectored
transmissible vaccine against a wide range of pathogens. The results of this study strongly
suggest CMV’s utility as a valuable tool for developing vectored transmissible vaccines
and as a promising strategy to prevent zoonotic transmission [68].

3. CMV-Based Vectors and Gene Therapy

There have been many potential gene therapies successfully completed in preclinical
studies that are based on CMV vectors (Figure 2). Recently, CMV vectors have gained
more attention in the field of vaccine development, especially as conventional vaccina-
tion strategies encounter difficulties against formidable diseases such as AIDS and cancer.
CMV’s prominence as a vaccine vector is mainly attributed to its ability to induce robust
antigen-specific CD8+ T cells. Using CMV as a vaccine or gene therapy vector has multiple
advantages, one of which is that a CMV vector can be used as a dual vaccine that effec-
tively prevents both natural CMV infection and the target antigen cloned within the CMV
construct. With a focus on these characteristics, we will discuss the major applications of
CMV vectors that have been investigated so far. The impressive achievements in numerous
preclinical studies, which have utilized CMV vectors for gene therapies targeting conditions
such as HIV, cancer, malaria, TB, aging, and more, emphasize the pivotal role of CMV
vectors in the burgeoning field of gene therapy.

Table 1. List of CMV vector and other viral vector-based gene therapy.

Vaccine Vector Disease Target Genes References

TB vaccine RhCMV Tuberculosis Rv3407, Ag85B, Ag85A, Rv2626, ESAT-6,
Rv1733, RpFA, RpD and RpfC [69]

SIV vaccine RhCMV strain 68-1
(Attenuated) Highly pathogenic SIV Rev-tat-nef, gag, Env, Pol1 and Pol2 [63,64]

EBOLA vaccine RhCMV strain 68-1 EBOV EBOV GP [70]

SIV vaccine RhCMV strain 68-1 Highly pathogenic SIV Rev-tat-nef, gag, Env, Pol1 and Pol2 [8,9,69]

Malaria vaccine RhCMV strain 68-1 Malaria CSP, SSP2, AMA1, MSP1 [71]

EBOLA vaccine MCMV Smith strain
containing m157 deletion EBOV ZEBOV NP [72,73]
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Table 1. Cont.

Vaccine Vector Disease Target Genes References

Listeria monocytogenes
vaccine

Attenuated
RAE-1γMCMV Listeria monocytogenes Liseriolysis O91-99

Cancer Vaccine

MCMV containing
FKBP-mediated
destabilization of M79
gene

Tumor HPV16 E749-57 epitope [74]

TB vaccine MCMV: deletion of MHC
class I downregulators Erdman strain Mtb Mtb 85

EBOLA vaccine MCMV Smith strain with
m17 deletion ZEBOV ZEBOV NP [72,73]

RSV vaccine MCMV K181 strain with
m157 deletion RSV RSV M protein [75–77]

Influenza vaccine MCK2-repaired MCMV
Smith strain IAV PR8M Peptide IVL533-541 [78]

HSV-1 vaccine MCK2-repaired MCMV
Smith strain HSV-1 HSV-1 glycoprotein B498-505 [79]

Anti-aging gene therapy MCMV Smith strain Agiing mTERT and mFST [80]

Glioblastoma
multiforme vaccine HCMV strain TB40/E Glioblastoma multiforme HPV-16 concensus E6/E7 fusion protein [55]

Cancer HSV-1 Various cancer [29]

Head and Neck cancer Ad5 Head and Neck cancer P53/Gendicine [29]

EBOLA vaccine VSV ZEBOV [29]

Ad26.COV2.S Ad26 COVID19 JNJ-78436735 [29]

EBOLA vaccine Ad26 ZEBOV MVA-BN-Filo/Zabdeno [29]

Sputnik V Ad26
Ad5 COVID19 Sputnik V [29]

Covishield ChAD AZD1222 [29]

Neurological disease AAV9 Spinal Muscular atrophy Onasemnogene
Abeparvovec/ZOLGENSMA [29]

Metabolic disease AAV1 Familial
hyperchylomicrenemia Alipogene tiparvovec [29]
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3.1. Harnessing CMV Vectors for HIV Vaccination

The persistent global impact of human immunodeficiency virus (HIV) remains a
critical concern, marked by an estimated 1.3 million new infections in 2022 and a stag-
gering cumulative global death toll of approximately 40 million [81]. While combination
antiretroviral therapy (ART) has been highly successful in prolonging the lifespan of the
patient as well as limiting transmission, many HIV-infected individuals are either unaware
of the infection or unable to access vital antiviral treatments [81]. Thus, it is imperative
to develop a prophylactic HIV vaccine to significantly reduce transmission rates and en-
hance herd immunity [82,83]. However, because HIV is capable of evading host immunity
and damaging immune cells, conventional vaccination strategies encounter formidable
challenges in achieving long-term efficacy. In such circumstances, vaccine vectors have
emerged as a promising approach to induce HIV-specific immune responses, particularly
for a CMV-based vector that is capable of eliciting durable immune responses in an infected
host [84,85].

A CMV vaccine vector has attained a certain level of success against simian immun-
odeficiency virus (SIV), a virus that is closely related to HIV and infects a large range of
nonhuman primate hosts. An innovative study has developed a fibroblast-adapted rhesus
cytomegalovirus (RhCMV) laboratory strain 68-1 as a delivery vector to express SIV anti-
gens Gag, Rev/Nef/Tat and Env (RhCMV68-1/SIV) [8,9,86]. Impressively, 55% of rhesus
macaques that were vaccinated with RhCMV68-1/SIV attained early infection control and
sustained protection against the highly virulent SIVmac239 variant [8,86]. The vaccinated
subjects consistently exhibited robust and persistent SIV-specific CD8+ T cell responses,
indicating that RhCMV-vectored SIV vaccine triggered CD8+ T cells that played a pivotal
role in the control of SIV proliferation [87]. Interestingly, the RhCMV68-1/SIV vaccine
efficacy was shown to rely on unconventional, noncanonical CD8+ T cell responses [87,88].
Although RhCMV68-1/SIV was highly successful in preventing SIV infection, its protective
ability diminished when administered to antiretroviral-treated rhesus macaques post-SIV
infection, suggesting a narrow window of intervention for the viral vaccine to be effec-
tive [89]. Using RhCMV and SIV as a model, the success of this study implies that CMV
holds promise as a vaccine vector for HIV. The construction of an effective CMV-vectored
HIV vaccine may significantly relieve the global HIV epidemic.

3.2. Cancer Immunotherapy

As the pursuit of refined cancer treatment methodologies continues, cancer im-
munotherapy has emerged as a formidable alternative to conventional chemotherapy
and radiation. In particular, cancer vaccines are considered a promising strategy that aims
to use tumor antigen-specific immune responses to kill tumor cells [90]. Recombinant
viral vectors have garnered significant attention as versatile vehicles for vaccine delivery,
providing unique advantages as each virus has different properties that can be applied
in specific therapeutical settings. Of notable interest is CMV, a promising cancer vaccine
vector as CD8+ T cells promoted by CMV serve important roles in controlling tumor pro-
gression [6,7]. A noteworthy advantage of CMV-driven CD8+ T cells is that they do not
become exhausted and could potentially generate enough of an immune response over
time to control tumor growth in prophylactic or therapeutic settings [58,91]. So far, research
exploring the possibility of a cancer vaccine using murine CMV (MCMV) as a gene delivery
vehicle has undergone substantial advancements.

3.2.1. Studies in Prostate Cancer

Multiple studies have examined the possibility of using MCMV as a conduit for
gene delivery that functions as a cancer vaccine, propelling advances in prostate can-
cer immunotherapy. The first proof-of-concept study that demonstrated CMV’s efficacy
as a cancer vaccine utilized MCMV-based vaccines expressing human prostate-specific
antigen (PSA) for prostate cancer immunotherapy [92]. Within the transgenic adenocar-
cinoma of the mouse prostate (TRAMP) model, two MCMV-based vectors expressing
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either an H2-Db-restricted epitope PSA65-73 (MCMV/PSA65-73) or the full-length PSA gene
(MCMV/PSAFL) were developed and tested. While both vectors induced similarly compa-
rable levels of CD8 T cell responses that progressively escalated in the absence of tumor
challenge, MCMV/PSA65-73 demonstrated the most tangible impact. When the animals
were challenged with TRAMP-PSA tumor cells, MCMV/PSAFL showed no increase in
tumor-specific T cells and failed to slow tumor growth, while MCMV/PSA65-73 increased
PSA-specific CD8 T cell responses within the host and subsequently slowed tumor growth.
This pioneering study demonstrated that a CMV-based prostate cancer vaccine is capable
of eliciting an effective anti-tumor immune response [92].

3.2.2. Advances in Melanoma Therapeutics

In the pursuit of novel and effective avenues for cancer treatment, CMV has been
explored as a cancer vaccine for melanoma multiple times, with numerous studies display-
ing the potential of CMV-based cancer vaccines in delaying tumor growth in melanoma
models. A groundbreaking investigation led by the Hill laboratory featured the expres-
sion of unmodified melanoma antigen mouse tyrosinase-related protein 2 (TRP2) within
MCMV (MCMV-TRP2), testing its effectiveness as both a prophylactical and therapeutical
intervention in mice [93]. Prophylactic vaccination with MCMV-TRP2 yielded striking
outcomes, resulting in the rejection of B16-F10 melanoma cells and the establishment of
long-term protection against B16 melanoma challenge regardless of prior CMV infection.
Therapeutic vaccination delayed tumor growth and prolonged mice’s lifespan. Intriguingly,
the study uncovered that CD8+ T cells played a secondary role, while tumor-specific anti-
bodies induced by MCMV-TRP2 were crucial for a strong and long-lasting anti-melanoma
effect [93]. Subsequent research determined that the protective efficacy against melanoma
in this model relied on the expression of FcγRI on macrophages, further revealing the
complex interplay within the immunotherapeutic landscape [94].

The investigation of CMV-driven cancer vaccines against melanoma has manifested
in diverse studies with different CMV-based vectors, each unveiling promising results.
An innovative approach engineered a recombinant MCMV strain to express modified B16
melanoma antigen, gp100 (MCMV-gp100KGP), studying its potential in prophylactic and
therapeutic settings within a B16 lung metastatic melanoma mice model [95]. This resulted
in a robust and sustained gp100-specific CD8+ T cell response independent of prior CMV
infection and immunity, and immunization with MCMV-gp100KGP resulted in tumor
rejection in both prophylactic and therapeutic settings [95]. Another recombinant MCMV-
based vaccine vector expressing only the modified CD8+ T lymphocyte epitope was tested,
resulting in much slower tumor growth and increased lifespan after intratumoral adminis-
tration, although the vaccine had limited success when administered systematically [96].
Further investigation suggests that the ability of MCMV to protect against melanoma relies
significantly on boosting the activity of pre-existing tumor-specific CD8+ T lymphocytes
and their synergistic action with tumor-associated macrophages [4,96,97].

3.3. CMV-Based Tuberculosis Vaccines

Tuberculosis (TB) persists as a significant global health challenge and is one of the
leading causes of mortality worldwide with Mycobacterium tuberculosis (Mtb) as a single
infectious agent. The widely used bacillus Calmette–Guérin (BCG) vaccine for tuberculosis
affords limited protective capacity that diminishes with age [98]. Since Mtb has coex-
isted with humans for over 70,000 years, it has evolved to adapt unique immune evasion
strategies that hinder efforts to develop effective solutions for the current TB epidemic [99].
Given CMV’s innate ability to consistently sustain antigen-specific CD8+ T cells and achieve
secondary infection, it has recently been examined as a tuberculosis vaccine vector in both
murine and rhesus macaque models.

A recombinant MCMV expressing Mtb Ag 85A (MCMV85A) was engineered using
bacterial artificial chromosome (BAC) technology, the efficacy of which was assessed in
BALB/c mice. The outcomes were remarkable, revealing the establishment of protective
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immunity against M. tuberculosis, a defense that endured for at least 24 weeks [5]. The
MCMV85A vaccine generated a virus-specific adaptive response as well as a nonspecific
protective effect against the M. tuberculosis challenge. Although this vaccine demonstrated
efficacy against TB, the innate immunity of the host played a substantial role in MCMV85A’s
protective capacity, which may restrict the vaccine’s long-term effectiveness [4,5].

Another study developed RhCMV vectors expressing Mtb antigen (Ag) (RhCMV/TB)
to vaccinate rhesus macaques followed by challenges with the highly pathogenic Erdman
strain [69]. The vaccination instigated the induction and sustenance of Mtb-specific CD4+
and CD8+ T cell responses with high effector differentiation, resulting in an impressive 68%
reduction in Mtb infection and disease compared to unvaccinated controls. Additionally,
out of 34 vaccinated rhesus macaques, 14 were cleared of TB disease, with 10 rhesus
macaques demonstrating complete Mtb culture-negativity in all tissues. This achievement
demonstrated a CMV-based vaccine’s capability in combating Mtb, provided immune
effector responses can detect Mtb infection during its early stages [69].

In both studies, the CMV-vectored TB vaccines, MCMV85A and RhCMV/TB were
shown to protect against TB largely because they sustained persistent Mtb-specific immune
responses in the host. The inherent capability of CMV infections to trigger specific T cell
responses indicates that CMV-vectored vaccines for humans will elicit similar effector-
memory T cell responses, mirroring the potency of MCMV85A and RhCMV/TB against
tuberculosis. Thus, the effectiveness of the MCMV- and RhCMV-based vaccine vector for
TB implies the efficacy of a CMV-based vaccine for humans.

3.4. CMV Vaccine Vectors for Malaria

The relentless malaria epidemic has driven the endeavor for effective vaccines, particu-
larly against the pre-erythrocytic stage. The sporozoite vaccines against the pre-erythrocytic
stage of malaria are widely used, yet they lack a long-term effect due to their failure to
maintain effector T-cell responses in the liver. Subsequently, this has encouraged the de-
velopment of a new type of vaccine based on CMV, which can be viewed as a booster to
extend protection against malaria. A study has found that P. chabaudi MSP-1 epitope B5
(MCMV-B5) was able to increase the population of highly differentiated Tem and B5-specific
T cells, producing a formidable defense against malaria [3]. In addition, MCMV acted as
an adjuvant to stimulate IFN-gamma, which increased CD8α+ dendritic cell numbers and
caused increased IL-12 production.

Further illustrating the efficacy of a CMV vector, a study discovered that RhCMV was
highly stable and successful in maintaining effector memory T cells in extra lymphoid
tissues [9,71]. Notably, the strain 68-1 of RhCMV activated CD8+ T cells to recognize
unconventional epitopes exclusively restricted by MHC-II and MHC-E. Four Plasmodium
knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) were expressed in RhCMV 68–1
or Rh189-deleted 68–1. Furthermore, T-cell responses were successfully maintained in all
rhesus macaques upon inoculation [71]. The study observed the delayed appearance of
blood-stage parasites and significantly reduced parasite release from the liver, indicating
that it is possible to control malaria with unconventional Tem-inducing RhCMV vectors
and further improve current vaccines for malaria. With the success of RhCMV vectors
as a model, it is likely that CMV can be effectively used as a vaccine vector for malaria
in humans.

3.5. Influenza A and Coronavirus

Both severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) and influenza A
virus (IAV) have caused global pandemics and led to high levels of morbidity and mortality.
While certain effective vaccines have been developed to combat these viral infections and
diseases, there exist a myriad of side effects such as fever and fatigue. Moreover, the
vaccination regimens for both SARS-CoV-2 and IAV require a meticulous sequence of prime
and boost vaccination protocols, and vaccines for IAV have limited efficacy ranging from
19% to 60% depending on the circumstance [100]. Within this specific field, viral vaccine
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vectors have been explored as an alternative avenue to help overcome these hurdles. Viral
vectors have the significant advantage of eliminating the need for adjuvants and naturally
inducing both cellular and humoral adaptive immune responses [101,102]. In this aspect,
as a compelling candidate for vaccine delivery, CMV has been investigated as a potential
vaccine vector to target both SARS-Cov-2 and IAV.

A recent study generated two recombinant MCMV vaccine vectors using BAC-based
recombination: one expressing hemagglutinin of influenza A virus (MCMVHA), and the
other the spike protein of SARS-CoV-2 (MCMVS) [103]. A single-dose administration
of either vaccine vector to mice developed a potent neutralizing antibody response that
strengthened over time, with MCMVHA-vaccinated mice also receiving immune protection
after influenza infection. The immune protection offered by the vaccines was not reliant
on CD8+ T cell responses, but rather protective B-cell memory responses triggered by the
vaccines against the two pathogens. Through this study, it was discovered that MCMV
vectors induce both long-term cellular immunity and immune protection against respiratory
pathogens [103].

3.6. Gene Therapy for Aging

Aside from functioning as a vaccine vector, CMV has been applied to different areas
of gene therapy, exerting its influence across a wide range of domains. Recent strides
have witnessed CMV vectors applied to the field of gene therapy, specifically in the arena
of aging. By using CMV as a safe and effective gene delivery vehicle to increase mouse
lifespan, a recent study has demonstrated its potential to expand into the other broad
applications of viral vectors.

Telomerase reverse transcriptase (TERT) is an important protein in telomerase activa-
tion that increases telomere length [104], with TERT-deficient animals possessing shorter
telomeres [104]. Additionally, TERT-based complementary gene therapies have demon-
strated that the administration of TERT can reduce aging in treated animals [105,106].
Similarly, follistatin (FST) overexpression increased muscle mass [107] and conversely, mice
who were deficient in FST had few muscle fibers, showed skeletal defects, and died within
a few hours of birth [108]. In a recent study, MCMV has been used as a delivery vector for
anti-aging gene therapy by expressing TERT and FST proteins.

An engineered recombinant MCMV containing either mouse TERT or FST was de-
veloped using a BAC recombineering method and inoculated into 18-month-old mice
via intraperitoneal or intranasal routes [109]. As a result, the protein levels of TERT and
FST were significantly higher in the treated mice as opposed to their untreated or control
counterparts. Rigorous analysis, including RT-PCR and serum analysis of the treated
mice, demonstrated that CMV effectively delivered either TERT or FST to multiple mouse
tissues. Importantly, the lifespan of MCMV-TERT-treated mice was increased by approx-
imately 41% without undesirable side effects [80]. Equally striking, MCMV-FST-treated
mice showed a 32.5% increase in lifespan over untreated mice. MCMV-TERT-treated mice
had longer telomeres in different tissues compared to untreated mice, and the mice treated
with MCMV-FST were found to be heavier with 33% more body weight than the untreated
control. The anti-aging effects demonstrated by the two vectors extended beyond the phys-
ical domain, with mice treated with MCMV-TERT and MCMV-FST having not only better
coordination and improved activity as compared with untreated mice but also increased
glucose tolerance and better mitochondrial integrity. These outcomes demonstrate that
MCMV had successfully delivered functional TERT and FST into injected mice, indicating
that CMV is an exceptional viral vector to deliver target genes and may serve important
roles in gene therapy applications in the future.

3.7. Ebola Virus (EBOV) Vaccine

EBOV, a member of the filovirus family, is an ssRNA, non-segmented, and enveloped
negative RNA virus that causes severe hemorrhagic fever in humans. Human transmission
occurs through contact with infected material such as blood, tissues, or patients, often
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resulting in multiple organ failure and death. EBOV is able to infect many cell types in the
body, possessing a broad cell tropism. In preclinical studies, a CMV-based vector expressing
EBOV antigen, specifically an epitope from the Zaire EBOV nucleoprotein, was tested.
Immunization of mice with the MCMV vector expressing EBOV NP antigen generated
robust CD+ T cell responses against EBOV NP, leading to complete protection against lethal
EBOV challenge [72,73]. In another study, primates immunized with a RhCMV vector
expressing EBOV glycoproteins developed protective immunity against EBOV [70]. This
approach induced a strong IgG response and effectively shielded immunized animals from
lethal EBOV challenges. The investigation of CMV viral vector vaccines against EBOV
provides further evidence of the virus’s potential as a vaccine vector.

3.8. CMV Vector for Immunocontraception

Viral vectored immunocontraception (VVIC) involves administering genetically engi-
neered viruses that are designed to induce infertility by stimulating an immune response
against reproductive cells or essential reproductive antigens [110]. This birth control
method disrupts normal reproductive function and leads to sterility or infertility. In one
study, a wide range of self-antigens and synthetic polyepitope antigens were expressed
within a MCMV vector to evaluate its potential as an immunocontraceptive vaccine. For
example, different recombinant MCMV vectors were prepared using genetic engineering to
express mouse bone morphogenic protein 15 (BMP15), murine zona pellucida 3 (mZP3), N-
terminal ubiquitin tagged murine zona pellucida 3 (ZP3), and murine oviduct glycoprotein
(OGP). Mice infected with MCMV expressing murine ZP3 and MCMV expressing ubiquitin
tagged ZP3 were 100% infertile [110]. These results demonstrated MCMV’s success as a
viral vector immunocontraceptive vaccine to induce sterility or infertility.

4. Discussion

Safety and efficacy are considered two of the most important factors in viral vector
development. The benign nature of CMV’s attenuated strains combined with the efficacy of
CMV-based vectors has ignited fervent interest within the scientific community. Additional
properties of CMV such as its large packaging capacity, ability to achieve secondary infec-
tion, and broad cell tropism make CMV-based vectors compelling contenders for diverse
applications in the field of gene therapy. However, CMV vectors possess several inherent
limitations that may constrain their development and use.

A notable restriction arises in the context of vector development and production.
CMV’s slower growth in tissue culture impairs its suitability for large-scale vector pro-
duction [14]. Additionally, CMV’s strict species-specificity means the virus is only able
to be studied within its limited natural hosts, making it difficult to conduct studies of its
replication, pathogenesis, and other characteristics [111]. Moreover, CMV owns a large
genome that is not fully understood, making it difficult to directly construct a recombinant
CMV. Nevertheless, innovative tools such as Bacterial Artificial Chromosome (BAC) tech-
nology have paved a more efficient path. CMV genomes nestled within BAC constructs
facilitate the manipulation of viral genetic makeup, fostering deeper comprehension and
streamlined recombinant virus creation [35,112,113]. The use of BAC technology has made
the identification of CMV gene functions, mutagenesis of the viral genome, and especially
production of recombinant viruses simpler and more convenient [114]. The engineering of
mutant CMV strains with BAC is more straightforward, as desired mutations can be easily
achieved and confirmed inside the E. coli cell [113]. BAC also enables research on removing
CMV genes that interfere with immune function, improving the efficacy of CMV-based
vaccine vectors [115–117].

Live CMV vectors face the common challenge of prolonged storage within certain
conditions. Live viral vaccine vectors are typically difficult to preserve and prone to insta-
bility, especially if exposed to high temperatures and multiple freeze-thaw cycles [118,119].
A recombinant HCMV vector (rHCMV-1) experienced large vector titer losses after being
stored at 4 ◦C and undergoing a freeze-thaw cycle [120]. Further investigation revealed that
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the removal of NaCl, which decreased the ionic strength, and the incorporation of additives
including sugars and polymers decreased viral titer losses caused by freeze-thaw cycles,
while optimized solution pH, buffers, and sugar types protected rHCMV-1 titer losses
against prolonged storage at 4 ◦C in liquid state [120]. However, maintaining the stability
of live CMV-based vectors remains a problem for its long-term storage and widespread use
and distribution.

CMV-based vectors have repeatedly demonstrated their potential as vaccines and
gene delivery vehicles in multiple studies spanning murine and rhesus macaque models.
While they have shown excellent efficacy in nonhuman models, it is unclear if the same
results will be achieved when translated to humans. A major reason that CMV-based
vaccine vectors are successful within non-human models is that CMV naturally induces
memory inflation within its host [85]. Thus, RhCMV- and MCMV-based vectors that relied
on sustained populations of antigen-specific CD8+ T cells to achieve effectiveness should
theoretically provide highly similar results when translated to humans. Research indicates
that HCMV orthologs of certain RhCMV genes, including UL128/130, UL146/UL147, and
UL40, conserve the potent ability to program CD8+ T cell responses [121]. RhCMV and
MCMV’s similarities to HCMV’s genomes, viral pathogenesis, and other functions also
suggest that the outcomes of RhCMV and MCMV-based vectors in their respective non-
human models can be effectively translated to humans [111,122,123]. However, the complex
differences between RhCMV or MCMV and HCMV may still pose a significant challenge
in translating their investigated efficacy to humans. For this reason, further investigation is
crucial in understanding the potential translation of CMV vectors to humans. Nevertheless,
studies with RhCMV and MCMV-based vectors have highlighted the importance of further
refining HCMV vectors and researching how they may be developed to produce beneficial
effects in humans.

Despite these challenges, CMV vectors have showcased their prowess across diverse
ailments, affirming their potential in gene therapy and vaccine development. Multiple
studies thus far have shown the success of CMV vectors in the treatment of diseases and
other forms of gene therapy. Still, more research and clinical trials need to be conducted to
better understand the mechanisms behind certain CMV characteristics and ensure efficient
translation of CMV vectors to humans for potential clinical uses. The possible applications
for viral vectors are broad, and for a CMV-based vector that holds unique advantages, a
promising future lies ahead.
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