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Abstract: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has become a global pandemic. The interplay between innate and
adaptive immune responses plays a crucial role in managing COVID-19. Cell therapy has recently
emerged as a promising strategy to modulate the immune system, offering immense potential for the
treatment of COVID-19 due to its customizability and regenerative capabilities. This review provides
an overview of the various subsets of immune cell subsets implicated in the pathogenesis of COVID-19
and a comprehensive summary of the current status of immune cell therapy in COVID-19 treatment.
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1. Introduction

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), has had a devastating impact worldwide for over four years. This
novel infectious disease has resulted in millions of fatalities, with the death tolls continuing
to rise due to the emergence of new variants [1]. COVID-19 presents with respiratory symp-
toms associated with viral replication, along with systemic effects, making it a complex
illness [2]. Common symptoms include fever, cough, and respiratory distress, with severe
cases progressing to respiratory failure and even death [3].

The pathophysiology of COVID-19 is primarily characterized by dysregulated im-
mune responses against SARS-CoV-2, involving both innate and adaptive immune compo-
nents [4]. This dysregulation not only hinders viral clearance but also leads to inflammation,
tissue damage in the lungs, and multi-organ damage systemically [5]. Various immune
cells, including T cells, natural killer (NK) cells, dendritic cells (DCs), and macrophages,
play crucial roles in SARS-CoV-2 infections [6]. Hence, immunotherapy targeting these
immune cells presents a promising avenue for mitigating the pathology of SARS-CoV-2
infection, preventing long-term complications, and improving overall survival rates in
infectious diseases.

Cellular therapy, an innovative approach to disease treatment, involves the utiliza-
tion of specialized cells with specific functions obtained through bioengineering and ex
vivo expansion, followed by reinfusion into the patient’s body [7]. Chimeric antigen
receptor (CAR) T-cell therapy, which has gained approval from the US Food and Drug
Administration, has demonstrated significant advancements in the treatment of B-cell
malignancies [8]. Immune-cell-based therapies offer distinct advantages over conventional
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treatments, including high selectivity, localized concentration, and personalization [9]. Over
the past decade, cancer immunotherapy has witnessed remarkable success, establishing
immune cell therapy as a transformative treatment modality for various diseases, including
COVID-19.

In the context of COVID-19, immune cell therapy is a promising approach for effective
treatment. This review provides an overview of the different immune cell subsets involved
in the pathogenesis of COVID-19 and summarizes the progress in immune cell therapy
research and clinical trials targeting COVID-19 (Table 1).

Table 1. Immune-cell-based therapy clinical trials for COVID-19.

Strategy Study Title Phase NCT Number Status

Specific T cell
Safety Infusion of Natural Killer cells or Memory T Cells

as Adoptive Therapy in COVID-19 pneumonia or
Lymphopenia

1 and 2 NCT04578210 Completed

Generation of SARS-CoV-2-specific T Lymphocytes from
Recovered Donors and Administration to High-risk

COVID-19 Patients
1 and 2 NCT05447013 Recruiting

Novel Adoptive Cellular Therapy With SARS-CoV-2
Specific T Cells in Patients with Severe COVID-19 1 NCT04351659 Recruiting

Part Two of Novel Adoptive Cellular Therapy With
SARS-CoV-2 Specific T Cells in Patients with Severe

COVID-19
1 and 2 NCT04457726 Unknown

status

Viral Specific T Cell Therapy for COVID-19 Related
Pneumonia 1 NCT04742595 Recruiting

Treg REgulatory T Cell infuSion fOr Lung Injury Due to
COVID-19 PnEumonia (RESOLVE) 1 NCT04468971 Completed

RAPA-501-Allo Therapy of COVID-19-ARDS 1 and 2 NCT04482699 Terminated
NLow Dose of IL-2 In Acute Respiratory DistrEss

Syndrome Related to COVID-19 (LILIADE-COVID) 2 NCT04357444 Completed

Tregs for the Treatment of Acute Respiratory Distress
Syndrome (ARDS) Associated With COVID-19

(regARDS)
1 NCT05027815 Terminated

NK cells A Phase I/II Study of Universal Off-the-shelf
NKG2D-ACE2 CAR-NK Cells for Therapy of COVID-19 1 and 2 NCT04324996 Unknown

status

Fase I Clinical Trial on NK Cells for COVID-19 1 NCT04634370 Unknown
status

Natural Killer Cell (CYNK-001) Infusions in Adults With
COVID-19 1 and 2 NCT04365101 Active, not

recruiting
Off-the-shelf NK Cells (KDS-1000) as Immunotherapy for

COVID-19 1 and 2 NCT04797975 Withdrawn

NK Cells Treatment for COVID-19 1 NCT04280224 Recruiting

Dendritic cells Injection and infusion of LV-SMENP DC vaccine and
antigen-specific CTLs 3 NCT04276896 Recruiting

Phase I-II Trial of Dendritic Cell Vaccine to Prevent
COVID-19 in Adults 1 and 2 NCT04386252 Withdrawn

A Study to Evaluate the Efficacy, Immune Response, and
Safety of a COVID-19 Vaccine in Adults ≥ 18 Years with
a Pediatric Expansion in Adolescents (12 to <18 Years) at

Risk for SARS-CoV-2

3 NCT04611802 Active, not
recruiting

Study to Describe the Safety, Tolerability,
Immunogenicity, and Efficacy of RNA Vaccine

Candidates Against COVID-19 in Healthy Individuals
3 NCT04368728 Completed

A Study to Evaluate Efficacy, Safety, and
Immunogenicity of mRNA-1273 Vaccine in Adults Aged

18 Years and Older to Prevent COVID-19
3 NCT04470427 Completed

Dendritic Cell Vaccine to Prevent COVID-19 1 NCT04685603 Unknown
status



Viruses 2023, 15, 2148 3 of 16

Table 1. Cont.

Strategy Study Title Phase NCT Number Status
Dendritic Cell Vaccine, AV-COVID-19, to Prevent

COVID-19 Infection 1 NCT04690387 Completed

Phase I-II Trial of Dendritic Cell Vaccine to Prevent
COVID-19 in Adults 1 and 2 NCT04386252 Withdrawn

Preventive Dendritic Cell Vaccine, AV-COVID-19, in
Subjects Not Actively Infected with COVID-19 2 NCT05007496 Completed

Training the Innate Immune System Against
SARS-CoV-2 (COVID-19) Using the Shingrix Vaccine in

Nursing Home Residents (NH-Shingrix)
1 NCT04523246 Active, not

recruiting

Monocytes The MONACO Cell Therapy Study: Monocytes as an
Anti-fibrotic Treatment After COVID-19 (MONACO) 1 and 2 NCT04805086 Unknown

status
Mesenchymal

stem cells
Mesenchymal Stem Cells Therapy in Patients With

COVID-19 Pneumonia
Not

applicable NCT04713878 Completed

A Proof of Concept Study for the DNA Repair Driven by
the Mesenchymal Stem Cells in Critical COVID-19

Patients (REPAIR)

Not
applicable NCT04898088 Completed

NestaCell® Mesenchymal Stem Cell to Treat Patients
with Severe COVID-19 Pneumonia (HOPE)

2 NCT04315987 Completed

An Exploratory Study of ADR-001 in Patients with
Severe Pneumonia Caused by SARS-CoV-2 Infection

(COVID-19)
1 NCT04522986 Completed

Therapeutic Study to Evaluate the Safety and Efficacy of
DW-MSC in COVID-19 Patients (DW-MSC) 1 NCT04535856 Completed

Mesenchymal Stromal Cells for the Treatment of
SARS-CoV-2 Induced Acute Respiratory Failure

(COVID-19 Disease)
1 and 2 NCT04345601 Completed

Efficacy of Infusions of MSC from Wharton Jelly in the
SARS-CoV-2 (COVID-19) Related Acute Respiratory

Distress Syndrome (MSC-COVID19)
2 NCT04625738 Completed

Mesenchymal Stem Cells for the Treatment of COVID-19 1 NCT04573270 Completed
A Randomized, Double-Blind, Single Center, Efficacy
and Safety Study of Allogeneic HB-adMSCs Against

COVID-19.
2 NCT04348435 Completed

A Clinical Trial to Determine the Safety and Efficacy of
HB-adMSCs to Provide Protection Against COVID-19 2 NCT04349631 Completed

A First-In-Human Phase 1b Study of AmnioPul-02 in
COVID-19/Other LRTI 1 NCT05348772 Completed

Menstrual Blood Stem Cells in Severe Covid-19 1 and 2 NCT05019287 Completed
Treatment With Human Umbilical Cord-derived

Mesenchymal Stem Cells for Severe Corona Virus
Disease 2019 (COVID-19)

2 NCT04288102 Completed

Use of UC-MSCs for COVID-19 Patients 1 and 2 NCT04355728 Completed
Clinical Trial to Assess the Safety and Efficacy of
Intravenous Administration of Allogeneic Adult

Mesenchymal Stem Cells of Expanded Adipose Tissue in
Patients with Severe Pneumonia Due to COVID-19

1 and 2 NCT04366323 Completed

Treatment of COVID-19 Associated Pneumonia with
Allogenic Pooled Olfactory Mucosa-derived

Mesenchymal Stem Cells
1 and 2 NCT04382547 Completed

The MEseNchymal coviD-19 Trial: MSCs in Adults with
Respiratory Failure Due to COVID-19 or Another

Underlying Cause (MEND)
1 and 2 NCT04537351 Completed

Clinical Use of Stem Cells for the Treatment of Covid-19 1 and 2 NCT04392778 Completed
Efficacy and Safety Evaluation of Mesenchymal Stem
Cells for the Treatment of Patients with Respiratory

Distress Due to COVID-19 (COVIDMES)
1 and 2 NCT04390139 Completed



Viruses 2023, 15, 2148 4 of 16

Table 1. Cont.

Strategy Study Title Phase NCT Number Status
Evaluate the Safety and Efficacy of Allogeneic Umbilical

Cord Mesenchymal Stem Cells in Patients With
COVID-19 (UMSC01)

1 and 2 NCT05501418 Active, not
recruiting

Regenerative Medicine for COVID-19 and Flu-Elicited
ARDS Using Lomecel-B (RECOVER) (RECOVER) 1 NCT04629105 Active, not

recruiting
Use of Mesenchymal Stem Cells in Acute Respiratory

Distress Syndrome Caused by COVID-19
Early

phase 1 NCT04456361 Active, not
recruiting

Multiple Dosing of Mesenchymal Stromal Cells in
Patients with ARDS (COVID-19) 2 NCT04466098 Active, not

recruiting
Umbilical Cord Lining Stem Cells (ULSC) in Patients

With COVID-19 ARDS (ULSC) 1 and 2 NCT04494386 Active, not
recruiting

Study of the Safety of Therapeutic Tx with
Immunomodulatory MSC in Adults With COVID-19

Infection Requiring Mechanical Ventilation
1 NCT04397796 Active, not

recruiting

Efficacy and Safety Study of Allogeneic HB-adMSCs for
the Treatment of COVID-19 2 NCT04362189 Terminated

Study of Intravenous COVI-MSC for Treatment of
COVID-19-Induced Acute Respiratory Distress 2 NCT04903327 Terminated

hCT-MSCs for COVID19 ARDS 1 and 2 NCT04399889 Terminated
MSCs in COVID-19 ARDS 3 NCT04371393 Terminated

Mesenchymal Stem Cell Infusion for COVID-19 Infection 2 NCT04444271 Unknown
status

Mesenchymal Stem Cell for Acute Respiratory Distress
Syndrome Due for COVID-19 (COVID-19) 2 NCT04416139 Unknown

status
Novel Coronavirus Induced Severe Pneumonia Treated

by Dental Pulp Mesenchymal Stem Cells
Early

phase 1 NCT04302519 Unknown
status

Safety and Efficacy of Mesenchymal Stem Cells in the
Management of Severe COVID-19 Pneumonia (CELMA) 2 NCT04429763 Unknown

status
Safety and Effectiveness of Mesenchymal Stem Cells in

the Treatment of Pneumonia of Coronavirus Disease 2019
Early

phase 1 NCT04371601 Unknown
status

Mesenchymal Stem Cells in Patients Diagnosed With
COVID-19 1 NCT04611256 Unknown

status
Bone Marrow-Derived Mesenchymal Stem Cell

Treatment for Severe Patients with Coronavirus Disease
2019 (COVID-19)

1 and 2 NCT04346368 Unknown
status

Administration of Allogenic UC-MSCs as Adjuvant
Therapy for Critically-Ill COVID-19 Patients 1 NCT04457609 Unknown

status
Mesenchymal Stem Cell Treatment for Pneumonia

Patients Infected With COVID-19 1 NCT04252118 Unknown
status

Clinical Research of Human Mesenchymal Stem Cells in
the Treatment of COVID-19 Pneumonia 1 and 2 NCT04339660 Unknown

status
Mesenchymal Stem Cell Therapy for SARS-CoV-2-related

Acute Respiratory Distress Syndrome 2 and 3 NCT04366063 Unknown
status

Safety and Efficacy Study of Allogeneic Human Dental
Pulp Mesenchymal Stem Cells to Treat Severe COVID-19

Patients
1 and 2 NCT04336254 Unknown

status

Treatment of COVID-19 Patients Using Wharton’s
Jelly-Mesenchymal Stem Cells 1 NCT04313322 Unknown

status
Study of Human Umbilical Cord Mesenchymal Stem

Cells in the Treatment of Severe COVID-19
Not

applicable NCT04273646 Unknown
status

Treatment of Coronavirus COVID-19 Pneumonia
(Pathogen SARS-CoV-2) With Cryopreserved Allogeneic

P_MMSCs and UC-MMSCs
1 and 2 NCT04461925 Unknown

status

Treatment of Severe COVID-19 Patients Using Secretome
of Hypoxia-Mesenchymal Stem Cells in Indonesia 2 NCT04753476 Unknown

status
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Table 1. Cont.

Strategy Study Title Phase NCT Number Status
A Study of Cell Therapy in COVID-19 Subjects with

Acute Kidney Injury Who Are Receiving Renal
Replacement Therapy

1 and 2 NCT04445220 Unknown
status

A Study to Collect Bone Marrow for Process
Development and Production of BM-MSC to Treat Severe

COVID19 Pneumonitis (COMET20d)
Observational NCT04397471 Unknown

status

Safety and Efficacy of Intravenous Wharton’s Jelly
Derived Mesenchymal Stem Cells in Acute Respiratory

Distress Syndrome Due to COVID 19
1 and 2 NCT04390152 Unknown

status

Umbilical Cord (UC)-Derived Mesenchymal Stem Cells
(MSCs) Treatment for the 2019-novel Coronavirus(nCOV)

Pneumonia
2 NCT04269525 Unknown

status

Mesenchymal Stromal Cells for the Treatment of Patients
With COVID-19. 1 and 2 NCT05433298 Withdrawn

ASC Therapy for Patients with Severe Respiratory
COVID-19 (ASC COVID-19) 1 and 2 NCT04341610 Withdrawn

Study of Allogeneic Adipose-Derived Mesenchymal
Stem Cells to Treat Post COVID-19 “Long Haul”

Pulmonary Compromise
2 NCT04909892 Withdrawn

Study of Intravenous Administration of Allogeneic
Adipose-Derived Mesenchymal Stem Cells for
COVID-19-Induced Acute Respiratory Distress

2 NCT04728698 Withdrawn

Study of Allogeneic Adipose-Derived Mesenchymal
Stem Cells for Non-COVID-19 Acute Respiratory

Distress Syndrome
2 NCT04909879 Withdrawn

Umbilical Cord Tissue (UC) Derived Mesenchymal Stem
Cells (MSCs) Versus Placebo to Treat Acute Pulmonary

Inflammation Due to COVID-19 (COVID-19)
1 NCT04490486 Withdrawn

BAttLe Against COVID-19 Using MesenchYmal Stromal
Cells 2 NCT04348461 Suspended

A Study of ADR-001 in Patients with Severe Pneumonia
Caused by SARS-CoV-2 Infection (COVID-19) 2 NCT04888949 Recruiting

A Clinical Study on Safety and Effectiveness of
Mesenchymal Stem Cell Exosomes for the Treatment of

COVID-19.

Early
phase 1 NCT05787288 Recruiting

Cord Blood-Derived Mesenchymal Stem Cells for the
Treatment of COVID-19 Related Acute Respiratory

Distress Syndrome
1 and 2 NCT04565665 Recruiting

Application and Research of Mesenchymal Stem Cells in
Alleviating Severe Development of COVID-19 Infection 1 and 2 NCT05741099 Recruiting

UC-MSCs in the Treatment of Severe and Critical
COVID-19 Patients 3 NCT05682586 Recruiting

Allogenic UCMSCs as Adjuvant Therapy for Severe
COVID-19 Patients (UCMSC) 2 and 3 NCT05132972 Recruiting

A Phase II Study in Patients with Moderate to Severe
ARDS Due to COVID-19 2 NCT04780685 Recruiting

Study of Allogeneic Adipose-Derived Mesenchymal
Stem Cells for Treatment of COVID-19 Acute Respiratory

Distress
2 NCT04905836 Recruiting

Randomized Double-Blind Phase 2 Study of Allogeneic
HB-adMSCs for the Treatment of Chronic

Post-COVID-19 Syndrome (HBPCOVID02)
2 NCT05126563 Recruiting

Study to Evaluate the Efficacy and Safety of AstroStem-V
in Treatment of COVID-19 Pneumonia 1 and 2 NCT04527224 Recruiting

Safety and Efficacy of Umbilical Cord Mesenchymal
Stem Cell Exosomes in Treating Chronic Cough After

COVID-19

Early
phase 1 NCT05808400 Recruiting



Viruses 2023, 15, 2148 6 of 16

Table 1. Cont.

Strategy Study Title Phase NCT Number Status
UC-MSCs in the Treatment of Severe and Critical

COVID-19 Patients with Refractory Hypoxia 3 NCT05689008 Recruiting

Study of Descartes-30 in Acute Respiratory Distress
Syndrome 1 and 2 NCT04524962 Recruiting

Mesenchymal Stem Cells for the Treatment of Various
Chronic and Acute Conditions 1 and 2 NCT04684602 Recruiting

Repair of Acute Respiratory Distress Syndrome by
Stromal Cell Administration (REALIST) (REALIST 1 and 2 NCT03042143 Recruiting

Autologous Adipose-derived Stem Cells (AdMSCs) for
COVID-19 2 NCT04428801 Not yet

recruiting
Mesenchymal Stromal Cells for COVID-19 and Viral

Pneumonias (SAMPSON-1) 1 NCT05286255 Not yet
recruiting

Clinical Study for Subjects With COVID-19 Using
Allogeneic Adipose Tissue-Derived Mesenchymal Stem

Cells (AdMSCs)
2 NCT05017298 Not yet

recruiting

Treatment of Long COVID Symptoms Utilizing
Autologous Stem Cells Following COVID-19 Infection 1 NCT05669261 Not yet

recruiting
Study of Allogeneic Adipose-Derived Mesenchymal

Stem Cells to Treat Post COVID-19 “Long Haul”
Pulmonary Compromise (BR)

2 NCT04992247 Not yet
recruiting

Efficacy and Safety of Umbilical Cord Mesenchymal
Stem Cells in the Treatment of Long COVID-19 2 NCT05719012 Not yet

recruiting
Mesenchymal Stem Cells (MSCs) in

Inflammation-Resolution Programs of Coronavirus
Disease 2019 (COVID-19) Induced Acute Respiratory

Distress Syndrome (ARDS)

2 NCT04377334 Not yet
recruiting

Use of hUC-MSC Product (BX-U001) for the Treatment of
COVID-19 With ARDS 1 and 2 NCT04452097 Not yet

recruiting
AllogeneiC Expanded Human MSC Therapy in Patients
Recovering From COVID-19 Acute Respiratory Distress

Trial (ACE_CARD)
1 NCT05491681 Not yet

recruiting

2. T Cell Therapy

T lymphocytes, derived from lymphoid stem cells in the bone marrow, undergo
differentiation and maturation in the thymus. They then circulate through the lymph and
blood, playing a critical role in cellular immunity throughout various immune organs
and tissues in the body. Pathological excessive inflammation, associated with lymphocyte
reduction and dysregulated T cell responses, is one of the immunological characteristics of
COVID-19 [10]. The success of T cell therapy in treating life-threatening viral infections
supports its potential application in COVID-19 treatment [11].

2.1. Specific T Cell Therapy in COVID-19

Specific T cell therapy involves isolating and expanding virus-specific T cells that
can recognize the structural proteins of SARS-CoV-2, particularly the membrane protein
(Figure 1a). Notably, blood from donors exposed to SARS-CoV-2 contains memory CD4
and CD8+ T cells capable of recognizing various viral antigens, including spike proteins,
nucleocapsid proteins, and membrane antigens [12]. Cultivating SARS-CoV-2-specific
T cells in the presence of interleukin (IL)-2/4/7 can increase their proliferation by over
1000 times while preserving their phenotype, function, and antigen recognition hierarchy
compared to baseline samples [13]. This approach allows for the generation of expanded
cytotoxic T lymphocytes (CTLs) targeting the structural proteins of SARS-CoV-2, including
the receptor-binding domain of the spike protein [13]. Incorporating HLA-E-restricted
CD8 T cells into T cell immunotherapy for COVID-19 offers several advantages, including
the ability to eliminate infected cells, inhibit intracellular infection, reduce inflammatory
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reactions, and limit tissue damage, which are important mechanisms in the pathogenesis of
COVID-19 [14].
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the effects of Treg transplantation from umbilical cord blood. Two patients with acute 
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blood-derived Tregs that were expanded in vitro, resulting in a significant reduction in 
the production of inflammatory mediators and achieving good efficacy. Further clinical 
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Figure 1. Three types of T cell therapies available for treating life-threatening viral infections.
(a) SARS-CoV-2-specific T cells that specifically recognize the structural antigen membrane protein of
SARS-CoV-2. (b). CAR-T cells specially designed to identify the viral antigen N protein of SARS-CoV-
2. (c). Tregs play a key role in suppressing the activation, proliferation, and effector functions of other
immune cells, thereby playing a protective role in inhibiting autoimmune inflammatory reactions in
COVID-19 patients with excessive inflammation and cytokine storms.

In vitro experiments have demonstrated that clinically relevant levels of SARS-CoV-
2-specific T cells maintain their functionality and proliferative capacity while retaining
their specific cytotoxic potential. These T cells exhibit functional and phenotypic stability
within days after enrichment [15]. In vitro expansion and isolation of SARS-CoV-2-specific
T cells producing IFNγ have been successfully achieved, showing peptide-specific cytolytic
and proliferative responses upon re-exposure to the antigen [16]. Furthermore, in vitro
expanded SARS-CoV-2 antigen-specific T cells using partially HLA-matched third-party
products have shown potential in the treatment of severe cases of COVID-19 unresponsive
to previous interventions [17]. Currently, a phase I clinical trial is underway to assess the
safety and feasibility of immunotherapy with infused CD45RA memory T cells, including
SARS-CoV-2-specific T cells, for the treatment of moderate to severe COVID-19 cases [18].
Additionally, a randomized (2:1), open-label phase I/II trial is evaluating the safety and
efficacy of pre-made, partially human leukocyte antigen (HLA)-matched SARS-CoV-2-
specific T cells from recovered patients (CoV-2-STs) in combination with standard-of-care
therapy (SoC) for the treatment of severe COVID-19 patients [19]. Numerous clinical trials
investigating specific T cell therapies for COVID-19 are currently underway (Table 1).

2.2. CAR-T Cell Therapy in COVID-19

CAR-T cells, which are engineered T cells with the ability to specifically recognize
and attack tumor cells, have emerged as a promising approach for combating COVID-19.
These CAR-T cells are designed to target SARS-CoV-2 viral antigens, particularly the N
protein(Figure 1b). Mathematical models have been developed to describe the dynamics of
infection involving the virus, CAR-T cells, and memory cells. Theoretical analysis suggests
that this approach can generate positive therapeutic effects by delaying viral production,
which is particularly beneficial in the early stages of infection. This study highlights the
potential use of CAR-T cells as an antiviral therapy for COVID-19 [20].
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3. Tregs Therapy

Regulatory T cells (Tregs) are a group of immune-suppressive cells that play a crucial
role in maintaining immune homeostasis and preventing autoimmune reactions [21,22].
Some studies have indicated a decrease in the number of Tregs in the peripheral blood of
COVID-19 patients [23–26]. Mahmoud et al. evaluated the frequencies of Tregs and
Th17 cells in healthy individuals and COVID-19 patients using flow cytometry. The
results showed a significant decrease in the frequency of Tregs and an increase in the
frequency of Th17 cells and the Th17/Treg ratio, particularly in severe COVID-19 patients.
Moreover, the expression levels of ROR-γt and FoxP3 were found to increase and decrease,
respectively, as the disease progressed [24]. Another study demonstrated that non-survivor
patients had lower levels of Tregs and lower FOXP3 expression compared to survivors.
However, conflicting results regarding changes in Treg levels in COVID-19 patients have
also been reported. Some studies have shown a significant increase in the frequency of
CD25+CD127-Foxp3+ Tregs in critically ill COVID-19 patients [27,28].

However, Tregs play a crucial role in suppressing the activation, proliferation, and
effector functions of other immune cells, and they are involved in inhibiting self-immune
inflammatory reactions. Tregs may exert a protective effect on COVID-19 patients with
excessive inflammation and cytokine storms [29,30]. Based on the anti-inflammatory
characteristics of Tregs, Treg-based immunotherapy may provide a viable option for treating
COVID-19 (Figure 1c). This viewpoint is supported by a recent case study that examined
the effects of Treg transplantation from umbilical cord blood. Two patients with acute
respiratory distress syndrome received two to three different allogeneic umbilical-cord-
blood-derived Tregs that were expanded in vitro, resulting in a significant reduction in
the production of inflammatory mediators and achieving good efficacy. Further clinical
trials are being conducted to explore the use of umbilical-cord-blood-derived Tregs for the
treatment of COVID-19-related acute respiratory distress syndrome (ARDS) (Table 1) [31].
Additionally, Harb et al. found that increased expression of Notch4 in circulating Tregs
is associated with disease severity and can predict mortality, with decreased expression
observed after recovery. Increased Notch expression can restrict Treg-mediated tissue
repair and promote severe lung inflammation during viral infections [32]. Inhibiting
Notch expression may be a potential approach for treating COVID-19. Currently, there are
four clinical trials for Treg cell therapy in COVID-19, including two completed and two
terminated (Table 1).

4. NK Cell Therapy

NK cells, also known as natural killer cells, are a type of large granular lymphocyte
belonging to the innate immune system. They constitute approximately 5–20% of the total
lymphocyte population in the human body [33]. NK cells originate from lymphoid progen-
itor cells and undergo maturation at various locations, such as the bone marrow, thymus,
and spleen, before entering the bloodstream [34]. In response to viral infection, NK cells
can directly or indirectly eliminate virus-infected cells through the release of perforin and
granzymes or by exerting antibody-dependent cellular cytotoxicity (ADCC) [35]. Cytokines
like IL-2, IL-12, and IL-15 can induce NK cells to secrete pro-inflammatory cytokines, such
as TNF-α and IFN-γ, activating other immune responses to control viral infections [36].
Notably, COVID-19 patients often experience a significant decrease in NK cell numbers [37].

Building upon the understanding of NK cell biology, many researchers have utilized
NK cell therapy to treat viral infections caused by key human pathogens, including SADS,
influenza, and the SARS-CoV-2 virus [38–40]. NK cell therapy has demonstrated promising
results in the treatment of COVID-19 infection in animal studies. Lu et al. developed
mACE2-CAR, a fusion protein combining a mutated fragment of ACE2 (mACE2) with
intracellular signaling domains CD28 and CD3ζ, and incorporated it into NK cells isolated
from umbilical cord blood, resulting in mACE2-CAR-sIL15 NK cells. The study revealed
that these NK cells exhibited strong protective effects against SARS-CoV-2 infection in K18-
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hACE2 mice, a transgenic mouse model expressing human ACE2 in respiratory epithelial
cells [41].

NK cell therapy for the treatment of COVID-19 has progressed to the clinical trial stage
(Table 1). CAR-NK cells, derived from umbilical cord blood, have been genetically engi-
neered to target two specific molecules, MKG2D and ACE2. By binding to these molecules,
CAR-NK cells can prevent SARS-CoV-2 viral infection of ACE2-expressing host cells and
enhance the cytotoxicity of CAR-NK cells, enabling rapid elimination of virus-infected
cells [42]. Liu et al. constructed and prepared universal IL15 super-antagonist and GM-
CSF neutralizing scFv-secretory NKG2D-ACE2 CAR-NK cells from umbilical cord blood.
These CAR-NK cells target the S protein of SARS-CoV-2 and NKG2DL on the surface of
infected cells while also providing a preventive effect against cytokine release syndrome
(CRS) through IL15 super-antagonist and GM-CSF neutralizing scFv. This approach fa-
cilitates viral particle clearance. Furthermore, ACE2 CAR-NK cells can competitively
inhibit SARS-CoV-2 infection of type II alveolar epithelial cells and other vital organs or
tissues, effectively terminating the SARS-CoV-2 infection. That study is currently in phase
1/2 of clinical trials [43]. Another approach, known as CYNK-001 therapy, utilizes non-
genetically-modified natural killer (NK) cells derived from cryopreserved human placental
hematopoietic stem cells. CYNK-001 cells are obtained by expanding and differentiating
placental hematopoietic stem/progenitor CD34+ cells through a 35-day culture process [44].
CYNK-001 cells express NKG2D and CD94, as well as NK activation receptors DNAM1,
NKp30, NKp46, and NKp44. In preclinical studies, CYNK-001 has demonstrated a range of
biological activities expected from NK cells, including perforin and granzyme B expression.
Currently, CYNK-001 is undergoing phase 1/2 clinical trials for the treatment of COVID-19
infection [45].

5. DC Cell Therapy

Dendritic cell (DC) therapy has emerged as a promising approach in the field of
immunotherapy. DCs are considered the most effective antigen-presenting cells and play
crucial roles in both innate and adaptive immunity, as well as in the induction of immune
tolerance [46]. When exposed to viruses, DCs undergo stimulation and differentiate into
two distinct types. Uninfected DCs exert antiviral immune functions, while infected DCs
participate in immune evasion processes [47]. SARS-CoV-2 has the ability to infect DCs, and
studies have shown that this infection can lead to a decrease in the number and function of
DCs, resulting in acute immune dysfunction [48]. This immune dysfunction contributes to
the immune evasion of SARS-CoV-2.

Current research has identified various mechanisms through which SARS-CoV-2
can invade host cells, including binding with angiotensin-converting enzyme 2 (ACE2),
interacting with DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-
SIGN), interacting with CD147, and interacting with the dipeptidyl peptidase-4 (DPP4)
receptor [49,50]. DC-SIGN and CD147 are expressed on DCs, while ACE2 is expressed
on pulmonary interstitial DCs. Studies suggest that SARS-CoV-2 can replicate within
DCs, although DCs do not transmit the newly generated virus, indicating the ability of
SARS-CoV-2 to infect DCs. Clinical data further indicate a decrease in the proportion of
conventional DCs (cDCs) and plasmacytoid DCs (pDCs) during the acute and recovery
phases of the disease [48], as well as a reduction in the expression of IFN-α, IFN-β [51,52],
and co-stimulatory molecules. The impaired and disrupted function of DCs hampers
innate and adaptive immune responses, aiding in the viral escape from the host’s immune
mechanisms [53].

Currently, COVID-19 vaccine development primarily focuses on viral vectors, nucleic
acids (RNA), protein subunits, and inactivated or killed viruses. However, DCs have
emerged as potential candidates for vaccine development, as they can process antigens and
present them to immune cells. Clinical trials are currently underway to explore the applica-
tion of DCs in generating COVID-19 vaccines (Table 1). Strategies for vaccine preparation
based on DCs include the adoption of chimeric antigen receptor (CAR) strategies, in vitro
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loading of autologous DCs with SARS-CoV-2 S protein, combining DCs with nanotechnol-
ogy, and targeting vaccine antigens to DCs through surface receptors, among others [54].
Currently, there are a limited number of vaccines based on DC or DC-enhancing strategies,
as well as nanoparticle (NP)-based vaccines to enhance DC function against SARS-CoV-2,
with approximately five in total. The highest clinical stage reached is phase III [55]. Devel-
oping vaccines that target the role of DCs in immunity offers unique advantages due to the
pivotal role of DCs in innate and adaptive immunity, as well as their susceptibility during
infection. Vaccination targeting DCs has the potential to address defects in innate and
adaptive immune responses, leading to improved outcomes and contributing to long-term
and widespread immunity.

6. Monocyte–Macrophage Cell Therapy

The monocyte–macrophage system consists of monocytes in the bloodstream and
tissue-resident macrophages [56]. In the lung tissue of mild COVID-19 patients, the num-
ber of monocyte–macrophages is low [57]. However, in severe COVID-19 patients, the
infection of alveolar epithelial cells by SARS-CoV-2 induces the production of chemokine
CCL2, which attracts a large number of circulating monocytes and tissue-resident alveolar
macrophages to the site of infection [58]. Once in the tissue, monocytes enhance their
phagocytic capacity and gradually differentiate into macrophages, which further secrete
pro-inflammatory cytokines (IL-6, IL-7, TNF, etc.) and chemokines (CCL2, CCL3, CCL7,
CCL10, etc.), mediating immune responses and engulfing pathogens [59]. It is noteworthy
that the substantial amount of cytokines produced by these macrophages in the lung tissue
of severe patients can promote pulmonary fibrosis, which is a significant cause of death in
COVID-19 patients [60].

Although monocyte–macrophages have long been implicated in promoting tissue
fibrosis, due to the plasticity of monocyte–macrophages’ function, recent studies have
shown that they also play a pivotal role in fibrosis regression, in part through the expression
of matrix-degrading metalloproteinase enzymes (MMPs) [61]. Thus, increasing anti-fibrotic
monocyte/macrophage populations is important for clearing partially degraded collagen
fragments of the extracellular matrix, especially fibrillar collagen. An attractive therapeutic
strategy would be the use of monocytes modified in vitro as a cell therapy to induce fibrosis
regression. MON002 is an autologous monocyte cell product that undergoes ex vivo
culture before being intravenously injected into patients with post-COVID-19 pulmonary
fibrosis [20]. The MONACO Cell Therapy Study is a prospective, non-randomized, open-
label phase I/II clinical trial aimed at evaluating the safety of MON002 in five adult
patients diagnosed with interstitial lung disease (pulmonary fibrosis) recovering from acute
COVID-19 infection (Table 1).

7. MSC Therapy

Mesenchymal stem cells (MSCs) are a type of adult stem cell that originate from the
mesoderm and have the potential for self-renewal and multidirectional differentiation.
They can differentiate into various mesenchymal tissues, such as bone, cartilage, adipose
tissue, and bone marrow hematopoietic tissue. During the process of COVID-19 infection,
MSCs reduce cytokine storms, limit organ inflammation and fibrotic damage, and regulate
innate and adaptive immune responses through the release of bioactive molecules and
direct cell–cell contact. Additionally, MSCs can modulate the clearance of alveolar fluid
and the permeability of pulmonary endothelial cells, thereby improving lung injury and
associated inflammatory reactions. It is worth noting that most MSCs do not express the
ACE2 receptor, and, after intravenous injection, MSCs are distributed predominantly in
the pulmonary microvasculature, enhancing the persistence of their effects through this
unique immune evasion mechanism, making them potential candidates for COVID-19
treatment [62,63]. The safety of MSC-based therapeutic approaches has been confirmed in
various clinical trials conducted over the past few decades, and multiple products have
been approved for different diseases [64].
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Animal studies have shown that MSCs can improve lung function in acute lung injury
(ALI) mouse models and reduce the secretion of inflammatory cytokines [65]. Furthermore,
preliminary observational studies suggest that MSCs may provide therapeutic benefits in
COVID-19-related acute respiratory distress syndrome (ARDS) [66,67]. In severe or critical
cases of COVID-19, ARDS remains a highly fatal condition that can result in pulmonary
edema, arterial hypoxemia, and impaired lung function [68]. Unfortunately, treatment
options for ARDS are still limited. However, many ongoing clinical trials involving over
1600 subjects have found the safety and efficacy of using MSCs in the treatment of severe
COVID-19 cases [69–77].

Leng et al. found that treatment with an intravenous infusion of 1 × 106 umbilical
cord mesenchymal stem cells (UC-MSCs)/kg for 14 days reduced inflammation and pro-
moted lung tissue regeneration [76,78]. Sadeghi et al. found that MSC therapy improved
oxygenation, cleared lung infiltrates, and reduced peripheral blood levels of inflammatory
cytokines, with 80% of patients recovering and leaving the ICU within a median of 6 days
after receiving one to two doses of intravenous MSCs [79]. Similar findings were reported
by Lanzoni et al. [70,77]. In addition, a phase 2 clinical trial with a large number of patients
showed that UC-MSC therapy significantly improved lung lesion volume on day 28. Data
collected every 3 months by Shi et al. showed continued improvement in lung lesions at
the 3-month mark in patients treated with UC-MSCs [72,73].

Clinical trial results have revealed that the use of MSCs for treating COVID-19 patients
is not an unrealistic therapeutic approach. Furthermore, the use of MSC-based therapy
is considered a suitable treatment option for severely ill COVID-19 patients [77,80,81].
However, further research is needed to evaluate the safety, efficacy, and long-term outcomes
of using different types of MSCs [82]. Although clinical studies related to MSCs are still in
their early stages, MSCs hold great promise as clinical tools for the future.

8. Discussion

Over the past years, immune cell therapy for cancer has continued to be enthusiastic,
showing the great potential of immune cells for the treatment of human diseases. COVID-19
invasion has caused the concept of immune cell therapy to become highly popular once
again. Several articles have focused on this field [83,84]. In this article, we summarized
the types of cell therapies currently in the clinical trial stage (Figure 2) and listed the latest
representative clinical trial programs for COVID-19 immune cell therapy (Table 1).
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However, COVID-19 immune cell therapy is still in the early stages of development,
and the key to its development will be the availability of high-quality immune cells and a
standardized cell preparation process. The first key point is the high quality of immune
cells. Research has confirmed that viral infections can lead to a decrease in the number
of immune cells in the body, and even lead to a decline in cellular immune function [5].
Therefore, in order to carry out immune cell therapy, first, it is necessary to guarantee a
sufficient number of these immune cells, especially for those therapies aimed at treating
solid tissue diseases. Both cell migration and localization to the target site are important
considerations, and these may depend heavily on the initial delivery route. Currently, other
alternatives to intravenous administration are being investigated, including intradermal,
intra-lymph node, subcutaneous, and others. These may provide solutions to this long-
standing biological challenge. Secondly, it is important to ensure that these immune
cells are of high quality. The efficacy of cell therapy depends heavily on the ability of
the cells to maintain their functionality in vivo. Processes of in vitro cell pre-treatment,
such as freezing and thawing, may have an impact on the function of the cells [85]. And,
changes in the function of the living cells, such as depletion and lack of persistence,
can occur after administration of the drug. The solutions to these challenges are often
complex. It can be achieved through genetic modification methods, but also through
pretreatment with cytokines, small molecules, hypoxia, and/or biomaterials in order
to adjust their function to the desired application. The second key point is to have a
standardized immune cell preparation process or production process. The development
of closed automated production processes is a necessary and challenging task to produce
safe, high-quality cell therapy products. Current areas of focus include manufacturing
processes for cryopreservation, cell selection and cell activation, as well as automated
batch monitoring for quality assurance purposes and the adoption of electronic recording
systems. These interventions have the potential to reduce the heterogeneity of cell therapies
and shorten production times. In the future, decentralized manufacturing processes will
scale up the global availability of cell therapies, making them accessible to patients who
are currently hard to reach.

Another avenue to consider for future immune cell therapy in COVID-19 is the use
of a combination of immune cell therapies. For example, the synergistic effects of MSCs
with other cell types, including lung endothelial cells and epithelial cells, have been stud-
ied [86]. These findings support the investigation of these two cell types as combination
cell therapies.

Immune cell therapy is considered a highly active area of research because of the cur-
rent positive clinical advances, and it is expected that more disruptive cell therapy products
for the treatment of viral infections, such as COVID-19, will emerge in the near future.
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