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Abstract: Interferon-induced transmembrane proteins (IFITM1, 2 and 3) are important host antiviral
defense factors. They are active against viruses like the influenza A virus (IAV), dengue virus
(DENV), Ebola virus (EBOV), Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus
(SARS-CoV). In this review, we focus on IFITM3 S-palmitoylation, a reversible lipid modification, and
describe its role in modulating IFITM3 antiviral activity. Our laboratory discovered S-palmitoylation
of IFITMs using chemical proteomics and demonstrated the importance of highly conserved fatty
acid-modified Cys residues in IFITM3 antiviral activity. Further studies showed that site-specific
S-palmitoylation at Cys72 is important for IFITM3 trafficking to restricted viruses (IAV and EBOV)
and membrane–sterol interactions. Thus, site-specific lipid modification of IFITM3 directly regulates
its antiviral activity, cellular trafficking, and membrane-lipid interactions.
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1. Introduction

The post-translational modification of proteins plays an important role in regulating
protein structure and function. S-palmitoylation is a post-translational modification of
proteins with lipids. It typically involves the addition of a 16-carbon-long palmitic acid to
cysteine residues of a protein (Figure 1) [1]. The high-energy thioester bond between the
fatty acyl group and cysteine residue results in S-palmitoylation being a unique, reversible
lipid modification [2].
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Figure 1. S-palmitoylation of proteins. Dynamic S-palmitoylation is mediated by DHHC palmitoyl
acyltransferases (DHHC-PATs) and depalmitoylases.

The role of S-palmitoylation is implicated in protein trafficking, targeting different
membrane compartments, lipid microdomains, protein stability, conformation, and protein
interactions [3]. For example, S-palmitoylation of soluble H- and N-ras enables their com-
partmentalization between the plasma membrane and the Golgi apparatus, and therefore
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the diversification of signal transduction [4]. Reported S-palmitoylated proteins include
enzymes, receptors, ion channels, transporters, innate immunity effectors, and many others.
Overall, S-palmitoylation regulates a diverse array of physiological processes, including
cellular signaling, transcriptional regulation and others [5].

Palmitoyl acyltransferases (PATs) mediate the S-palmitoylation of proteins [6]. There
are 23 PAT family proteins in humans. They have an Asp-His-His-Cys (DHHC) domain
essential for catalysis. DHHC-PATs were first discovered in yeast and are conserved
across all eukaryotes. The localization, substrate profiles and functionality of individual
enzymes are still not very well understood. The removal of palmitate from proteins, i.e.,
the hydrolysis of thioesters, is regulated by depalmitoylases [7]. Acyl-protein thioesterase
1 (APT1) and acyl-protein thioesterase 2 (APT2) were first identified as depalmitoylases
for G proteins. Additionally, α/β-hydrolase domain-containing protein 17 (ABHD17) and
other serine hydrolase superfamily proteins were also identified as depalmitoylases.

In this review, we outline the discovery and role of IFITM3 S-palmitoylation and
describe the different chemical biology tools that have been developed and used to study
IFITM3 S-palmitoylation, sites of modification and the role of modification in vitro and
in cells. Here, we also aim to provide a mechanistic understanding of S-palmitoylation-
regulated IFITM3’s trafficking in cells, membrane–sterol interactions, specificity, and activ-
ity against viral infections.

1.1. Discovery of IFITM3 S-Palmitoylation

The interferon-induced IFITM1, IFITM2 and IFITM3 are palmitoylated at Cys [8,9].
IFITM3 Cys is highly conserved across most mammals and is required for the antiviral ac-
tivity of IFITM3 orthologues from mice, bats, and humans [10,11]. IFITM3 S-palmitoylation,
sites of modification and their role in regulation of IFITM3 activity have been identified
using integrated chemical biology, cell biology and biochemical approaches.

IFITM3 S-palmitoylation was discovered by means of fatty acylation profiling of
mouse dendritic cells [9]. Fatty acylation profiling uses palmitic acid chemical reporters, i.e.,
palmitic acid-like molecules containing azido or alkynyl groups, to label cysteines of target
proteins using endogenous palmitoylation machinery (Figure 2a). Using bioorthogonal
ligation methods, they can be reacted with biotin for the enrichment and identification of
palmitoylated proteins via proteomics. They can also be reacted with azide-fluorophore for
gel-based imaging. Palmitic acid reporter labeling of overexpressed IFITM1, 2 and 3 con-
firmed their palmitoylation. Site-directed mutagenesis identified IFITM3 S-palmitoylation
at three Cys residues (Cys71, C72 and 105) and its importance in IFITM3 antiviral activity
against the influenza A virus.

As a complementary chemical approach, acyl-PEG exchange (APE) enables the iden-
tification of IFITM3 S-palmitoylation levels in cells [8]. APE involves the modification
of thioester-linked cysteines in S-palmitoylated proteins (Figure 2b). The sensitivity of
thioesters to hydroxylamine (NH2OH) has also previously been explored to selectively
capture S-acylated proteins in acyl–biotin exchange (ABE) or acyl–resin capture (acyl-RAC),
but APE readily reveals the fraction of unmodified versus S-fatty acylated proteins or the
number of sites of S-acylation [12,13]. In APE, free cysteines of palmitoylated proteins are
capped and thioester linkages are subsequently cleaved to generate new thiols. These thiols
are then selectively labeled using PEG as a mass tag for mobility-shift-based assays to iden-
tify levels of protein S-palmitoylation. APE analysis of single Cys to Ala mutant IFITM3
showed that Cys72 is the major site of modification of IFITM3. This was also confirmed by
means of metabolic labeling of IFITM3 Cys mutant with palmitic acid chemical reporter.
Cys72 is also the major site of modification for IFITM1 and IFITM2.
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Figure 2. Discovery and analysis of IFITM3 S-palmitoylation. (a) Metabolic labeling of cells with
palmitic acid reporters and further reaction with azido-modified fluorescent or affinity tags (in pink)
for fluorescent visualization or affinity enrichment of S-palmitoylated proteins enabled discovery of
IFITM3 S-Palmitoylation. (b) Acyl-PEG exchange (APE) involves the capping of free cysteine residues
with N-ethyl maleimide (NEM) and the removal of fatty acid groups with hydroxylamine (NH2OH).
Then, the exposed cysteines are reacted with mPEG-Mal. Proteins are separated via SDS-PAGE and
analyzed using Western blot, enabling the detection of both unmodified and S-fatty acylated proteins.
(c) S-palmitoylation analysis of endogenous proteins. Also, palmitic acid reporter modified proteins
are reacted with azide-biotin (in pink) and captured on Neutravidin beads. Then, thioesters are
hydrolyzed with hydroxylamine (NH2OH) and alkylated with iodoacetamide before LC-MS/MS
analysis. Cys modified by iodoacetamide are marked as S-fatty-acylation sites.

Further, a method based on fatty acylation enrichment and selective cleavage of
thioester bonds with hydroxylamine led to S-fatty-acylation site identification of endoge-
nous IFITM3 (Figure 2c) [14]. Here, S-fatty-acylated proteins are metabolically labeled with
alk-16 and are biotinylated with azido-biotin. Free Cys are capped with N-ethyl maleimide
(NEM), proteins are digested, and biotinylated proteins are enriched on Neutravidin beads.
Then, thioesters are selectively hydrolyzed with hydroxylamine and alkylated again with
iodoacetamide before LC-MS/MS analysis. Cys modified with iodoacetamide are marked
as S-fatty-acylation sites. This confirmed IFITM3 Cys71 and 72 as sites of lipid modification.
Also, mass spectrometric analysis of purified IFITM3 from mammalian cells revealed Cys72
as the predominant site of S-palmitoylation.

Thus, the development and use of these chemical tools helped in the discovery of
IFITM3 S-palmitoylation and in identifying sites of modification and the most important
Cys for S-palmitoylation. The use of such chemical reporters and bioorthogonal labeling
for characterizing various biological pathways has been extensively reviewed [15,16].

1.2. DHHC-PATs and Depalmitoylases of IFITM3

Substrate profiles of individual DHHC-PATs are regulated at the transcriptional,
translational and post-translational levels [17]. Initial screening of cell lines individu-
ally lacking DHHC1-24 showed that the knockout of single PAT does not inhibit IFITM3
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S-palmitoylation or antiviral activity, suggesting functional redundancy among PATs. Over-
expression studies with the 23 DHHCs show that multiple palmitoyltransferases (DHHC 3,
7, 15, and 20) are involved in IFITM3 S-palmitoylation, but DHHC20 is the most important
for IFITM3 antiviral activity [18]. DHHC20 also co-localized with IFITM3 in lysosomes,
whereas DHHC 3, 7 and 15 showed perinuclear localization, suggesting the location of
palmitoylation might influence activity.

Recently, α/-hydrolase domain-containing 16A (ABHD16A) was identified as a de-
palmitoylase for IFITMs. Depalmitoylase activity of ABHD16A was conserved across hu-
mans, mice and pigs. ABHD16A was identified as interacting with IFITMs using the yeast
two-hybrid (Y2H) assay and the protein coimmunoprecipitation (co-IP) assay. Knockdown
of ABHD16A leads to the accumulation of IFITMs in the plasma membrane, suggesting
its role in IFITM trafficking from the plasma membrane to the cytoplasm and the antiviral
activity of IFITMs [19]. Stable expression of ABHD16A inhibited Japanese encephalitis virus
(JEV) infection. Moreover, a specific inhibitor of ABHD16A increased the susceptibility of
cells to JEV infection [19]. Knockout of ABHD16A in HEK293T also implicated the role
of ABHD16A in inhibiting the entry of thrombocytopenia syndrome virus (SFTSV) and
vesicular stomatitis virus (VSV) pseudotypes in cells [19].

1.3. S-Palmitoylation and Other PTMs

IFITMs, which are small type IV single-pass transmembrane proteins, are highly regu-
lated by post-translational modifications (PTMs) [20–23]. In addition to S-palmitoylation at
membrane-juxtaposed Cys residues (Cys71, 72 and 105), Tyr20 phosphorylation regulates
IFITM3 plasma membrane localization and endocytosis, whereas Lys ubiquitination at
residues 24, 83, 88, and 104, and especially at Lys24, is important for IFITM3 trafficking
and turnover in cells [9,24–26]. Lys 88 is also monomethylated by SET7 and it negatively
regulates IFITM3 antiviral activity. Even though individual PTMs have been widely stud-
ied, how each of these modifications works in concert with other co- and post-translational
modifications to regulate protein functions is yet to explored in detail. These PTMs also
regulate IFITM3 interactions with membrane lipids and proteins as discussed in a later
section [27].

2. IFITM3 S-Palmitoylation and Trafficking

Live cell trafficking studies of IFITM3 during virus infection led to a significant
understanding of the mechanism of IFITM3 antiviral activity and the role of site-specific
S-palmitoylation [28,29]. However, live cell imaging has been elusive, as N- and C-terminal
fusion of IFITM3 with fluorescent proteins (GFP and mCherry) results in the aggregation in
lysosomes and loss of function. Suddala et al. developed IFITM3-iEGFP, IFITM3 with EGFP
inserted in the N-terminal cytoplasmic region of IFITM3, whereas Peng et al. established
a method combining genetic code expansion with bio-orthogonal reactions for IFITM3
labeling and imaging in live cells [29,30]. Spence et al. further used this method developed
in the Hang lab to study the role of site-specific palmitoylation on IFITM3 trafficking [28].

Genetic code expansion enables the generation of proteins with unnatural amino acids
that contain functional groups that can be subsequently labeled with reactive fluorogenic
dye using bioorthogonal chemistry [31]. Genetic code expansion uses the cellular protein
synthesis machinery to generate proteins with unnatural amino acids incorporated site-
specifically. It involves using an orthogonal aminoacyl-tRNA synthetase/tRNA pair to
incorporate the desired unnatural amino acid at a specific site on the protein of interest
generally in response to the amber stop codon (UAG) on mRNA. Thus, genetic code expan-
sion needs minimal perturbation of the protein of interest for fluorophore tagging. Among
the different bioorthogonal reactions, inverse-electron-demand Diels–Alder cycloaddition
(IEDAC) between strained alkynes or alkenes with tetrazines, a fast bioorthogonal live
cell compatible reaction, has emerged as the reaction of choice for labeling proteins in live
cells. Thus, a comparison of genetic code expansion and bio-orthogonal chemistry is a fast
method to specifically ligate a small fluorescent dye to IFITM3 in live cells (Figure 3).
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Figure 3. Genetic code expansion enables the site-specific incorporation of an unnatural amino acid
into a protein utilizing cellular translation machinery, which further enables bio-orthogonal ligation
with tetrazine dyes for live cell labeling and imaging studies.

To understand the role of IFITM3 during infection and interactions of IFITM3 with
virus particles, live cell imaging of fluorescently labeled IFITM3 is performed in synchro-
nized labeled influenza A virus-infected cells. The influenza A virus was labeled with
membrane-incorporated dye (DiD), which undergoes fluorescent dequenching upon hemi-
fusion or fusion between viral and endosomal membranes. IFITM3 colocalized with the
majority of internalized virus particles prior to lipid mixing. These results show that
while virus particles may fuse with IFITM3-positive vesicles, IFITM3 does not signifi-
cantly inhibit virus hemifusion with endocytic membranes. To further investigate the
role of S-palmitoylation in IFITM3 trafficking to virus particles, single Cys mutants of
IFITM3 were analyzed. The trafficking and colocalization of IFITM3 Cys72 to Ala mu-
tants with dequenched DiD-virus particles were significantly decreased compared to WT
IFITM3 or Cys71 and Cys105 to Ala mutants. In comparison to WT IFITM3, Cys72 to
Ala mutant trafficking to DiD-virus particles was also delayed. While S-palmitoylation of
IFITM3 does not affect the protein levels or cellular distribution of the protein, site-specific
S-palmitoylation of IFITM3 at Cys72 is important for its rate of trafficking to influenza A
particles. Thus, Cys72 S-palmitoylation is important for IFITM3 trafficking and localization
to virus containing vesicles.

3. Site-Specific Palmitoylation and Membrane Interactions

Multiple studies identified Cys72 as the major site of S-palmitoylation, and further
loss-of-function studies showed that the mutagenesis of Cys72 severely impacts the traf-
ficking and antiviral activity of IFITM3. However, the enhancement of IFITM3 activity
via controlled, site-specific lipidation has not been explored. In general, S-fatty acylation
remains a challenging and underexplored modification when compared with other post-
translational modifications, because of physical properties such as hydrophobicity and
reversibility. But new developments in chemical biology have allowed for the study of site-
specific S-fatty acylation in vitro and in living cells [32]. Biophysical and structural studies
with recombinant IFITM3 chemically modified at Cys72 provided further insights into
the role of site-specific S-palmitoylation. Garst et al. generated recombinant IFITM3 with
Cys71 and Cys105 mutated to Ala. They modified IFITM3 Cys72 with maleimide-palmitate
(Figure 4a) and showed that lipid modification at Cys72 stabilizes IFITM3 amphipathic
helix membrane interaction, which is important for the restriction of virus infections [20,33].
They performed a classical floatation assay with IFITM31−106, containing amphipathic
helices but lacking transmembrane region, in liposomes. Upon lipidation at Cys72, this
construct showed significantly more association with liposomes. Moreover, solution-state
NMR studies with full-length IFITM3 showed that the modification might have both a local
and a distal effect on the protein secondary structure or membrane environment, as made
evident by the changes in the α-helical propensities of residues close to the modification
and also residues further away from the modification but closer to the transmembrane
domain. Furthermore, molecular dynamic simulations also supported the stabilization
of the functionally significant amphipathic region when lipidated at Cys72. On the other
hand, genetic code expansion and bio-orthogonal chemistry with tetrazine-lipid derivatives
were employed to install a stable S-palmitoylation mimic in live cells (Figure 4b). Chem-
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ically lipidated IFITM3 shows endolysosomal localization like endogenous IFITM3 and
restores antiviral activity in comparison to a Cys72 to Ala loss-of-function mutant. Thus,
the live-cell chemical lipidation approach provided the first evidence for a gain of function
via site-specific lipidation of IFITM3 in mammalian cells. It also shows the importance of
Cys72 S-palmitoylation in IFITM3 antiviral activity. Thus, in silico and in vitro studies with
recombinant IFITM3 and in-cell studies with chemically lipidated IFITM3 illustrated the
importance of site-specific palmitoylation at Cys72 in the regulation of IFITM3’s structure,
membrane interactions and antiviral activity.
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Figure 4. Chemical lipidation of recombinant IFITM3 and IFITM3 in cells. (a) Site-specific lipidation
of recombinant IFITM3 using maleimide coupling. (b) Scheme for the site-specific lipidation of
IFITM3 via genetic code expansion for unnatural amino acid incorporation and the bio-orthogonal
tetrazine ligation reaction).

4. S-Palmitoylation, Lipid Interactions and Antiviral Specificity of IFITMs

S-palmitoylated IFITM3 interacts with other host proteins and membrane lipids. For
example, proteomic analysis of the S-palmitoylated IFITM3 interactome identified many
membrane-associated protein interaction partners, including the p97/VCP ATPase, which
contributes to IFITM3 lysosomal turnover and antiviral activity [24,34,35]. Furthermore,
yeast two-hybrid screening revealed IFITM3’s interaction with vesicle-membrane-protein-
associated protein A (VAPA), which has been implicated in cholesterol accumulation in en-
dolysosomal compartments and IFITM3’s antiviral activity [36,37]. However, other studies
indicate that high cholesterol accumulation in these compartments via U18666A pretreat-
ment or down-regulation of Niemann-Pick C1 (NPC1) does not inhibit IAV hemagglutinin-
mediated viral membrane fusion [38]. On the other hand, it has been suggested that the pres-
ence of cholesterol in model membranes can promote IFITM3 amphipathic helix-mediated
modulation of membrane curvature and stiffness to block fusion pore formation [20,33].
In our previous work, we further explored IFITM3 cholesterol interaction in the context
of IFITM3 S-palmitoylation and antiviral activity [27]. We used photoaffinity cholesterol
reporter and a chemo-proteomic platform to identify IFITM3 as a sterol-binding immune-
associated protein in cells [27]. Photoaffinity cholesterol reporter can be crosslinked to
interacting proteins using UV irradiation. Further overexpression studies and metabolic
labeling with photoaffinity cholesterol reporter confirmed IFITM3–sterol interactions and
identified the role of S-palmitoylation in mediating this interaction. A putative cholesterol
binding motif CARC 104KCLNIWALIL113 N-terminal to the transmembrane domain was
also identified, and it is conserved in great apes. NMR studies of recombinant IFITM389−133

in membrane bicelles also confirmed structural perturbations in the presence of cholesterol.
Many membrane proteins are known to have such a motif to mediate interactions with
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cholesterol [39,40]. Mutagenesis studies show that the loss of cholesterol binding does
not impact S-palmitoylation or subcellular localization of IFITM3, but leads to a signifi-
cant loss of resistance to influenza A virus and SARS-CoV-2 pseudovirus infection. Thus,
IFITM3–cholesterol interactions might play an important role in blocking virus fusion and
the release of genetic material in host cytosol during IAV and SARS-CoV-2 infection.

Using molecular dynamic studies of S-palmitoylated IFITM3 in a model membrane,
we showed that there is increased interaction of the IFITM3 amphipathic helix with the
membrane in the presence of cholesterol [27]. Rahman et al. showed that cholesterol’s bind-
ing potential in vitro is correlated with the membrane insertion depth of the amphipathic
helix in silico [41]. Furthermore, recombinant IFITM3 binds to cholesterol in vitro. Loss-of-
function mutations in IFITM3 disrupt the helical structure and reduce cholesterol binding.

All three interferon-induced human IFITM proteins have conserved Cys71, 72, and
105, as well as a conserved cholesterol binding motif. IFITM2 and IFITM3 protein sequence
alignment shows 83% sequence identity. Interestingly, photoaffinity cholesterol reporter
interacts with IFITM1 and IFITM3, but not with IFITM2 [27]. The S-palmitoylation levels
of IFITM2 and IFITM3 correlated with cholesterol reporter labeling [27]. These results
suggest that IFITM2 and IFITM3 interactions with cholesterol are determined by their
S-palmitoylation levels. Evaluating their antiviral activity, IFITM3 exhibits greater antiviral
activity against influenza virus and SARS-CoV-2 pseudovirus, whereas IFITM2 is more
active against Ebola pseudovirus. Such differential activity of IFITM2 and IFITM3 against
Ebola pseudovirus has also been seen in other studies [42]. These results suggest that
differential interactions with cholesterol and S-palmitoylation impact the antiviral activity
of IFITM proteins against different viruses. Thus, higher levels of S-palmitoylation en-
hance IFITM3’s interaction with cholesterol and inhibits viruses like IAV and SARS-CoV-2,
whereas IFITM2 exhibits lower S-palmitoylation levels and cholesterol interactions but
more effectively inhibits EBOV. Thus, differential S-palmitoylation levels and cholesterol in-
teractions explain the different IFITM activities against viruses that enter through different
endosomal compartments.

5. Mechanism of IFITM3’s Antiviral Activity and S-Palmitoylation Regulation

Many enveloped viruses, like the influenza A virus, use the endolysosomal pathway
to enter cells. In the low pH of late endosomes, the viral fusion protein undergoes signifi-
cant conformational changes to reveal a hydrophobic fusion loop which inserts into the
target host membrane to initiate membrane fusion for pore formation. The fusion protein
brings the two membranes together, overcoming the unfavorable electrostatic repulsion
between the host and the viral membrane phospholipid headgroups and helps to create
a hemifused stalk. This step is followed by an extension of the fusion diaphragm, and
finally the membranes separate to form a fusion pore through which the virus’ genetic
material escapes into the host cytosol [43]. Initially, it was suggested that IFITM3 blocks
virus infection by disrupting cholesterol homeostasis in cells, leading to the accumulation
of cholesterol in late endosomes and multivesicular bodies [36,37]. However, this is highly
contentious, since other studies showed that cholesterol accumulation does not inhibit
virus infection [38]. Using DiD-labeled viruses, it was shown that IFITM3 does not inhibit
lipid mixing, but instead can inhibit content release in host cells. Recent live-cell imaging
studies also show that IFITM3 colocalizes with virus particles and traffics to lysosomes, but
does not inhibit membrane lipid mixing or hemifusion [28,29]. Despite its lack of effect on
viral membrane hemifusion with endosomal membranes, IFITM3 could potentially block
fusion pore formation and the release of viral genetic material in the cytosol [28,33]. It has
been suggested that IFITM3 could modulate membrane curvature and stiffness to block
fusion pore formation, a process that can be promoted by the presence of cholesterol in
model membranes [20,33]. IFITMs have been shown to interact with cholesterol in cells,
which is enhanced by S-palmitoylation [27,44]. Interestingly, molecular dynamic studies
show that IFITM3 can cause local lipid sorting, leading to an increased concentration of
lipids, disfavoring viral fusion at the hemifusion site and decreating the cholesterol concen-
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tration [44]. Further studies are needed to understand how IFITMs induce cholesterol and
phospholipid sorting during hemifusion.

6. Conclusions

We discussed S-palmitoylation-regulated IFITM’s specificity and activity against viral
infections in this review. Using chemical biology tools for metabolic labeling and live-cell
imaging and the site-specific incorporation of lipid modification and photoaffinity choles-
terol reporter, we have gained a better insight into IFITM’s antiviral activity, specificity,
and regulation. There are important links between IFITM3’s site-specific modification and
in-cell trafficking, membrane–lipid interactions, antiviral activity and specificity. These
studies might enable the development of targeted antiviral approaches against emerging
and re-emerging viral infections in the future.

We have described how use of chemical tools led to key insights into IFITM3’s mecha-
nisms and regulation by S-palmitoylation. Metabolic labeling with palmitic acid reporter
enabled the identification of IFITM3 S-palmitoylation and mutagenesis studies identified
the role of this modification in IFITM3’s antiviral activity. Further Acyl-PEG exchange
(APE) analysis identified sites and a number of modifications. The use of genetic code
expansion and bio-orthogonal labeling techniques to perform live-cell trafficking studies of
IFITM3 in infected cells showed that IFITM3’s antiviral activity and trafficking to incoming
virus particles also requires S-palmitoylation at highly conserved Cys72, suggesting a
role of site-specific fatty acylation. Moreover, site-specific lipidation enhanced IFITM3’s
antiviral activity against the influenza A virus. Structural and biochemical studies with
chemically lipidated recombinant IFITM3 showed that Cys72 palmitoylation can modulate
IFITM3 conformation and interactions with membranes. Moreover, the use of photoaffinity
cholesterol reporter suggests that cholesterol can directly interact with S-palmitoylated
IFITMs in cells. Notably, S-palmitoylation levels regulate differential IFITM protein inter-
actions with cholesterol in mammalian cells and the specificity of their antiviral activity
towards different viruses. Collectively, these studies greatly enhanced our understanding of
IFITM3’s biology and the role of S-palmitoylation, although there are still many outstanding
questions on the IFITM family’s antiviral specificity, mechanism, and regulation.

Beyond antiviral immunity, IFITM3 has been shown to play a regulatory role in
phosphoinositide 3-kinase (PI3K) signaling in B cells [45] and γ-secretase activity for
amyloid-β production in neurons and astrocytes [46]. On the other hand, IFITMs are
also present in placental cells and can cause pregnancy complications [47,48]. It will be
very important to understand how S-palmitoylation regulates IFITM3 activity in these
contexts. Interestingly, a recent study elucidated the role of IFITMs in the cellular uptake
of molecules which break traditional drug design rules [49]. Understanding the role of
IFITM3 and its regulation by S-palmitoylation can be set out a path for the cellular delivery
of non-conventional drug molecules.
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