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Abstract: The Jingmenvirus group (JVG), with members such as Jingmen tick virus (JMTV), Along-
shan virus (ALSV), Yanggou tick virus (YGTV), and Takachi virus (TAKV), is drawing attention
due to evidence of it causing disease in humans and its unique genome architecture. In the current
work, complete untranslated regions (UTRs) of four strains of ALSV and eight strains of YGTV were
obtained. An analysis of these sequences, as well as JVG sequences from GenBank, uncovered several
regions within viral UTRs that were highly conserved for all the segments and viruses. Bioinformatics
predictions suggested that the UTRs of all the segments of YGTV, ALSV, and JMTV could form
similar RNA structures. The most notable feature of these structures was a stable stem-loop with one
(5′ UTR) or two (3′ UTR) AAGU tetraloops on the end of a hairpin.

Keywords: Alongshan virus; Yanggou tick virus; Jingmenvirus group; flavi-like virus; segmented
virus; untranslated region; RNA structure; 5′ UTR; 3′ UTR; tetraloop

1. Introduction

Recently, many new viruses have been discovered, uncovering new viral groups
and models of genome organization [1–5]. One such recently discovered group is seg-
mented flavi-like viruses [3,6–9]. Phylogenetically segmented flavi-like viruses are di-
vided in two distinct clades: the Guaico Culex virus group and the Jingmenvirus group
(JVG) [10]. The JVG includes several members, such as Jingmen tick virus (JMTV),
Alongshan virus (ALSV), Yanggou tick virus (YGTV), and Takachi virus (TAKV) [3,6–9].
JVG members are believed to be arboviruses [9,11] and have been detected in various
arthropods, including ticks [3,7,8,12–18], mosquitoes [3,7], reptiles [19], and mammals
(including humans) [7,16–18,20]. Moreover, there is evidence that JMTV and ALSV may be
able to cause disease in humans [7,17].

JVG members are characterized by a segmented (+) RNA genome consisting of four
segments. The first segment is monocistronic and encodes flavivirus-like RNA-dependent
RNA polymerase. The second segment is polycistronic and encodes from two to three open
reading frames (ORFs), including nuORF and VP1 (divided into VP1a and VP1b in ALSV,
YGTV, and TAKV) [3,6]. The VP1 protein is believed to be a viral glycoprotein. Recent
bioinformatic research has predicted that it has structural features of class-II viral fusion
proteins, including a three-domain architecture with an ectodomain and a fusion peptide
with interfacial hydrophobicity [21]. The third segment is also monocistronic and encodes
a flavivirus-like helicase. The fourth segment encodes two ORFs, one of which is believed
to encode capsid protein [3]. In contrast with classical flaviviruses [22] and members of the
Guaico Culex virus group [23], every JVG segment is polyadenylated [3].

For RNA viruses, untranslated regions (UTRs) play a crucial role in the virus repli-
cation cycle, generally by playing a role in translation and replication, as well as in some
other functions (dependent on the virus group) [24–28]. Usually, these functions are carried
out by RNA interactions and are conserved within a virus group.
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UTR conservation is just as important for segmented (−) RNA viruses. The genomes
of bunyaviruses and arenaviruses exhibit complementary sequences in 5′ and 3′ UTRs
of their genome segments, which were predicted to form panhandle structures [25]. In
Bunyamwera virus, 11 first nucleotides at both the 3′ and 5′ UTRs are conserved within the
virus for all segments [26]. The UTR of the influenza A virus has motif sequences, which
are highly conserved among viral strains and among the eight genome segments, located
in both the 3′ and 5′ UTRs. Additionally, there are segment-specific noncoding regions, of
which the length and sequences are specific to each segment and viral species [27].

In all avian reoviruses, the first seven nucleotides at the 5′ end and the last five
nucleotides at the 3′ end are conserved. It has been suggested that they may be involved
in the transcription, replication, and encapsidation of viral transcripts [28]. The role of
UTRs in the flavivirus life cycle has been extensively studied. Different UTR elements play
roles in replication, translation, genome cyclization, life cycle regulation, RNA stability, and
subgenomic flavivirus RNA (sfRNA) generation [24,29,30].

At the same time, the role of UTRs in the JVG is relatively unstudied. During its
first isolation, JMTV was reported to conserve all segments of the 5′-GCAAGUGCA-3′

nucleotide in the 5′ UTR and the 5′-GGCAAGUGC and 5′-CAAGUG-3′ nucleotides in the
3′ UTR. This fact was interpreted as evidence that all four segments belonged to the same
virus [3]. Later, when ALSV was isolated, only conserved nucleotides in the 5′ UTR were
found [7]. In this work, we determine the sequences of the UTRs of four ALSV strains and
eight YGTV strains. Using these data, as well as data found in the GenBank database, we
investigate sequences and possible RNA structure conservation in the members of the JVG.

2. Materials and Methods
2.1. Viruses and Cell Cultures

Three previously isolated ALSV strains (Miass527, Miass502, and Miass519) [6,8] and
eight YGTV strains (Bredy15-T22208, Bredy15-T22181, Bredy15-T22188, Bredy15-T22189,
Plast15-T22436, Plast15-22438, Erzhin14-T20074, and Kartaly14-T19309) [8,13] were used in
this work. Amplicons detected previously (Miass523 and Kursh17-T25456) were isolated
during this work.

HAE/CTVM8 [31] and IRE/CTVM19 [32] tick cell cultures (kindly provided by Lesley
Bell-Sakyi of the Tick Cell Biobank) were cultivated as described previously [6,8,13,31,32].

2.2. Obtaining of Virus-Containing Material

Previously isolated strains were cultivated on the HAE/CTVM8 cell line or the
IRE/CTVM19 cell line for a period ranging from six months to three years, as described ear-
lier [6,8,13]. The Miass523 and Kursh17-T25456 ALSV strains were isolated via persistence
for two months in the IRE/CTVM19 [32] and HAE/CTVM8 [31] cell lines, respectively,
using previously described methodology [6,13].

Cultural supernatants were screened to estimate viral load. Virus amount was assessed
by band intensity after PCR and agarose gel electrophoresis using virus-specific oligonu-
cleotides (Table S1). If the estimated viral load was high, viral RNA was isolated directly
from the supernate. If the virus load was low, virus-containing material was concentrated
by ultracentrifugation, as described earlier [6]. Briefly, 15–35 mL of cultural supernate
was centrifuged at 10,000 rpm at 10 ◦C for 30 min with an Optima L-90K Ultracentrifuge
(Beckman Coulter, Brea, CA, USA) using an SW-28 rotor. The centrifuged supernate was
transferred into fresh tubes and ultracentrifuged at 25,000 rpm at 10 ◦C for 6 h using the
same centrifuge and rotor. Ultracentrifugation pellets were dissolved in phosphate buffer
saline (Sigma, St. Loise, MO, USA) and further used for RNA isolation.

2.3. Rapid Amplification of cDNA Ends

Viral RNA was isolated from virus-containing material using TRI Reagent LS according
to the manufacturer’s instructions. Rapid amplification of the cDNA ends (RACE) was
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performed using a Mint RACE cDNA amplification set (Evrogen, Moscow, Russia) based
on the step-out RACE method [33].

Briefly, first strand synthesis was performed with viral RNA using PlugOligo (Evrogen,
Moscow, Russia) as a 5′ adapter and a 3′ primer (Evrogen, Moscow, Russia) targeting polyA
sequences with the Mint reverse transcriptase (Evrogen, Moscow, Russia) at 42 ◦C for
30 min. After that, IP-mix (Evrogen, Moscow, Russia) was added, and the probe was
incubated at 42 ◦C for 1.5 h. A 5′ RACE PCR was performed with segment-specific
oligonucleotides (Table S2) and Step-out primer mix 1 (Evrogen, Moscow, Russia) using
Encyclo polymerase (Evrogen, Moscow, Russia) according to the instructions in the Mint
RACE cDNA amplification set manual (Evrogen, Moscow, Russia). A 3′ RACE PCR was
performed using PCR Step-out primer mix 1 (Evrogen, Moscow, Russia) and segment-
specific oligonucleotides (Table S2) with Encyclo polymerase (Evrogen, Moscow, Russia)
according to the manufacturer’s instructions.

2.4. Cloning of PCR Products

If the PCR product was too heterogeneous to be sequenced directly, it was cloned
into the pCR 2.1 vector using The Original TA Cloning Kit (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. E. coli cells of the TOP10 strain were
transformed with ligation products, and positive clones were blue-white selected, as per
the instructions in the cloning kit manual. Plasmids were purified using a GeneJET Plasmid
Miniprep Kit (Thermo Fisher Scientific, Roskilde, Denmark). The amounts of clones taken
and sequences obtained for each sequence are presented in Table S3.

2.5. Sequencing

Obtained PCR products were sequenced directly from gene-specific oligonucleotides
(Table S4). Plasmids were sequenced directly using M13 (-21) Primer (Applied Biosystems,
Foster City, CA, USA) and custom M13_long_F primers (Table S5). Sequencing was carried
out using ABI PRISM BigDye™ Terminator v. 3.1 with an ABI PRISM 3500 instrument
(Applied Biosystems, Foster City, CA, USA). Sequences were assembled using SeqMan
v.7.0.0 software (DNAstar, Madison, WI, USA). In cases where several clones were taken,
after the assembly of individual clones, assembled sequences were aligned in SeqMan
v.7.0.0, and consensus sequences were extracted using the “Save consensus” function with
default program parameters.

All obtained sequences were deposited in GenBank. Entries ON448346–ON448374,
OQ789403-OQ789442, and OQ789396-OQ789399 were deposited, and entries:
MN648770.2–MN648777.2, MW525314.2–MW525317.2 and MW525322.2–MW525325.2
were updated.

2.6. GenBank Dataset Preparation

Nucleotide sequences of JMTV were extracted from the GenBank database on
7 February 2023 using “Jingmen tick virus“ as the primary organism modifier and a length
range of 2000–4000 nt. In total, 492 sequences were obtained. Obtained sequences were
further filtered out, using the prototype JMTV SY84 strain sequences of individual seg-
ments. Sequences in the set with less than 70% homology with the prototype strain were
discarded. This resulted in 4 alignments (1 for each JMTV segment), with 438 sequences in
total. Each segment alignment was then individually aligned using ClustalW, and 3′ and 5′

UTRs were extracted.
Nucleotide sequences of ALSV were extracted from the GenBank database on 7 Febru-

ary 2023 using “Alongshan virus“ as the primary organism modifier and a length range of
2000–4000 nt. Obtained sequences were further filtered using the Miass527 strain sequences
of individual segments. Sequences in the set with less than 70% homology with the proto-
type strain were discarded. Sequences deposited by our group were also filtered out because
they either were already in the structural alignment or were not sequenced using the RACE
approach and thus were unreliable. Each segment alignment was then individually aligned
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using ClustalW, and 3′ and 5′ UTRs were extracted. The 5′ UTR sequences of the ALSV
strain NE-TH4 (ON408068 and ON408067) were also discarded because their first ~50 nt
showed extreme homology to the 5S and 5.8S ribosomal RNA of ticks.

Nucleotide sequences of YGTV were extracted from the GenBank database on
27 February 2023 using “Yanggou tick virus“ as the primary organism modifier and a
length range of 2000–4000 nt. Filtering was performed similarly to that described above for
ALSV, with the Erzhin14-T20074 strain used as a reference.

Nucleotide sequences of TAKV were extracted from the GenBank database on
27 February 2023 using “Takachi virus“ as the primary organism modifier and a length
range of 2000–4000 nt. No additional filtering was performed for TAKV.

Nucleotide sequences of GCXV were extracted from the GenBank database on 8 April
2023 using “Guaico Culex virus“ as the search term. Obtained sequences were further
filtered using the LO35 strain sequences of individual segments. Sequences containing
truncated UTR were discarded. For the construction of the 3′ UTR structure, only segment
1–4 sequences were used.

Nucleotide sequences of TBEV were extracted from the GenBank database on 8 April
2023 using “tick-borne encephalitis virus“ as the primary organism modifier and a length
range of 10,000–12,000 nt. Obtained sequences were further filtered using the tick-borne
encephalitis virus NCBI reference sequence (NC_001672.1). Sequences containing trun-
cated UTR were discarded. For the 3′ UTR structure construction, terminal 109 genome
nucleotides were used.

2.7. Bioinformatics and Visualization

LocARNA v. 1.9.2.0 [34] with default parameters was used to simultaneously predict
RNA structures and align sequences. Obtained structural alignments were visualized
as RNA structures using RNAplot from the ViennaRNA package [35], with the use of
the “most informative sequence” and “annotate covariance of base pairs” modes and an
RNApuzzler plotting layout algorithm.

For sequence logo visualization, WebLogo 3.7.12 was used, with the “ignore lowercase”
option, “Classic (NA)” color scheme, no version fingerprint option, and other options as
default [36].

Additionally, we performed an alternative analysis by first aligning sequences using
ClustalW [37] and then using RNALalifold from the ViennaRNA package [35].

All image post-processing was performed with GIMP v. 2.10.28.

3. Results
3.1. 5′ UTR Sequences and Structures

In this work, we determined the sequences of the 5′ UTRs of four ALSV strains and
eight YGTV strains. A visual examination of the sequences of all the segments showed
striking similarities, and it was reported earlier that there were some homologous sequences
between different segments in JMTV [3], so we merged the sequences of all four segments
for both ALSV and YGTV into a single batch. Aligning these sequences using LocARNA
(Figure 1) and ClustalW (Figure S1) produced similar results. The first six nucleotides of all
the segments for both ALSV and YGTV had a 100% conserved 5′-AGUUAA-3′ sequence.
Nucleotides 28–36 (5′-GCAAGUGCA-3′), G(40), and 60–62 (5′-GAC-3′) were also 100%
conserved in both alignments.

We examined the ALSV and YGTV sequences from GenBank (Figures S2 and S3). Most
of them showed that all features that were conserved in our sequences were present in
them, except the first six nucleotides, which varied depending on the strain and segment.
None of these conserved sequences were found in the TAKV 5′ UTR, but it is specifically
noted by the authors that RACE was not performed for 5′ UTR [9] and thus 5′ ends might
be lacking.
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nucleotides in the consensus sequence are marked by black boxes. Nucleotide enumeration in
(B–F) follows the enumeration in the alignment (A).

We used the obtained alignments to predict possible RNA structures (Figures 1B and S1B)
with generally similar results. The predictions show that the 5′ UTRs of ALSV and YGTV
formed a stem-loop structure, where conserved nucleotides 28–35 formed two GC pairs that
supported an AAGU tetraloop. Conserved G(40) formed a GC or GU pair that supported
the formation of the A—AWCR budge. According to the LocARNA predictions, the follow-
ing stem structure varied in the different segments (Figure 1C–F) but generally seemed to
involve seven consecutive nucleotide pairs in the formation. The LocARNA analysis of all
the segments predicted the existence of an additional stem-loop structure close to the start
codon region; however, it was much less conserved, and the prediction results varied for
different segments.

Interestingly, JMTV was reported to have a conserved nucleotide sequence of
5′-GCAAGUGCA-3′ among all the segments in the 5′ UTRs [3]. In order to estimate
the conservation of the abovementioned conserved elements, we extracted JMTV sequences
from GenBank. The LocARNA alignment of all the segments showed little homology in
the 5′ UTRs (Figure 2C). A visual examination of the alignment showed that the program
seemed to be unable to properly align segment 2 sequences with the sequences of other
segments, probably because of high differences in UTR lengths. We performed a LocARNA
alignment separately for segment 2 (Figure 2A,D) and for segments 1, 3, and 4 (Figure 2B,E).
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According to these alignments, all the segments had a conserved 5′-GCAAGUGC-3′ ele-
ment. This element seemed to form a similar structure, where two GC pairs supported
an AAGU tetraloop. All the other elements found in ALSV and YGTV were not found
in JMTV.
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In many JMTV genomes, the first nucleotides of the genome were 5′-GUUAA-3′

(similarly to the 5′-AGUUAA-3′ we found in ALSV and YGTV). However, several strains
had substitutions or insertions in this sequence. In the particular case of JMTV isolate
TTP-Pool-3b segment 4, the UTR had 48 additional terminal 5′ UTR nucleotides.

Overall, our data show that the 5′ UTRs of JMTV, ALSV, and YGTV contained a
conserved 5′-GCAAGUGC-3′ sequence in all the segments, which is likely to be involved
in the formation of the RNA structure, where two GC pairs supported an AAGU tetraloop.

3.2. 3′ UTR Sequence and Structures

In this work, we determined the sequences of the 3′ UTRs for five ALSV strains and
eight YGTV strains. Using the obtained data, an analysis of sequence conservation and
RNA structures was performed, similar to that of the 5′ UTRs, resulting in the alignment of
all four segments of both ALSV and YGTV (Figures 3 and S4).

The first notable feature of the alignment was the appearance of the A-rich region
at positions 282–298. This region was present in all the sequences, with lengths varying
with virus, strain, and segment. It was the most pronounced in the YGTV segment 2 and
3 sequences, where more than 80% of A in the 30 nt sequences was observed. In several
cases, we were unable to obtain a direct sequence from the RACE PCR products after this
region. A bacterial-cloning approach showed that around 33% of the clones (see Table S3)
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had truncated 3′ UTRs that ended at the A-rich region. In the case of Miass502 ALSV, we
were unable to obtain a full 3′ UTR after 16 clone pickups.
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Figure 3. Consensus sequences and conserved RNA structures of 3′ UTRs of ALSV and YGTV studied
in this work predicted using LocARNA. (A) Consensus sequences of all segments of ALSV and YGTV
3′ UTRs. (B) Conserved RNA structures of all segments of ALSV and YGTV 3′ UTRs. Conserved
RNA structures of segments one (C), two (D), three (E), and four (F). Conserved nucleotides in
the consensus sequences are marked by black boxes. Nucleotide enumeration in (B–F) follows the
enumeration in the alignment (A).

Both LocARNA and ClustalW revealed two identical 100% conserved sequences
within the 3′ UTRs: 5′-CAAGUG-3′ (positions 354–359 and 372–377; Figure 3A). The
RNA structure prediction suggested that both these regions take part in the formation of
a dumbbell-like structure. In both cases, conserved nucleotides formed a GC pair that
supported an AAGU tetraloop. In the first case, the tetraloop was supported by two to
three nucleotide pairs, and in the second, it was supported by seven to eight nucleotide
pairs. Alignment of all the segments showed little support, but alignment of the individual
segments predicted that the dumbbell-like structure might be located on the long RNA
stem. An examination of the ALSV and TAKV sequences from GenBank showed that all
the sequences that had full, non-shortened 3′ UTR sequences had both 5′-CAAGUG-3′
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occurrences in them (Figure S7). In the case of YGTV, one GenBank sequence (MH688534)
had a C→A mutation in the second region (Figure S6), with all the other sequences having
both 5′-CAAGUG-3′ occurrences as absolutely conserved.

We performed an analysis of the JMTV sequences containing full 3′ UTRs (181 sequences)
with LocARNA (Figure 4). The obtained alignment showed that the same two conserved
regions could be identified within JMTV 3′ UTRs. The JMTV genome contained a polyA-rich
region (243–263) that varied in length depending on the strain and segment. There were
two highly conserved regions: 309–317 5′-GGCAAGUGC-3′ and 330–335 5′-CAAGUG-3′

(Figure 4A). The first one was conserved in all of the sequences, while the second one was dif-
ferent in two sequences. The JMTV isolate JTMV_3 segment 4 (MH155897 [18]) preserved GC
pairs but had an AAGU→UCGG substitution. The JMTV isolate WS3 segment 3 (OM459839)
had a G(359)→U substitution.
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Similar to ALSV and YGTV, these conserved regions were predicted to be folded into
a dumbbell-like structure with two AAGU tetraloops (Figure 4B). The first tetraloop was
supported by three nucleotide pairs. The second tetraloop seemed to have a longer stem,
similar to ALSV and YGTV, but apart from the first two pairs, it was not well-supported.

Overall, our data show that the 3′ UTRs of JMTV, ALSV, TAKV, and YGTV contained
two conserved 5′-CAAGUG-3′ sequences in all the segments likely to be involved in the
formation of RNA structures.

4. Discussion

We performed a thorough analysis of the conserved sequences in the JVG UTR regions
based on those determined for ALSV and YGTV, as well as for all the sequences found in
GenBank. Our research showed several highly conserved regions within the UTRs, as well
as points of interest for future research.

Previously, when JMTV was discovered, researchers pointed out there was some
conservation among all the segments of the JMTV SY84 strain [3]. According to our data,
there were three highly conserved regions: 5′-GCAAGUGC-3′ in the 5′ UTRs and two
5′-CAAGUG-3′ elements in the 3′ UTRs of the JVG. These conserved sequences were likely
to participate in the formation of RNA structures, where an AAGU tetraloop was supported
by at least two GC pairs. This UTR pattern differs greatly from the UTR patterns reported
for Guaico Culex virus (GCXV), the only member of the Guaico Culex virus group with
well-studied molecular biology. It is reported that all the segments and isolates of GCXV
have conserved 5′ UTR (5′-AAAUUAAAA-3′) and 3′ UTR (5′-CCCAUUU-3′) terminal
sequences. The other highly conserved motif was found in the 3′ UTR (5′-AAWUAC-3′) of
segments 1–4 and was predicted to form a loop in the conserved stem-loop structure [23].
The conserved structures of 3′ UTR of both GCXV and the JVG are also quite different
from the terminal conserved structures of 3′ UTR of the Flavivirus genus. The same can be
said about conserved structures in 5′ UTR. Comparison of those structures predicted by
LocARNA is presented on Figure 5. Such differences may imply significant differences in
the replication processes of these three virus groups. These UTR differences may be also
used in the future as one of the markers for taxonomic differentiation among the JVG, the
Guaico Culex virus group, and the Flavivirus genus.

Many segmented viruses have highly conserved sequences on terminal 5′ UTR nu-
cleotides [23,26,28]. In the case of the JVG, current data are ambiguous. In all our sequences,
both ALSV and YGTV shared 100% of the conserved 5′-AGUUAA-3′ sequence at the ter-
minal 5′ end. This is consistent with data reported for JMTV during its first isolation,
where 5′-GUUWA-3′ consensus was found in all the segments [3]. The terminal 5′ UTR
5′-AYAUGGG-3′ was reported in the first described ALSV genome [7]. However, for two seg-
ments, 5′-AGUUAA-3′ could be located in the alignment after 5′-AYAUGGG-3′ (Figure S2).
Moreover, the data from GenBank represent extremely divergent terminal 5′ UTRs, likely due
to RACE not being performed in most of the cases. Overall, more accurate data are needed
to confirm or deny the strict conservation of terminal 5′ UTR nucleotides in the JVG.

We also identified an A-rich region within the JVG 3′ UTRs. It varied in size depending
on the strain and segment and could cause problems with oligodT adapters during 3′ RACE,
resulting in truncated UTR sequences (Table S3). Moreover, approximately 60% of the
GenBank entries had truncated 3′ UTR sequences. In our opinion, there are two possible
explanations for this situation. First, some JVG members indeed had a shortened version
of 3′ UTR depending on strain and segment. Second, most of the studies conducted using
3′ UTR RACE have been based on a specific adapter targeting polyA sequences. Moreover,
many commercial 3′ UTR RACE protocols advise performing bacterial cloning after RACE
to obtain cleaner Sanger sequences. With JVG genomes containing an A-rich region, it is
easy for a polyA-adapter to mis-anneal onto the A-rich region. In addition, with a bacterial-
cloning approach, there is a high chance of obtaining a shortened consensus sequence. One
piece of evidence for this is that in a study where RACE based on RNA circulation was
performed, only full JMTV 3′ UTRs were recovered [3]. With the data we have now, it is
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hard to tell if 3’ UTR shortening was caused by the sequencing and assembly methods
used, or if these data mark an important feature of JVG biology. In any case, we think that,
in the light of our cloning data, RNA circularization methods [3] should be used to obtain
reliable information on JVG 3′ UTRs.
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UTR structure, 109 terminal nucleotides were used.

According to the predicted RNA structures, the three most-conserved sequences found
in JVG genomes were involved in the formation of RNA stems with an AAGU tetraloop.
Overall, loop motifs are important for the formation and stability of an RNA structure.
Tetraloops can also function as recognition sites for proteins. There are six major classes of
tetraloops [38]. While the AAGU tetraloop does not belong to any of the major classes, it has
similarities with AGNN tetraloop structures. However, in the case of the AAGU tetraloop,
the uracil is extruded from the tetraloop structure and does not form a non-canonical base
pair with adenine, as seen in AGNN tetraloops [39].

Conserved regions in the UTR take part in viral replication, translation, packaging, and
some other functions [24–28]. In the closest well-studied group—the Flavivirus genus—a
conserved 5’ UTR Y-shaped structure plays a major role in the initiation of virus replication,
with several other conserved RNA elements involved in translation and sfRNA forma-
tion [24,29,30]. If our bioinformatics predictions are correct, we may speculate that the
AAGU tetraloop is necessary for JVG replication or for correct genome encapsidation.

The data presented here may be helpful for the construction of full-genome molecular
copies of JMTV, ALSV, and YGTV. JVG members are widely distributed [8,9,15–18] and are
potential human pathogens [7,17]; conserved regions can be utilized for the construction
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of PCR assays, allowing for a quick and reliable identification method for all members
of the JVG, which is currently lacking. In addition, further studies of JVG molecular
biology are needed to determine the role of the described conserved sequences. Here,
we predicted RNA structures using bioinformatics software based on UTR alignments.
However, in vitro RNA structure probing is needed to confirm our predictions and provide
more precise information.

5. Conclusions

In this work, the 5′ and 3′ UTRs of several ALSV and YGTV strains were sequenced.
An analysis of the obtained sequences revealed several highly conserved regions in both the
5′ and 3′ UTRs. RNA-folding programs predicted that conserved regions were likely to be
involved in the formation of conserved stem-loop structures characterized by the presence
of AAGU tetraloops. Sequences obtained from GenBank hinted that similar sequences and
RNA structures could also be present in JMTV.
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ratios for Alongshan and Yanggou viruses; Table S4: Oligonucleotides used for Sanger sequencing
PCR products obtained after RACE; Table S5: Oligonucleotides used for Sanger sequencing PCR
products after cloning in pCR2.1 vector; Figure S1: Consensus sequences of the ALSV and YGTV 5′

UTRs (A) according to ClustalW alignment and structures predicted with RNAalifold and (B) based
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genomes found in GenBank according to ClustalW alignment; Figure S6: Conserved sequences
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