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Abstract: Background: The outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) resulted in the global COVID-19 pandemic. The urgency for an effective SARS-CoV-2 vaccine
has led to the development of the first series of vaccines at unprecedented speed. The discovery
of SARS-CoV-2 spike-glycoprotein mutants, however, and consequentially the potential to escape
vaccine-induced protection and increased infectivity, demonstrates the persisting importance of
monitoring SARS-CoV-2 mutations to enable early detection and tracking of genomic variants of
concern. Results: We developed the CoVigator tool with three components: (1) a knowledge base that
collects new SARS-CoV-2 genomic data, processes it and stores its results; (2) a comprehensive variant
calling pipeline; (3) an interactive dashboard highlighting the most relevant findings. The knowledge
base routinely downloads and processes virus genome assemblies or raw sequencing data from
the COVID-19 Data Portal (C19DP) and the European Nucleotide Archive (ENA), respectively. The
results of variant calling are visualized through the dashboard in the form of tables and customizable
graphs, making it a versatile tool for tracking SARS-CoV-2 variants. We put a special emphasis on
the identification of intrahost mutations and make available to the community what is, to the best
of our knowledge, the largest dataset on SARS-CoV-2 intrahost mutations. In the spirit of open
data, all CoVigator results are available for download. The CoVigator dashboard is accessible via
covigator.tron-mainz.de. Conclusions: With increasing demand worldwide in genome surveillance
for tracking the spread of SARS-CoV-2, CoVigator will be a valuable resource of an up-to-date list of
mutations, which can be incorporated into global efforts.

Keywords: SARS-CoV-2; dashboard; genomic variants; software; pipeline; virus genome assemblies;
knowledge base; intrahost

1. Introduction

The identification, characterization and monitoring of the pathogen responsible for a
novel emerging disease is crucial for the development of a timely public health response.
This includes rapid and open sharing of data [1], which has been adapted in past outbreaks
to advance research and improve medical support [2,3]. The outbreak of the respiratory
disease COVID-19 caused by SARS-CoV-2 demonstrated the increasing value of high-
throughput sequencing through enabling the publication of the complete virus genome
within one month of sampling [4,5]. The identification of the SARS-CoV-2 spike protein as a
valuable target for vaccine design [6,7] led to the development of vaccines at unprecedented
speed [8,9] and is still fostering further developments.

Nevertheless, the discovery of SARS-CoV-2 spike-glycoprotein mutants, associated
with the potential to escape vaccine-induced protection, demonstrates the importance of
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monitoring SARS-CoV-2 genomic sequences to enable early detection of these genomic
variants of concern. In a first study, we analyzed 1,036,030 genomic assemblies from
the Global Initiative on Sharing Avian Influenza Data (GISAID) [10–12] and 30,806 Next
Generation Sequencing (NGS) datasets from the European Nucleotide Archive (ENA). We
reported non-synonymous spike protein mutations and their frequencies and analyzed the
effect on known T-cell epitopes [13]. Although we confirmed low mutation rates of the
spike protein, we experienced an increase in the number of genomic variants over time.
Therefore, we further developed our computational pipeline to tackle potential escape
mutations [14].

There are multiple initiatives to monitor SARS-CoV-2 mutations based on the GISAID
dataset: NextStrain [15], CoV-GLUE [16], CoV-Spectrum [17] and Coronapp [18]. A further
initiative based on the ENA dataset is the Galaxy project COVID-19 [19]; other systems
use regional data: CLIMB-COVID (COG-UK) [20] and CovRadar [21]. The COVID-19
Data Portal [22] is provided by EMBL-EBI and the European COVID-19 Data Platform
to facilitate data sharing and accelerate research through making all the data available
in the public domain and encouraging the research community to share SARS-CoV-2
data. Furthermore, there are some open-source pipelines to identify mutations on SARS-
CoV-2 data, i.e., Cecret [23], nf-core viralrecon [24], ncov2019-artic-nf [25],ViralFlow [26],
Havoc [27], NCBI SARS-CoV-2 Variant Calling (SC2VC) [28] and ASPICoV [29].

Each dataset has its own advantages. While genomic assemblies are easier to share
and interpret, raw reads provide granular information about the mutations through access
to the pileup of reads supporting each mutation, also allowing the characterization of
intrahost mutations. Analyzing both datasets together may support the identification of
potential false positives in the data and the confirmation of trends.

To enable monitoring of SARS-CoV-2 sequences from both sources, we have developed
CoVigator, an NGS pipeline and dashboard that allows geographical and temporal navi-
gation through SARS-CoV-2 genomic variants. We automatically download and analyze
genomic assemblies from the COVID-19 Data Portal and raw reads from the European Nu-
cleotide Archive (ENA). Furthermore, we screen the literature for studies on SARS-CoV-2
intrahost mutations [30–45] and propose a filtering strategy to obtain a high-quality set of
intrahost mutations in the large and heterogeneous dataset obtained from ENA. Thus, the
CoVigator platform supports the early detection of variants that can potentially serve as
the basis for further research in the field of vaccines.

2. Materials and Methods

The CoVigator knowledge base is implemented in Python version 3.8 and the database
for storing data is PostgreSQL (version 13.4).

The CoVigator pipeline (version 0.14.0) is implemented in the Nextflow framework ver-
sion 19.10.0. All dependencies are managed within conda (version 4.9) environments [46]
(see Table 1). The pipeline may receive as input either (1) a single-end FASTQ, (2) two
paired-end FASTQs, (3) an assembly in FASTA format or (4) a VCF file with mutations.
Adapter sequences are trimmed from FASTQs using fastp [47], alignment to the reference
genome is performed with BWA mem2 [48], Base Quality Score Recalibration (BQSR) is
performed with GATK [49], duplicate reads are marked with sambamba [50] and, finally, a
horizontal and vertical coverage analysis is performed with samtools [51]. Variant calling
on the BAM files derived from the FASTQs is performed with LoFreq [52], GATK [49],
BCFtools [53] and iVar [54] (only the results from LoFreq are shown in the dashboard). Vari-
ant calling on the FASTA assemblies is performed with a custom script using Biopython’s
Needleman–Wunsch global alignment [55]. Further processing of VCF files adds functional
annotations with SnpEff [56], technical annotations with VAFator [14], ConsHMM conser-
vation scores [57] and Pfam protein domains [58]. Pangolin [59] is employed to determine
the lineage of every sample. The input for pangolin is either the input assembly in FASTA
format or the consensus assembly derived from the clonal mutations (i.e., VAF ≥ 0.8) and
the reference genome. See Table 1 for more details on the specific settings of each tool.
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Table 1. Tools employed in the pipeline, specific versions and settings.

Tool Purpose Settings References Version FASTQ FASTA

fastp Adapter trimming [47] 0.20.1 X
BWA mem 2 Alignment Default [48] 2.2.1 X

GATK Variant calling and alignments
preprocessing MQ ≥ 20, BQ ≥ 20, ploidy = 1 [49] 4.2.0.0 X

sambamba Read deduplication MQ ≥ 20, BQ ≥ 20, ploidy = 1 [50] 0.8.2 X
samtools Coverage analysis [51] 1.12 X
LoFreq Variant calling MQ ≥ 20, BQ ≥ 20 [52] 2.1.5 X

BCFtools Variant calling, normalization
and annotation MQ ≥ 20, BQ ≥ 20 [53] 1.14 X X

iVar Variant calling MQ ≥ 20, BQ ≥ 20 [54] 1.3.1 X

Biopython

Custom variant calling on
assemblies sequences based

on Needleman-Wunsch global
alignment

aligner.mode = ‘global’
aligner.match = 2

aligner.mismatch = −1
aligner.open_gap_score = −3

aligner.extend_gap_score = −0.1
aligner.target_end_gap_score = 0.0
aligner.query_end_gap_score = 0.0

[55] 1.79 X

SnpEff Functional annotations [56] 5.0 X X
VAFator Technical annotations MQ > 0, BQ > 0 [14] 1.2.5 X
Pangolin Lineage calling [59] 4.1.2 X X

ConsHMM Conservation annotations [57] Not
available X X

Pfam SARS-CoV-2 protein domains [58] Not
available X X

The CoVigator dashboard is also implemented in Python using the visualization frame-
work Dash (version 2.1.0). The computation is distributed through a high-performance com-
puting cluster with a library that provides advanced parallelism, Dask (version 2022.9.2).

3. Results and Discussion
3.1. System Description

The CoVigator system (Figure 1) has three main components: (1) the knowledge base,
(2) the analysis pipeline and (3) the dashboard. For every sample, the knowledge base
orchestrates the metadata retrieval, raw data download and finally its analysis through the
pipeline for the detection of mutations. Furthermore, it makes all necessary data available
through a database (Postgre-SQL version 13). Finally, the dashboard presents the data to
the end user through a set of interactive visualizations.

CoVigator operates via interaction with external systems: a high-performance com-
puting (HPC) cluster and the ENA and COVID-19 Data Portal Application Programming
Interfaces (APIs). Samples between both original datasets (raw reads and genomic assem-
blies) may overlap. As recommended, some data providers might automatically upload
both data formats. The results presented in the dashboard are stratified by dataset.

3.2. Knowledge Base

The CoVigator knowledge base collects data from both genomic assemblies and raw
reads, orchestrates its processing through the variant calling pipeline and stores all the
metadata, raw data and processed results in a relational database.

The data for both datatypes are fetched via the corresponding API hosted by the
European Bioinformatics Institute [60]; the metadata are normalized, the FASTQ (raw NGS
reads) and FASTA (genomic assemblies) files are downloaded and their MD5 checksums
are confirmed to ensure data integrity.

Furthermore, the knowledge base iteratively builds a variant co-occurrence matrix
(only for the raw read dataset) and precomputes analyses of the data (binned abundance
of mutations, dN/dS ratios per gene and domain, top occurring variants, pairwise co-
occurrence and counts of variants per lineage, country, sample, mutation type, length and
nucleotide substitution) that ensure low-latency responses.
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Figure 1. CoVigator system components. The accessor reads external data and stores it in an SQL
database. The processor reads the stored data and distributes the processing of every sample in an
HPC cluster via Dask. The pipeline processes FASTA and FASTQ data and finally stores the results
back in the database (See Figure S1 for a more detailed FASTA and FASTQ processing pipeline).
The dashboard reads the results and displays them in a set of interactive plots. The results are also
available in raw format.

3.3. Analysis Pipeline

In general, the CoVigator pipeline processes FASTQ and FASTA files into annotated
and normalized analysis-ready VCF files via two independent workflows (Figures 1 and S1).
We implemented the pipeline in the Nextflow framework [61] and managed all dependen-
cies with Conda environments to enable seamless installation. We have embedded the
SARS-CoV-2 reference genome ASM985889v3 [5]. Using a different reference, this pipeline
could instantly analyze other virus sequences as well.

3.4. Dashboard

The dashboard is the user interface to CoVigator. There are two separate views for the
raw reads and genomic assembly datasets. Each view provides a set of tabs that allows the
user to explore different aspects of the data held in the database. Each tab provides some
interactive visualizations, described below. When applicable, the tabs provide a set of filters
on the left side. These have been excluded from the screenshots for the purpose of clarity.

The most relevant tabs are described below, and some notable findings are highlighted.
The data shown here include 137,025 samples downloaded from ENA on 21 October 2022
and 6,165,681 samples downloaded from the COVID-19 Data Portal on 18 November 2022.
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3.5. Samples

The samples tab (Figure 2) enables the user to explore the accumulation of samples
through time and the evolution of the dN/dS ratio in different genomic regions.
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Figure 2. Samples by country tab plots for raw read dataset. (A) accumulation of samples through
time by country; (B) dN/dS ratio through time on each SARS-CoV-2 protein; (C) dN/dS ratio through
time in the domains of the spike protein. See Figure S2 for a screenshot including the filters.

Figure 2A shows the accumulation of samples in each country. The dashboard allows
the user to select specific countries and/or lineages.
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Figure 2B,C show the dynamics of the dN/dS ratio through time, over genes and
protein domains. The dN/dS ratio aims to estimate the evolutionary pressure on SARS-CoV-
2 proteins and domains. This metric, although originally developed for assessing diverging
species, is an imperfect but simple estimation of the evolutionary pressure within the same
species [62,63], in this case, SARS-CoV-2. There have been recent efforts to develop better
alternatives for estimating the evolutionary pressure on SARS-CoV-2 [64]. The traditional
interpretation of dN/dS is as follows: dN/dS < 0 indicates purifying selection, dN/dS = 1
indicates neutral evolution and dN/dS > 1 indicates positive selection.

3.6. Lineages

The lineages tab enables the user to explore the different lineages through time and
geography (Figure 3). Both the accumulation of samples in every lineage worldwide
(Figure 3A) and the dominant lineage through time (Figure 3B) can be viewed. In the
screenshot, the displacement of B.1 by Alpha (B.1.1.7), the subsequently displacement by
multiple Delta lineages (AY.*) and finally displacement by the three Omicron lineages (BA.1,
BA.2 and BA.3) can be seen.
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Figure 3. Interactive plots in the lineages tab for the raw read dataset. (A) Accumulation of samples
in each lineage through time; (B) dominant lineages through time. See Figure S3 for a screenshot
including the filters.

3.7. Mutation Statistics

The mutation statistics tab provides insights into the variant calling results on the
different datasets and genomic regions (Figure 4). Expected trends in the data can be
confirmed in these visualizations.
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Figure 4. Interactive plots on the mutation statistics tab showing results for raw reads and genomic
assembly datasets. (A) ENA distribution of the number of mutations per sample; (B) C19DP distribu-
tion of the number of mutations per sample; (C) ENA frequency of base substitutions, (D) C19DP
frequency of base substitutions; (E) ENA indel length distribution; (F) C19DP indel length distribu-
tion; (G) ENA frequency of mutation effect on the protein; (H) C19DP frequency of mutation effect
on the protein. See Figure S4 for a screenshot including the filters.
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The median number of SNVs per sample in the raw read dataset is 32, with an
interquartile range (IQR) of 30 (Figure 4A). Additionally, the median number of MNVs is
two with an IQR of one. The number of deletions is lower (median: 3, IQR: 2) than the
number of SNVs, and the number of insertions is even lower, with few samples having just
one insertion. For the genomic assemblies, the numbers are slightly different, with median
SNVs = 44 (IQR: 19), MNVs = 2 (IQR: 0), deletions = 4 (IQR: 3) and again just one insertion
in a few samples (Figure 4B).

We observe that the base substitution C > T is by and large the most frequent, followed
by G > T and A > G; the deletion TA > T and the MNV GG > AA is the most frequent in
both datasets (Figure 4C,D).

In Figure 4E,F, we confirm that deletions are more frequent than insertions with
an insertion-to-deletion ratio of 0.002 and 0.032 for raw reads and genomic assemblies,
respectively. We also confirm two previous findings: (1) shorter deletions and insertions are
more common than longer ones [65,66] and (2) the deletions and insertions not causing a
frameshift are overrepresented as their impact in the resulting protein are more subtle [67].
In the genomic assemblies, we observe a long tail of deletions longer than 8 bp, which is
not observed in the raw read results. We suspect this is a technical artefact introduced via
our variant calling method. Finally, as shown in Figure 4G,H we observe that the most
frequent mutation effect is a missense variant, followed by a synonymous variant. This is
coherent between both datasets.

3.8. Recurrent Mutations

The recurrent mutations tab allows the user to explore the most recurrent mutations
by the total count of observations through time within their genomic context (Figure 5). In
Figure 5A, the top recurrent mutations and their frequency and counts through time are
shown. The size of the table can be parametrized for up to 100 mutations. For instance,
the user can explore the most recurrent mutations in the whole genome, a given gene or a
given protein domain. Furthermore, the period in which the monthly counts are shown
can be parameterized. The gene viewer (Figure 5B) has multiple tracks: (i) a scatter plot
with the relevant mutations and their frequencies in the virus population, (ii) ConsHMM
conservation tracks and (iii) gene and Pfam protein domains. The table in Figure S5
provides the decline and rise of the Alpha and Delta lineages, respectively, in the counts of
mutations between April and July 2021.

Additionally, the mutation statistics tab provides a co-occurrence analysis that points
to clusters of co-occurring mutations and their correspondence with virus lineages; or
in the case of mutations shared between lineages, these clusters may contain a mixture
of different but related lineages. Due to performance limitations, this analysis is only
available in the raw read dataset and at the gene level. In Figure S6, we show the Jaccard
index co-occurrence matrix in the spike protein and its clustering results annotated with
SARS-CoV-2 lineages in Table S1.

3.9. Clonal and Intrahost Mutations in the Raw Read Dataset

The FASTQ files provide the pile-up of reads across the genome, and this gives
detailed information into the called variants. In particular, we can count the number of
reads supporting each variant, and this allows us to identify subclonal variants supported
using only a fraction of the reads. These variants likely emerged within the host and are
referred to as intrahost variants. The identification of intrahost variants is not possible on
the genomic assemblies.

We consider high-quality clonal mutations as those with a VAF greater than or equal
to 80%, and those with a VAF greater than or equal to 50% and lower than 80% as low-
confidence clonal mutations. Only high-confidence clonal mutations are used to determine
a consensus sequence and assign a SARS-CoV-2 lineage (Figure 6).



Viruses 2023, 15, 1391 9 of 15Viruses 2023, 15, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 5. Gene view for the spike protein on the raw read dataset. (A) Table of the top 20 recurrent 
mutations with the frequency segregated by month between November 2021 and July 2022; (B) gene 
view showing mutations (synonymous and unique mutations excluded) in the spike protein and 
their frequencies in the virus population, the ConsHMM conservation tracks in grey and the Pfam 
protein domains in tones of purple. See Figure S4 for a screenshot including the filters. 

Additionally, the mutation statistics tab provides a co-occurrence analysis that points 
to clusters of co-occurring mutations and their correspondence with virus lineages; or in 
the case of mutations shared between lineages, these clusters may contain a mixture of 
different but related lineages. Due to performance limitations, this analysis is only availa-
ble in the raw read dataset and at the gene level. In Figure S6, we show the Jaccard index 
co-occurrence matrix in the spike protein and its clustering results annotated with SARS-
CoV-2 lineages in Table S1. 

Figure 5. Gene view for the spike protein on the raw read dataset. (A) Table of the top 20 recurrent
mutations with the frequency segregated by month between November 2021 and July 2022; (B) gene
view showing mutations (synonymous and unique mutations excluded) in the spike protein and
their frequencies in the virus population, the ConsHMM conservation tracks in grey and the Pfam
protein domains in tones of purple. See Figure S4 for a screenshot including the filters.
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Figure 6. Distribution of VAF across all mutation calls (4,665,192 with VAF ≥ 0.8; 222,297 with VAF
≥ 0.5 and < 0.8; 26,231,409 with VAF < 0.5) in 135,347 samples. High-confidence clonal mutations
overlapping the same amino acid are merged into MNVs or complex variants. See Figure S7 for a
screenshot of intrahost mutations tab including the filters.

The remaining dataset of mutations poses a different technical challenge due to the
difficulty of separating true low VAF mutations from noise. We first determine those
mutations with a VAF below 50% as raw candidate intrahost mutations.

We observed a large number of low-frequency mutations among SARS-CoV-2 genomes.
In order to establish a high-quality set of intrahost mutations for studying viral evolution,
we screened and compared the literature on SARS-CoV-2 intrahost mutations for different
filtering approaches and implemented a conservative approach (Table 2).

Table 2. Published and implemented filtering approaches for intrahost variants.

Approach Sample Filters Variant Filters

Valesano-like [44] ≥50,000 mapped reads
≥29,000 bp horizontal coverage

VAF ≥ 2%, VAF < 50%
DP ≥ 100

≥10 supporting reads

Sapoval-like [39] ≥20,000 mapped reads

VAF ≥ 2%, VAF < 50%
DP ≥ 10

Mask extremes of genome + homoplasmic
positions [68]

Tonkin-Hill-like [38]
Excessive number iSNVs (99.9th percentile)
Outlier number of iSNVs with mid-VAFs,

between 40% and 80%

VAF ≥ 5%, VAF < 50%
DP ≥ 100

≥5 supporting reads

CoVigator approach

≥50,000 mapped reads
≥29,000 bp horizontal coverage

Excessive number iSNVs (99.9th percentile)
Outlier number of iSNVs with mid-VAFs,

between 40% and 80%

VAF ≥ 2%, VAF < 50%
DP ≥ 100

≥10 supporting reads
Mask extremes of genome + homoplasmic

positions [68] from indels ≤ 10 bp

4. Conclusions

The persistently increasing amount of publicly available SARS-CoV-2 sequencing
data calls for robust platforms that allow constant monitoring of genomic SARS-CoV-2
variants in heterogeneous data sets. Our CoVigator pipeline covers the essential steps
of preparing the data and calling variants from SARS-CoV-2 raw sequencing data from
ENA and genome assemblies from the COVID-19 Data Portal. The pipeline is integrated
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within the CoVigator knowledge base that orchestrates the download, processing and
storage of the underlying samples and results. The CoVigator dashboard provides different
visualizations and features for selecting clonal variants across all genes from the SARS-CoV-
2 genome in a selected period. The dashboard also provides a comprehensive analysis of
intrahost variants observed across detected mutations in the raw read dataset. To this end,
we propose a conservative filtering approach based on filtering samples and mutations. The
dataset of intrahost mutations derived from public data that we make available through
CoVigator is, to the best of our knowledge, the largest published dataset of SARS-CoV-2
intrahost mutations. The main strength of CoVigator is the combination of a software
pipeline with a dashboard, which ensures both processing of the data and its interpretation.
Uniquely, CoVigator processes genome assemblies and raw sequencing data types, making
it open-data-friendly and allowing it to be adopted to other SARS-CoV-2 data sources. A
brief comparison of the important features of CoVigator with other pipelines is tabulated
in Table S2.

The identification of mutations over such heterogeneous datasets obtained with dif-
ferent sequencing protocols is challenging. With CoVigator, we observed VAF dilution on
mutations identified via targeted amplicon sequencing with overlapping primers, genome
edge effects and read edge effects. We aim to address these challenges in the future, e.g.,
through inferring the primers used in an arbitrary sample. Additionally, we implemented
a simplistic phasing of clonal mutations occurring in the same amino acid to ensure their
correct annotation. However, we identified the need for a phasing method for low-VAF
mutations that existing germline phasing tools do not cover. CoVigator is currently limited
to processing Illumina sequencing data, while the majority of SARS-CoV-2 sequencing
projects (i.e., Artic network) and pipelines use Oxford Nanopore sequencing. SARS-CoV-2
Nanopore data processing will be implemented in subsequent releases of CoVigator.

Future versions of CoVigator can be broadened to other use cases, such as other
infectious organisms or co-existing infections during the pandemic (see supplementary
methods for further details [69,70]). Additionally, we envision the annotation of all possible
mutations before their observation to potentially improve preparation for future variants
of concern.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15061391/s1, Figure S1. Workflow of CoVigator pipeline;
Figure S2. screenshot of the lineages tab in the ENA dataset; Figure S3. screenshot of mutation
statistics tab in the ENA dataset; Figure S4. recurrent mutations tab for the spike protein in the ENA
dataset; Figure S5. top 30 mutations in the spike protein from COVID-19 Data Portal; Figure S6.
screenshot of intrahost mutations tab; Figure S7. Jaccard index co-occurrence matrix on the spike
protein; Table S1. co-occurrence clusters on the spike protein with its matching lineage information;
Table S2. Comparison of SARS-CoV-2 data processing pipelines with CoVigator. Supplementary
methods for co-occurrence analysis and for CoVigator extension to other viruses.

Author Contributions: U.S., M.L., B.S. and T.B. were involved in conceptualization. T.B., P.R.-F., P.S.
and J.H. participated in implementation of the dashboard, developing the pipeline and hosting the
webserver. P.R.-F. and P.S. were involved in developing documentation and releasing the pipeline.
T.B., P.R.-F., P.S., R.G., T.R. and J.H. were involved in design of the dashboard and pipeline. R.G.
and P.R.-F. performed additional analysis to show the performance of the pipeline. R.G., P.R.-F. and
T.B. prepared the original draft of the manuscript. B.S., U.S. and M.L. were involved in writing,
critical review and editing the final draft of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: BioNTech SE: Mainz, Germany, supports the study. The funder provided support in the
form of a salary for author U.S., but did not have any additional role in the study design, data
collection and analysis, decision to publish or preparation of the manuscript. The specific roles of
this author are articulated in the ‘Author Contributions’ section. In addition, the other authors are
employees of the non-profit company TRON gGmbH and are supported in the form of salaries. TRON
gGmbH did not have any additional role in the study design, data collection and analysis, decision to
publish or preparation of the manuscript. Intel is committed to accelerating access to technology that

https://www.mdpi.com/article/10.3390/v15061391/s1
https://www.mdpi.com/article/10.3390/v15061391/s1


Viruses 2023, 15, 1391 12 of 15

can combat the current pandemic and enabling scientific discovery that better prepares our world for
future crises. Funding for this solution was funded in part by Intel’s Pandemic Response Technology
Initiative. For more information about healthcare solutions from Intel, visit intel.com/healthcare. For
more information about Intel’s COVID-19 response, visit https://www.intel.com/content/www/
us/en/corporate-responsibility/covid-19-response.html, accessed on 16 June 2023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The CoVigator dashboard is accessible via covigator.tron-mainz.de
and can be installed via https://github.com/TRON-bioinformatics/covigator. A standalone version
of the CoVigator pipeline with nextflow is available at https://github.com/TRON-Bioinformatics/
covigator-ngs-pipeline. CoVigator documentation is available at https://covigator.readthedocs.io.
All links accessed on 16 June 2023.

Acknowledgments: We thank Franziska Lang, Özlem Muslu, Jonas Ibn-Salem, Jos de Graaf and
Rudolf Koopmann for critical discussions. We thank Karen Chu and Paul Kerbs for reviewing,
editing and proofreading this article. We gratefully acknowledge the authors from the originating
laboratories responsible for obtaining the specimens, as well as the submitting laboratories where the
sequence data were generated and shared via the European Nucleotide Archive and the COVID-19
Data Portal.

Conflicts of Interest: Author U.S. is co-founder, shareholder and CEO at BioNTech SE. The remaining
authors declare no conflict of interest.

References
1. Moorthy, V.S.; Karam, G.; Vannice, K.S.; Kieny, M.-P. Rationale for WHO’s new position calling for prompt reporting and public

disclosure of interventional clinical trial results. PLoS Med. 2015, 12, e1001819. [CrossRef]
2. Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier,

R.A.M.; et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348,
1967–1976. [CrossRef]

3. Ventura, C.V.; Maia, M.; Bravo-Filho, V.; Góis, A.L.; Belfort, R. Zika virus in Brazil and macular atrophy in a child with
microcephaly. Lancet 2016, 387, 228. [CrossRef] [PubMed]

4. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from
Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef] [PubMed]

5. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus
associated with human respiratory disease in China. Nature 2020, 579, 265–269. [CrossRef] [PubMed]

6. Shang, W.; Yang, Y.; Rao, Y.; Rao, X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines 2020, 5, 18.
[CrossRef]

7. Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD)
of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol.
Immunol. 2020, 17, 613–620. [CrossRef]

8. Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. SARS-CoV-2
Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N. Engl. J. Med. 2021, 384, 229–237. [CrossRef]

9. Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al.
REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N. Engl. J. Med. 2021, 384, 238–251. [CrossRef]

10. Elbe, S.; Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 2017,
1, 33–46. [CrossRef]

11. Khare, S.; Gurry, C.; Freitas, L.; Schultz, M.B.; Bach, G.; Diallo, A.; Akite, N.; Ho, J.; Lee, R.T.; Yeo, W.; et al. GISAID’s Role in
Pandemic Response. China CDC Wkly. 2021, 3, 1049–1051. [CrossRef] [PubMed]

12. Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data—From vision to reality. Euro Surveill. 2017, 22, 30494.
[CrossRef]

13. Schrörs, B.; Riesgo-Ferreiro, P.; Sorn, P.; Gudimella, R.; Bukur, T.; Rösler, T.; Löwer, M.; Sahin, U. Large-scale analysis of SARS-
CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates. PLoS ONE 2021, 16, e0249254.
[CrossRef] [PubMed]

14. Riesgo-Ferreiro, P. VAFator. Available online: https://github.com/TRON-Bioinformatics/vafator.git (accessed on 16 June 2023).
15. Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain:

Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [CrossRef]
16. Singer, J.; Gifford, R.; Cotten, M.; Robertson, D. CoV-GLUE: A Web Application for Tracking SARS-CoV-2 Genomic Variation.

Preprints.org 2020. [CrossRef]

https://www.intel.com/content/www/us/en/corporate-responsibility/covid-19-response.html
https://www.intel.com/content/www/us/en/corporate-responsibility/covid-19-response.html
https://github.com/TRON-bioinformatics/covigator
https://github.com/TRON-Bioinformatics/covigator-ngs-pipeline
https://github.com/TRON-Bioinformatics/covigator-ngs-pipeline
https://covigator.readthedocs.io
https://doi.org/10.1371/journal.pmed.1001819
https://doi.org/10.1056/NEJMoa030747
https://doi.org/10.1016/S0140-6736(16)00006-4
https://www.ncbi.nlm.nih.gov/pubmed/26775125
https://doi.org/10.1056/NEJMoa2001017
https://www.ncbi.nlm.nih.gov/pubmed/31978945
https://doi.org/10.1038/s41586-020-2008-3
https://www.ncbi.nlm.nih.gov/pubmed/32015508
https://doi.org/10.1038/s41541-020-0170-0
https://doi.org/10.1038/s41423-020-0400-4
https://doi.org/10.1056/NEJMoa2029849
https://doi.org/10.1056/NEJMoa2035002
https://doi.org/10.1002/gch2.1018
https://doi.org/10.46234/ccdcw2021.255
https://www.ncbi.nlm.nih.gov/pubmed/34934514
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
https://doi.org/10.1371/journal.pone.0249254
https://www.ncbi.nlm.nih.gov/pubmed/34570776
https://github.com/TRON-Bioinformatics/vafator.git
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.20944/preprints202006.0225.v1


Viruses 2023, 15, 1391 13 of 15

17. Chen, C.; Nadeau, S.; Yared, M.; Voinov, P.; Xie, N.; Roemer, C.; Stadler, T. CoV-Spectrum: Analysis of globally shared SARS-CoV-2
data to identify and characterize new variants. Bioinformatics 2022, 38, 1735–1737. [CrossRef]

18. Mercatelli, D.; Triboli, L.; Fornasari, E.; Ray, F.; Giorgi, F.M. Coronapp: A web application to annotate and monitor SARS-CoV-2
mutations. J. Med. Virol. 2021, 93, 3238–3245. [CrossRef]

19. Maier, W.; Bray, S.; van den Beek, M.; Bouvier, D.; Coraor, N.; Miladi, M.; Singh, B.; de Argila, J.R.; Baker, D.; Roach, N.; et al.
Ready-to-use public infrastructure for global SARS-CoV-2 monitoring. Nat. Biotechnol. 2021, 39, 1178–1179. [CrossRef]

20. Nicholls, S.M.; Poplawski, R.; Bull, M.J.; Underwood, A.; Chapman, M.; Abu-Dahab, K.; Taylor, B.; Colquhoun, R.M.; Rowe,
W.P.M.; Jackson, B.; et al. CLIMB-COVID: Continuous integration supporting decentralised sequencing for SARS-CoV-2 genomic
surveillance. Genome Biol. 2021, 22, 196. [CrossRef]

21. Wittig, A.; Miranda, F.; Hölzer, M.; Altenburg, T.; Bartoszewicz, J.M.; Beyvers, S.; Dieckmann, M.A.; Genske, U.; Giese, S.H.;
Nowicka, M.; et al. CovRadar: Continuously tracking and filtering SARS-CoV-2 mutations for genomic surveillance. Bioinformatics.
2022, 38, 4223–4225. [CrossRef]

22. Harrison, P.W.; Lopez, R.; Rahman, N.; Allen, S.G.; Aslam, R.; Buso, N.; Cummins, C.; Fathy, Y.; Felix, E.; Glont, M.; et al. The
COVID-19 Data Portal: Accelerating SARS-CoV-2 and COVID-19 research through rapid open access data sharing. Nucleic Acids
Res. 2021, 49, W619–W623. [CrossRef]

23. Cecret. Available online: https://github.com/UPHL-BioNGS/Cecret (accessed on 13 October 2021).
24. Harshil, P.; Sarai, V.; Sara, M.; Jose, E.-C.; Michael, L.H.; Gisela, G.; nf-core bot; Phil, E.; Miguel, J.; Stephen, K.; et al. Nf-

Core/Viralrecon. Zenodo 2021. [CrossRef]
25. Connor-Lab. Ncov2019-Artic-Nf.: GitHub. 2022. Available online: https://github.com/connor-lab/ncov2019-artic-nf (accessed

on 15 June 2023).
26. Dezordi, F.Z.; Neto, A.M.d.S.; Campos, T.d.L.; Jeronimo, P.M.C.; Aksenen, C.F.; Almeida, S.P.; Wallau, G.L.; Fiocruz COVID-19

Genomic Surveillance Network. ViralFlow: A Versatile Automated Workflow for SARS-CoV-2 Genome Assembly, Lineage
Assignment, Mutations and Intrahost Variant Detection. Viruses 2022, 14, 217. [CrossRef] [PubMed]

27. Truong Nguyen, P.T.; Plyusnin, I.; Sironen, T.; Vapalahti, O.; Kant, R.; Smura, T. HAVoC, a bioinformatic pipeline for reference-
based consensus assembly and lineage assignment for SARS-CoV-2 sequences. BMC Bioinform. 2021, 22, 373. [CrossRef]
[PubMed]

28. NCBI SARS-CoV-2 Variant Calling (SC2VC) Pipeline. Available online: https://github.com/ncbi/sars2variantcalling (accessed
on 12 June 2023).

29. Tilloy, V.; Cuzin, P.; Leroi, L.; Guérin, E.; Durand, P.; Alain, S. ASPICov: An automated pipeline for identification of SARS-Cov2
nucleotidic variants. PLoS ONE 2022, 17, e0262953. [CrossRef]

30. Al Khatib, H.A.; Benslimane, F.M.; Elbashir, I.E.; Coyle, P.V.; Al Maslamani, M.A.; Al-Khal, A.; Al Thani, A.A.; Yassine, H.M.
Within-Host Diversity of SARS-CoV-2 in COVID-19 Patients With Variable Disease Severities. Front. Cell. Infect. Microbiol. 2020,
10, 575613. [CrossRef] [PubMed]

31. Armero, A.; Berthet, N.; Avarre, J.-C. Intra-Host Diversity of SARS-Cov-2 Should Not Be Neglected: Case of the State of Victoria,
Australia. Viruses 2021, 13, 133. [CrossRef] [PubMed]

32. Karamitros, T.; Papadopoulou, G.; Bousali, M.; Mexias, A.; Tsiodras, S.; Mentis, A. SARS-CoV-2 exhibits intra-host genomic
plasticity and low-frequency polymorphic quasispecies. J. Clin. Virol. 2020, 131, 104585. [CrossRef] [PubMed]

33. Lythgoe, K.A.; Hall, M.; Ferretti, L.; de Cesare, M.; MacIntyre-Cockett, G.; Trebes, A.; Andersson, M.; Otecko, N.; Wise, E.L.;
Moore, N.; et al. SARS-CoV-2 within-host diversity and transmission. Science 2021, 372, eabg0821. [CrossRef]

34. Moreno, G.; Katarina, M.B.; Peter, J.H.; Trent, M.P.; Kasen, K.R.; Amelia, K.H.; Joseph, L.; Kelsey, R.F.; Yoshihiro, K.; Thomas, C.F.;
et al. Limited SARS-CoV-2 diversity within hosts and following passage in cell culture. bioRxiv 2020. [CrossRef]

35. Popa, A.; Genger, J.-W.; Nicholson, M.D.; Penz, T.; Schmid, D.; Aberle, S.W.; Agerer, B.; Lercher, A.; Endler, L.; Colaço, H.;
et al. Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of
SARS-CoV-2. Sci. Transl. Med. 2020, 12, eabe2555. [CrossRef]

36. Rose, R.; Nolan, D.J.; Moot, S.; Feehan, A.; Cross, S.; Garcia-Diaz, J.; Lamers, S.L. Intra-Host Site-Specific Polymorphisms of
SARS-CoV-2 Is Consistent across Multiple Samples and Methodologies. MedRxiv 2020. [CrossRef]

37. Siqueira, J.D.; Goes, L.R.; Alves, B.M.; de Carvalho, P.S.; Cicala, C.; Arthos, J.; Viola, J.P.B.; de Melo, A.C.; Soares, M.A. SARS-CoV-2
genomic and quasispecies analyses in cancer patients reveal relaxed intrahost virus evolution. bioRxiv 2020. [CrossRef]

38. Tonkin-Hill, G.; Martincorena, I.; Amato, R.; Lawson, A.R.J.; Gerstung, M.; Johnston, I.; Jackson, D.K.; Park, N.R.; Lensing, S.V.;
Quail, M.A.; et al. Patterns of within-host genetic diversity in SARS-CoV-2. Elife 2020, 10, e66857. [CrossRef]

39. Sapoval, N.; Mahmoud, M.; Jochum, M.D.; Liu, Y.; Elworth, R.A.L.; Wang, Q.; Albin, D.; Ogilvie, H.A.; Lee, M.D.; Villapol, S.; et al.
SARS-CoV-2 genomic diversity and the implications for qRT-PCR diagnostics and transmission. Genome Res. 2021, 31, 635–644.
[CrossRef]

40. Zhou, Z.-Y.; Liu, H.; Zhang, Y.-D.; Wu, Y.-Q.; Peng, M.-S.; Li, A.; Irwin, D.M.; Li, H.; Lu, J.; Bao, Y.; et al. Worldwide tracing of
mutations and the evolutionary dynamics of SARS-CoV-2. bioRxiv 2020. [CrossRef]

41. James, S.E.; Ngcapu, S.; Kanzi, A.M.; Tegally, H.; Fonseca, V.; Giandhari, J.; Wilkinson, E.; Chimukangara, B.; Pillay, S.; Singh,
L.; et al. High Resolution analysis of Transmission Dynamics of Sars-Cov-2 in Two Major Hospital Outbreaks in South Africa
Leveraging Intrahost Diversity. MedRxiv 2020. [CrossRef]

https://doi.org/10.1093/bioinformatics/btab856
https://doi.org/10.1002/jmv.26678
https://doi.org/10.1038/s41587-021-01069-1
https://doi.org/10.1186/s13059-021-02395-y
https://doi.org/10.1093/bioinformatics/btac411
https://doi.org/10.1093/nar/gkab417
https://github.com/UPHL-BioNGS/Cecret
https://doi.org/10.5281/zenodo.5146252
https://github.com/connor-lab/ncov2019-artic-nf
https://doi.org/10.3390/v14020217
https://www.ncbi.nlm.nih.gov/pubmed/35215811
https://doi.org/10.1186/s12859-021-04294-2
https://www.ncbi.nlm.nih.gov/pubmed/34273961
https://github.com/ncbi/sars2variantcalling
https://doi.org/10.1371/journal.pone.0262953
https://doi.org/10.3389/fcimb.2020.575613
https://www.ncbi.nlm.nih.gov/pubmed/33123498
https://doi.org/10.3390/v13010133
https://www.ncbi.nlm.nih.gov/pubmed/33477885
https://doi.org/10.1016/j.jcv.2020.104585
https://www.ncbi.nlm.nih.gov/pubmed/32818852
https://doi.org/10.1126/science.abg0821
https://doi.org/10.1101/2020.04.20.051011
https://doi.org/10.1126/scitranslmed.abe2555
https://doi.org/10.1101/2020.04.24.20078691
https://doi.org/10.1101/2020.08.26.267831
https://doi.org/10.7554/eLife.66857
https://doi.org/10.1101/gr.268961.120
https://doi.org/10.1101/2020.08.07.242263
https://doi.org/10.1101/2020.11.15.20231993


Viruses 2023, 15, 1391 14 of 15

42. Sashittal, P.; Luo, Y.; Peng, J.; El-Kebir, M. Characterization of SARS-CoV-2 viral diversity within and across hosts. bioRxiv 2020.
[CrossRef]

43. Shen, Z.; Xiao, Y.; Kang, L.; Ma, W.; Shi, L.; Zhang, L.; Zhou, Z.; Yang, J.; Zhong, J.; Yang, D.; et al. Genomic Diversity of Severe
Acute Respiratory Syndrome-Coronavirus 2 in Patients With Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 713–720.
[CrossRef] [PubMed]

44. Valesano, A.L.; Rumfelt, K.E.; Dimcheff, D.E.; Blair, C.N.; Fitzsimmons, W.J.; Petrie, J.G.; Martin, E.T.; Lauring, A.S. Temporal
dynamics of SARS-CoV-2 mutation accumulation within and across infected hosts. PLoS Pathog. 2021, 17, e1009499. [CrossRef]
[PubMed]

45. Wang, Y.; Wang, D.; Zhang, L.; Sun, W.; Zhang, Z.; Chen, W.; Zhu, A.; Huang, Y.; Xiao, F.; Yao, J.; et al. Intra-host variation and
evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Med. 2021, 13, 30. [CrossRef] [PubMed]

46. Conda. Anaconda Software Distribution. Available online: https://docs.conda.io/ (accessed on 7 February 2022).
47. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]

[PubMed]
48. Vasimuddin, M.; Misra, S.; Li, H.; Aluru, S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In

Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24
May 2019; pp. 314–324.

49. Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.;
Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr.
Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [CrossRef] [PubMed]

50. Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics
2015, 31, 2032–2034. [CrossRef]

51. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter
estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [CrossRef]

52. Wilm, A.; Aw, P.P.K.; Bertrand, D.; Yeo, G.H.T.; Ong, S.H.; Wong, C.H.; Khor, C.C.; Petric, R.; Hibberd, M.L.; Nagarajan, N. LoFreq:
A sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput
sequencing datasets. Nucleic Acids Res. 2012, 40, 11189–11201. [CrossRef]

53. Danecek, P.; McCarthy, S.A. BCFtools/csq: Haplotype-aware variant consequences. Bioinformatics 2017, 33, 2037–2039. [CrossRef]
54. Grubaugh, N.D.; Gangavarapu, K.; Quick, J.; Matteson, N.L.; de Jesus, J.G.; Main, B.J.; Tan, A.L.; Paul, L.M.; Brackney, D.E.;

Grewal, S.; et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq
and iVar. Genome Biol. 2019, 20, 8. [CrossRef]

55. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.;
et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25,
1422–1423. [CrossRef]

56. Cingolani, P.; Platts, A.; Le Wang, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating
and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain
w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [CrossRef]

57. Kwon, S.B.; Ernst, J. Single-nucleotide conservation state annotation of the SARS-CoV-2 genome. Commun. Biol. 2021, 4, 698.
[CrossRef] [PubMed]

58. Ensembl Annotations SARS-CoV-2. Available online: ftp://ftp.ensemblgenomes.org/pub/viruses/json/sars_cov_2/sars_cov_2.
json (accessed on 7 May 2021).

59. O’Toole, Á.; Scher, E.; Underwood, A.; Jackson, B.; Hill, V.; McCrone, J.T.; Colquhoun, R.; Ruis, C.; Abu-Dahab, K.; Taylor, B.;
et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. 2021, 7, veab064.
[CrossRef] [PubMed]

60. Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al.
The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [CrossRef] [PubMed]

61. Di Tommaso, P.; Chatzou, M.; Floden, E.W.; Barja, P.P.; Palumbo, E.; Notredame, C. Nextflow enables reproducible computational
workflows. Nat. Biotechnol. 2017, 35, 316–319. [CrossRef]

62. Kryazhimskiy, S.; Plotkin, J.B. The population genetics of dN/dS. PLoS Genet. 2008, 4, e1000304. [CrossRef]
63. Spielman, S.J.; Wilke, C.O. The relationship between dN/dS and scaled selection coefficients. Mol. Biol. Evol. 2015, 32, 1097–1108.

[CrossRef]
64. Kistler, K.; Huddleston, J.; Bedford, T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2.

bioRxiv 2022. [CrossRef]
65. Rogozin, I.B.; Saura, A.; Bykova, A.; Brover, V.; Yurchenko, V. Deletions across the SARS-CoV-2 Genome: Molecular Mechanisms

and Putative Functional Consequences of Deletions in Accessory Genes. Microorganisms 2023, 11, 229. [CrossRef]
66. Garushyants, S.K.; Rogozin, I.B.; Koonin, E.V. Insertions in SARS-CoV-2 genome caused by template switch and duplications give

rise to new variants that merit monitoring. bioRxiv 2021. [CrossRef]
67. Montgomery, S.B.; Goode, D.L.; Kvikstad, E.; Albers, C.A.; Zhang, Z.D.; Mu, X.J.; Ananda, G.; Howie, B.; Karczewski, K.J.; Smith,

K.S.; et al. The origin, evolution, and functional impact of short insertion-deletion variants identified in 179 human genomes.
Genome Res. 2013, 23, 749–761. [CrossRef]

https://doi.org/10.1101/2020.05.07.083410
https://doi.org/10.1093/cid/ciaa203
https://www.ncbi.nlm.nih.gov/pubmed/32129843
https://doi.org/10.1371/journal.ppat.1009499
https://www.ncbi.nlm.nih.gov/pubmed/33826681
https://doi.org/10.1186/s13073-021-00847-5
https://www.ncbi.nlm.nih.gov/pubmed/33618765
https://docs.conda.io/
https://doi.org/10.1093/bioinformatics/bty560
https://www.ncbi.nlm.nih.gov/pubmed/30423086
https://doi.org/10.1002/0471250953.bi1110s43
https://www.ncbi.nlm.nih.gov/pubmed/25431634
https://doi.org/10.1093/bioinformatics/btv098
https://doi.org/10.1093/bioinformatics/btr509
https://doi.org/10.1093/nar/gks918
https://doi.org/10.1093/bioinformatics/btx100
https://doi.org/10.1186/s13059-018-1618-7
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.4161/fly.19695
https://doi.org/10.1038/s42003-021-02231-w
https://www.ncbi.nlm.nih.gov/pubmed/34083758
ftp://ftp.ensemblgenomes.org/pub/viruses/json/sars_cov_2/sars_cov_2.json
ftp://ftp.ensemblgenomes.org/pub/viruses/json/sars_cov_2/sars_cov_2.json
https://doi.org/10.1093/ve/veab064
https://www.ncbi.nlm.nih.gov/pubmed/34527285
https://doi.org/10.1093/nar/gkz268
https://www.ncbi.nlm.nih.gov/pubmed/30976793
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1371/journal.pgen.1000304
https://doi.org/10.1093/molbev/msv003
https://doi.org/10.2139/ssrn.3932602
https://doi.org/10.3390/microorganisms11010229
https://doi.org/10.1101/2021.04.23.441209
https://doi.org/10.1101/gr.148718.112


Viruses 2023, 15, 1391 15 of 15

68. De Maio, N.; Walker, C.; Borges, R.; Weilguny, L.; Slodkowicz, G.; Goldman, N. Issues with SARS-CoV-2 Sequencing Data.
Available online: https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473 (accessed on 8 April 2021).

69. Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. Optics. SIGMOD Rec. 1999, 28, 49–60. [CrossRef]
70. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473
https://doi.org/10.1145/304181.304187

	Introduction 
	Materials and Methods 
	Results and Discussion 
	System Description 
	Knowledge Base 
	Analysis Pipeline 
	Dashboard 
	Samples 
	Lineages 
	Mutation Statistics 
	Recurrent Mutations 
	Clonal and Intrahost Mutations in the Raw Read Dataset 

	Conclusions 
	References

