
Citation: Alandijany, T.A.; El-Daly,

M.M.; Tolah, A.M.; Bajrai, L.H.;

Khateb, A.M.; Alsaady, I.M.;

Altwaim, S.A.; Dubey, A.; Dwivedi,

V.D.; Azhar, E.I. Investigating the

Mechanism of Action of Anti-Dengue

Compounds as Potential Binders of

Zika Virus RNA-Dependent RNA

Polymerase. Viruses 2023, 15, 1501.

https://doi.org/10.3390/v15071501

Academic Editors: Jason E. Comer

and Dylan M Johnson

Received: 23 May 2023

Revised: 25 June 2023

Accepted: 29 June 2023

Published: 4 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Investigating the Mechanism of Action of Anti-Dengue
Compounds as Potential Binders of Zika Virus
RNA-Dependent RNA Polymerase
Thamir A. Alandijany 1,2 , Mai M. El-Daly 1,2 , Ahmed M. Tolah 1,3, Leena H. Bajrai 1,4 , Aiah M. Khateb 1,5 ,
Isra M. Alsaady 1,2 , Sarah A. Altwaim 1,6, Amit Dubey 7, Vivek Dhar Dwivedi 8,* and Esam I. Azhar 1,2,*

1 Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University,
Jeddah 21362, Saudi Arabia

2 Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University,
Jeddah 21362, Saudi Arabia

3 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University,
Rabig 25732, Saudi Arabia

4 Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
5 Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University,

Madinah 42353, Saudi Arabia
6 Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University,

Jeddah 20136, Saudi Arabia
7 Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India
8 Bioinformatics Research Division, Quanta Calculus, Greater Noida 201310, India
* Correspondence: vivek_bioinformatics@yahoo.com (V.D.D.); eazhar@kau.edu.sa (E.I.A.)

Abstract: The World Health Organization (WHO) has designated the Zika virus (ZIKV) as a significant
risk to the general public’s health. Currently, there are no vaccinations or medications available
to treat or prevent infection with the Zika virus. Thus, it is urgently required to develop a highly
efficient therapeutic molecule. In the presented study, a computationally intensive search was carried
out to identify potent compounds that have the potential to bind and block the activity of ZIKV NS5
RNA-dependent RNA polymerase (RdRp). The anti-dengue chemical library was subjected to high-
throughput virtual screening and MM/GBSA analysis in order to rate the potential candidates. The
top three compounds were then chosen. According to the MM/GBSA analysis, compound 127042987
from the database had the highest binding affinity to the protein with a minimum binding free
energy of −77.16 kcal/mole. Compound 127042987 had the most stable RMSD trend and the greatest
number of hydrogen bond interactions when these chemical complexes were evaluated further under
a 100 ns molecular dynamics simulation. Compound 127042987 displayed the best binding free
energy (GBind) of −96.50 kcal/mol, surpassing the native ligand binding energy (−66.17 kcal/mole).
Thereafter, an MM/GBSA binding free energy study was conducted to validate the stability of selected
chemical complexes. Overall, this study illustrated that compound 127042987 showed preferred
binding free energies, suggesting a possible inhibitory mechanism against ZIKV-RdRp. As per this
study, it was proposed that compound 127042987 could be used as a therapeutic option to prevent
Zika virus infection. These compounds need to be tested in experiments for further validation.

Keywords: molecular docking; RNA-dependent RNA polymerase; Zika virus; MM/GBSA; molecular
dynamics simulation

1. Introduction

The Zika virus, often known as ZIKV, was first isolated from a monkey in Uganda
in the year 1947. Consequently, it was investigated that the prevalence of the virus was
observed in Africa and Southeast Asia. In 1954, the virus was first detected in a human in
Nigeria. However, its identification was called into question and was initially assumed to
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be the Spondweni virus. Later, in Uganda, the first confirmed human instance of Zika was
reported in 1962–1963 [1]. However, the outbreak of the Zika virus in 2007 was recorded
in Africa, America, Asia, and other pacific nations [2]. After an outbreak that started
in French Polynesia in 2013, its transmission was detected in Brazil for the first time in
May 2015. By March 2017, 84 nations or territories throughout the world had reported
autochthonous mosquito-borne Zika virus transmission, including 61 countries or terri-
tories with novel introductions of the Zika virus since the beginning of 2015 [3]. ZIKV
is a mosquito-borne disease that is transmitted via the mastication of the Aedes mosquito,
and other modes of transmission include intrauterine, sexual, perinatal, and laboratory
infection and infected blood transfusion [4,5]. The infection is majorly asymptomatic, and
individuals who do exhibit symptoms may experience fever, rash, muscle and joint pain,
malaise, and headache, which can persist for a duration of 2–7 days. Moreover, infection
with ZIKV during pregnancy was associated with congenital malformations, microcephaly,
premature birth, and miscarriage. ZIKV is also linked to Guillain–Barré syndrome (GBS)
and myelitis in infants and adults [6]. GBS tends to occur when the immune system erro-
neously assaults nerve cells in response to a viral infection. However, the pathogenesis
of ZIKV infection is still under examination, although it appears to involve a combina-
tion of viral replication, immune response, genetic factors, and environmental factors [7].
Currently, ZIKV can be identified by using Zika IgM antibody capture enzyme-linked
immunosorbent assays (Zika MAC-ELISA), reverse transcription quantitative real-time
polymerase chain reaction (qRT-PCR), and reverse transcription loop-mediated isothermal
amplification (RT-LAMP) [8].

ZIKV is a single-stranded RNA that has a total of 10,794 nucleotides and encodes a to-
tal of 3419 amino acids. It is capable of entering the host by receptor-mediated endocytosis
and fusing with the endosomal cell area [9,10]. There are seven different non-structural
proteins that make up the structure of ZIKV. These proteins include NS1, NS2A, NS2B,
NS3, NS4A, NS4B, 2k, and NS5, the latter of which is the largest viral protein produced
by ZIKV. NS5 boons as a novel antiviral target, and the protein itself is composed of three
domains: A methyl transferase (MTase) domain (residues 1–262) from its N-terminal, an
RNA-dependent RNA polymerase (RdRp) domain (residues 273–903) from its C-terminal,
and an inter-domain region (residues 263–272) [11]. RdRp is a conserved domain that
facilitates the initiation of RNA synthesis and the formation of both positive and negative
RNA strands [12]. Moreover, RdRp is a versatile enzyme of RNA viruses that is essen-
tial for the replication of the genome and carries out the replication process. As stated
above, the core structure of RdRp is conserved despite the divergence of its sequences.
The structure of RdRp resembles a right hand that is cupped with a set of fingers, and
the palm and thumbs are the sub-domain. The catalytic process of RNA-dependent RNA
polymerase (RdRp) is assisted by conserved aspartates and divalent metal ions. By apply-
ing computational and experimental studies on RdRp complexes with substrates, metal
ions, and inhibitors, a comprehensive understanding of their functional processes could be
deciphered. Such studies provide valuable insights regarding the development of antiviral
compounds [13]. Several studies showed that RdRp has the potential to be used in the
development of new antiviral drugs. Similarly, Jiang et al., 2020 showed that remdesivir
targets the RdRp, and due to its role as an essential enzyme for RNA replication, it can be
used as potential therapeutic solution for COVID-19 [14]. Another study came to a similar
conclusion, finding that the Hantaan virus (HTN)–RdRp complex should be a main focus
for the development of antiviral medication. In this case, the RdRp endonuclease domain
of the HTN virus possesses a catalytic activity that is dependent on a metal. The objective
was to identify inhibitors capable of binding and disrupting the enzymatic activity of
this metal-dependent endonuclease. For the purpose of designing inhibitors, in-computer
methods such as molecular docking; molecular dynamics simulations; anticipated absorp-
tion, distribution, metabolism, excretion, and toxicity (ADMET); and drug-likeness studies
were utilized [15,16].
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In the current investigation, a comprehensive computational pipeline was utilized
in order to search for probable hit molecules that target RdRp. To obtain the most likely
conformation of the protein that could be analyzed in the MMGBSA binding free energy cal-
culation, the protein structure was modeled, and then subsequent molecular dynamics sim-
ulations were conducted. This allowed for the generation of the most likely conformation of
the protein. In this instance, the DenvInd database was compared to the three-dimensional
structure of ZIKV-RdRp. The DenvInD database was developed by Dwivedi et al. and
consists of compounds that have been shown to act as inhibitors against the drug targets of
the dengue virus that have been validated by in vitro studies [17]. The co-crystallized lig-
and 4-dimethoxy-5-thiophen-2-yl-benzoic acid (G8O) and quinoline-8-sulfonamide (G8L)
with ZIKV-RdRp was used as reference ligand for a comparative study. For explicit 100 ns
(nanosecond) molecular dynamics simulations, the three drug-like candidates that showed
the greatest promise were chosen. The active properties of the resultant protein–ligand com-
plexes were examined using RMSD, RMSF, and MMGBSA to ascertain the hit compounds’
RdRp binding affinities.

2. Methodology
2.1. Protein Modeling

ZIKV has been recognized as a potential threat to the general population’s health.
According to previous research, the RNA-dependent RNA polymerase (RdRp) found in
non-structural protein 5 (NS5) of ZIKV possesses the potential to be employed as a possible
target in the pursuit of drug discovery against ZIKV [18]. Consequently, the NS5 RdRp was
selected as the drug target for this in silico investigation. The available crystal structure of
the NS5 RdRp (PDB ID: 6LD5) was observed to comprise a solitary chain including roughly
575 residues, despite the protein sequence comprising approximately 645 residues. The
protein crystal structure exhibited 70 missing residues located at various sites. In order to
facilitate this structure, Swiss Model Server was employed to reconstruct the structure [19],
and a complete modeled structure was used in the analysis [20]. Furthermore, the modeled
structure was validated using the Ramachandran plot [21]. The stereo-chemical fidelity of
the protein’s 3D model was assessed by analyzing the steric hindrance between the phi (Φ)
and psi (ψ) torsion angles of amino acid residues in the Ramachandran plot [22].

2.2. Protein and Compound Library Preparation

The modeled 3D structure of the ZIKV-RdRp complex was used for molecular docking
against the anti-dengue compound library. Here, antiviral compounds were used for virtual
screening against ZIKV-RdRp and were collected from the DenvInd database [17,23]. This
is an anti-dengue compound database that comprises 330 validated compounds that were
used under in vitro trials as inhibitors against the respective drug target of the dengue
virus (DENV). Furthermore, the database can be accessed using a web-based interface that
incorporates multiple accessibility features, such as basic and advanced search options, as
well as browsing functions for the data.

The compounds were prepared using Schrodinger LigPrep [24,25]. LigPrep software
facilitates the generation of 3D structures from its 2D format by including hydrogen atoms,
considering bond lengths and angles, and selecting the conformer structure with the most
favorable conformational energy, which is determined based on appropriate chiralities,
tautomers, stereochemistry, and ring conformations. Additionally, the package employs
the EPIK 2.1 ionization tool to set the ionization state within the given pH range. Moreover,
the OPLS3 force field was selected for energy minimization [26].

2.3. Virtual Screening

In this study, structure-based virtual screening was performed using Glide extra preci-
sion (XP) of Schrodinger suite [27]. Glide XP is a computational tool used for molecular
docking, which generates the docked pose and predicts the binding of small molecules
to protein targets. It is a part of the Schrödinger software suite and is based on a com-
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bination of docking algorithms, including ligand conformational sampling and protein
flexibility [28]. Here, the DenvInd database was used to screen anti-dengue compounds
against the given protein target ZIKV-RdRp, with the aim of identifying potential binders.
The process involved preparing the protein structure of ZIKV-RdRp for docking, generating
conformations of the ligand database, and performing docking calculations using Glide XP.
In order to determine the binding free energies of the compounds that were produced as
a result of this process, molecular mechanics/generalized Born surface area (MMGBSA)
was used as a method of analysis. The compounds were rated according to the free energy
that they contributed to the binding process, and the top three hits were chosen for more
research. Afterwards, simulations of molecular dynamics were utilized to determine the
degree of flexibility and stability possessed by these molecules.

2.4. Molecular Dynamics Simulation

The molecular dynamics simulation will now begin with these three molecules
as the starting point. In order to choose the docked pose for the top three hits, the
Maestro-Desmond version 5.6 module of the Schrodinger Master version 11.8 suite was
used to run a molecular dynamics (MD) simulation for a duration of 100 nanoseconds [29].
The protein was prepared using the Schrodinger suite’s protein preparation wizard module
using evasion parameters. The system building tool was used to produce an orthorhombic
box to utilize as the simulation box. Within a 20-angstrom radius of the ligand binding sites,
both salt and ion placement were avoided as much as possible. The complete apparatus
was submerged in a water bath containing sodium counterions and a model of water based
on the TIP4P system. A 20 psi NPT reassembly was performed after the MD simulation
was completed with a constant pressure of 1 atm utilizing an anisotropic diagonal position
scaling of 0.002 ps time steps. The compactness of the system was kept at 1 gram per
cubic centimeter throughout. For the molecular dynamics (MD) calculations, the programs
Desmond version 5.6 and Maestro Suite version 11.8 with the OPLS-2005 force field were
utilized. In order to achieve representative conformations, the obtained trajectories were
clustered using the Desmond Trajectory Clustering tool, which was developed in Maestro
Suite. The clustering was performed based on RMSD.

2.5. MM/GBSA Calculation

For the purpose of determining the total binding free energies (∆GBind) of ligands, the
Schrodinger Maestro Prime module, along with the OPLS-2005 force field force that was
utilized for in silico docking, and the Prime MM-GBSA module were utilized [30,31]. The
energy of optimized free receptors, a free ligand, and a complex of the ligand with a receptor
was calculated by Prime MM-GBSA. In addition to this, it computed the ligand strain energy
by dispersing the ligand throughout a solution that was automatically produced by the
VSGB 2.0 suit [32]. In this case, the input structures that were used in the calculations were
acquired from the 100 ns MD simulation trajectory of each protein–ligand system. These
structures were then employed in the computations. In this case, the evaluation of the
total binding free energies of the top three hits was carried out using only the final 10 ns of
the trajectory. In addition to this, the trajectories of the native complex over the previous
ten nanoseconds were utilized in the computation of the total binding free energy. Using
Equation (1), we were able to compute the net free binding energy, also known as G. This
allowed us to estimate the individual energy components of the protein (receptor), the
ligand, and the protein–ligand complex.

∆GBind = ∆Gcomplex (minimized) −
(

∆Gprotein + ∆Gligand

)
(1)

In Equation (1), ∆GBind represents the change in total binding free energy,
∆Gcomplex (minimized) represents the change in binding free energy of the complex, ∆Gprotein
shows the change in binding free energy of the receptor, and ∆Gligand indicates the change in
binding free energy of the ligand. Eventually, the simulation trajectory was converted into
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a Bio3D-compatible format [33,34] to perform the principal component analysis (PCA) [35].
R was employed in this application. Here, the molecule’s initial coordinate was applied
as a point of reference, and subsequent conformations generated using the simulation
were superimposed onto it to determine the eigen vector. This vector is indicative of the
molecule’s orthogonal principal components of motion.

3. Results and Discussions
3.1. Protein Model Validation

The protein RdRp of ZIKV was retrieved from the PDB database with PDB ID 6LD5.
There were 70 missing residues at different sites within the protein crystal structure, and
the SWISS-MODEL server was used to remodel the structure for further experiments.
Residues 248 to 269, 314 to 320, 344 to 348, 407 to 426, 461 to 471, and 888 to 891 were
found to be missing in the crystal structure and were added during the remodeling of the
protein structure. The remodeled structure was validated using the Ramachandran plot, as
shown in Figure 1a, in which ~92% of the residues were found to be within the allowed
region. Seven residues turned out to be outliers; however, those were originally a part of
the experimentally obtained crystal structure and were therefore left undisturbed. The
crystal structure obtained from PDB had binding sites for zinc ions and two native ligands,
namely, 2, 4-dimethoxy-5-thiophen-2-yl-benzoic acid (G8O) and quinoline-8-sulfonamide
(G8L). The two ligands were bound to the crystal structure by four hydrogen bonds and
12 non-bonded contacts, as shown in Figure 1b. Moreover, the two native ligands were also
found to be covalently bound to each other while occupying a region around the allosteric
N-pocket of the protein. This validated, modeled protein was used further as a target
protein structure for molecular docking.
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(G8L) with protein RdRp.

3.2. Virtual Screening and MM/GBSA (∆G Binding Free Energy)

Virtual screening is a computational approach that employs an extensive and hetero-
geneous collection of chemical compounds to identify potential drug-like molecules [36].
In this study, 330 molecular structures were used in the screening. Schrodinger Glide XP
(Schrödinger Release 2023-1: Glide, Schrödinger, LLC, New York, NY, USA, 2021) was
used for the virtual screening of these compounds [27]. The twelve compounds with the
most superior docking scores, which exhibited the most optimal interactions within the
protein’s native ligand binding pocket, were selected for further examination. The docking
scores for the twelve selected compounds, which ranged between −10.23 kcal/mol and
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−12.95 kcal/mol, were significantly higher than that of the native compound complex,
which scored −4 kcal/mol. These scores were negatively correlated with the reference
native ligand. Previous studies with similar in silico approaches on ZIKV-RdRp showed
inhibitor compounds with docking scores ranging from −6.13 kcal/mol to −9.20 kcal/mol,
which was higher than the top twelve selected compounds in this study [37–39]. The dock-
ing score of the native ligand was lower than the selected ligand, which suggested a higher
strength of binding, but the docking program is a rigid protocol, and, thus, it has limitations
in finding the optimum minimum energy state. This was later addressed by running the
molecular dynamics simulation. Moreover, MMGBSA is a stronger categorization system;
thus, it can be used to assess a protein–ligand binding affinity for docked complexes.

Moreover, an MM/GBSA (molecular mechanics/generalized Born surface area sol-
vation) study was conducted for calculating the ∆G binding energy for the selected com-
pounds using the Prime tool to validate the top three hit compounds to be considered for
further analysis. ∆G binding energy (∆G) is based on the binding free energy between
ligands and proteins and is considered to be more accurate in predicting the strength of
protein–ligand interactions compared to docking scores [40]. In addition to the docking
scores, Table 1 showed a comparative analysis of the binding free energy (∆G) for the
twelve selected compounds that resulted from the virtual screening, as well as the na-
tive ligand. The ∆G binding energy of the native ligand was −45.85 kcal/mol, and all
the ligands, except for ligand 127038864 (∆G = −42.46 kcal/mol) and ligand 71455121
(∆G = −41.09 kcal/mol), had a negatively higher ∆G binding energy than the native ligand.
Ligand 127042987 had the most negative ∆G binding energy score of −77.16 kcal/mol,
while ligands 127040817 and 44577154 had ∆G binding energy scores of −71.88 kcal/mol
and −68.22 kcal/mol, respectively. These three ligands, which had the most negative ∆G
binding energy scores, exhibited the highest binding affinity with the protein and were pre-
ferred for further analysis during the study. Figure 2 shows the two-dimensional structures
of the best three compounds with the native compound. Even in the MMGBSA binding
energy calculation, the ligands selected in the screening showed a greater binding strength
with the protein molecule in comparison to the native ligand. However, in addition to the
binding score, interactive residues that participate in the protein–ligand interaction also
determine the inhibitory mechanism of the proposed compounds. The total number of
interactions with their type indicate the strength of binding. Moreover, direct interaction
with the catalytic residues could suggest their inhibitory action. In the next phase of the
study, the interactions were studied between compounds (screened ligands and native)
and proteins.

Table 1. Top 12 hit compounds from the DenvInd database screened against the RNA-dependent
polymerase of Zika virus.

Compounds Docking Score (kcal/mol) MM/GBSA ∆G Binding Free
Energy (kcal/mol)

127042987 −10.52 −77.16
127040817 −10.46 −71.88
44577154 −10.60 −68.22
127040514 −10.96 −64.52
57409245 −12.95 −63.77
127038506 −10.46 −63.56
57409246 −11.52 −60.01
127038036 −10.23 −58.23
127040814 −10.97 −50.03
118717692 −12.18 −47.56
127038864 −10.58 −42.46
71455121 −10.90 −41.09

Native (G8O-G8L) −4.00 −45.85
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Figure 2. 2D structure representation of the selected top hit compounds based on the MMGBSA
binding energy with DenvInd database IDs (a) 44577154, (b) 127040817, (c) and 127042987 and the
co-crystallized native ligand (d) (G8O-G8L).

3.3. Molecular Dynamics (MD) Simulation

In recent years, molecular dynamics simulations have developed into more advanced
methods that can be successfully applied to the process of comprehending the structure
of biological macromolecules [41]. Here, in addition to the 100 ns simulation, two more
replicas were performed to ensure the accuracy and robustness of the outcomes. Here,
Figure 3 shows the first and last poses during a 100 ns protein–ligand MD simulation study.
It was observed that during the entire MD simulation run, the ligands were bound to the
protein within the binding pocket. Although fluctuations and conformational changes were
observed in the ligands when first and last poses were compared, as observed in Figure 3, all
three ligands remained in the bound state throughout the simulation. Similar observations
were made for the protein–native ligand MD simulation. This indicates that the ligand
forms stable contact with the protein even in its native environment. However, both
rotational and translational motion was seen in all the ligands in their last pose of the MD
simulation, which was also observed in the protein–native ligand complex. Furthermore,
various MD analyses were performed for a better understanding of the protein–ligand
complex stability and interactions.
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Figure 3. First and last pose of the protein–ligand complexes after the 100 ns MD simulation for
(a,b) 44577154, (c,d) 127040817, (e,f) 127042987, and (g,h) the native ligand (G8O-G8L).

3.3.1. RMSD (Root-Mean-Square Deviation)

RMSD, or root-mean-square deviation, indicates the average deviation of a structure
from its reference frame (equilibrated) during the simulation. During RMSD calculations,
the protein backbone was taken as a reference frame, and changes within the protein
backbone and ligand bound to the protein were plotted separately. The RMSD helps with
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insights into the structural or conformational changes within the protein and the bound
ligand throughout the duration of the simulation. Here, if the RMSD values stabilize
over a certain value during the simulation, it indicates that the protein–ligand complex
has reached a state of either local or global minimum energy, and a stable equilibrium is
achieved. However, if the RMSD values keep increasing, this indicates that the complex has
not yet stabilized, and the local or global minimum energy values for the protein–ligand
complex have not been achieved. RMSD values in the range of 1–3 Å are considered
acceptable, especially for small and globular proteins [42]. If the RMSD values are found to
fall outside this range, it is indicative of a large conformational change within the structure.
The lower RMSD value throughout the MD simulation suggests that the protein–ligand
complex is more stable, whereas a higher RMSD value indicates that the protein–ligand
complex is somewhat less stable [43,44]. Figure 4 shows the RMSD of the protein and
ligand for all four systems. In the protein–native ligand system, it was observed that the
mean RMSD for the protein backbone when bound to the ligand was found to be 1.76 Å,
and the mean RMSD for the ligand bound to the protein was found to be 1.59 Å, which is
well within the range of 1–3 Å. Although a few sharp peaks were observed in the RMSD
values of the ligand during the 20–30 ns timeframe, the ligand RMSD stabilized after 30 ns
and sustained until 65 ns in the MD simulation. A decrease in the ligand RMSD values
below the mean RMSD of the ligand was observed between 60 ns and 80 ns. In the last
20 ns, the RMSD values remained stable and consistent with the mean RMSD value of the
ligand. On the other hand, the protein backbone was observed to be more stable, and a
stable equilibrium was achieved at 11 ns and was sustained until 50 ns. Further, the RMSD
values for the protein backbone decreased below the mean RMSD of the protein, and after
69 ns, they increased slightly above the mean RMSD value and sustained until 100 ns in the
MD simulation. This indicates that the protein backbone was found to be comparatively
more stable and that the RMSD values were well within the acceptable range of 1–3 Å.
Based on the RMSD values of the protein–native ligand complex, it can be concluded that
the native ligand binds strongly to the protein even in the native environment of the protein.
It can also be concluded that the ligand binding does not bring any significant change
in the protein conformation. The MD simulation analysis results for the protein–native
ligand complex were compared with the results for the protein and the top three ligands
(PubChem Id: 127042987, 127040817, and 44577154). The mean RMSD values for the protein
were found to be 1.82 Å, 1.78 Å, and 1.91 Å when bound to ligands 44577154, 127040817,
and 127042987, respectively, which is comfortably within the acceptable range of 1–3 Å. On
the contrary, the mean RMSD values for the ligands were found to be 2.66 Å, 5.47 Å, and
1.90 Å for ligands 44577154, 127040817, and 127042987, respectively, when bound to the
protein. It was observed that the mean RMSD for ligand 127040817 was significantly larger
than the protein's RMSD, which indicates that the ligand shifted from its initial binding
position to occupy a different binding position. This result is in accordance with the first
and last pose data for ligand 127040817, which shows a change in conformation, and there
are possibilities that the ligand shifted to a new binding location that was different from
its initial binding location. The mean RMSD for ligand 127042987 was found to be very
close to the mean RMSD of the protein during the simulation. This indicates that the ligand
consistently occupied the initial binding site till the end of the simulation, which is at 100 ns.
The protein’s RMSD values when bound to all three ligands revealed consistent stability
throughout the simulation. This indicates that the protein was stable during simulation
when bound to all of the three ligands. The protein RMSD was observed to be in accordance
with the RMSF data for the protein.
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Figure 4. Root mean square deviation (RMSD) of the protein and ligand for the selected protein–ligand
complexes after the 100 ns MD simulation for (a) 44577154, (b) 127040817, (c) 127042987, and (d) the
native ligand (G8O-G8L).

The other two replicas of the 100 ns simulation were also used for the calculation
of RMSD to remove the bias caused by the initial velocity imparted during the simula-
tion. Supplementary Figure S1 shows the RMSD of the protein and ligand for the three
complexes. Here, it was observed that the RMSD was the same as the first 100 ns simula-
tion trajectory, ensuring that the outcomes were reproduced in all three trajectories. This
provided additional confirmation of the robustness of the simulation results.

3.3.2. RMSF (Root-Mean-Square Fluctuation)

RMSF, or root-mean-square fluctuation, exhibits the average fluctuations within each
residue of the protein over the course of the simulation. It was observed that, except
for a few residues, the residues of the protein exhibited RMSF values less than 2.5 Å, as
shown in Figure 5, and the RMSF values for the three hit ligand systems were comparable
with that of the native ligand system. This indicates that fluctuations exhibited by the
residues at their loci were not very significant, and the overall protein was found to
be quite stable, as also indicated by the RMSD values. Here, the protein for the native
ligand complex showed all residues with RMSFs < 3 Å, while there were two residues with
RMSFs > 3 Å for compounds 44577154 and 127040817, although these residues were not in
contact with ligand atoms. However, for ligand 127042987, it was found that six residues
had RMSFs > 3 Å, and these residues, except for one (Phe466), had no contact with the
compound atoms.

The RMSFs of the other two replicas were also observed, as shown in Supplementary
Figure S2. It was found that the RMSF was the same for the replicas, as observed in the
first 100 ns simulation, showing that the results were reproduced accurately.
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each atom averaged over the 100 ns MD simulation for (a) 44577154, (b) 127040817, (c) 127042987,
and (d) the native ligand (G8O-G8L).

3.3.3. Protein–Ligand Interactions (MD Simulation)

Here, Figure 6 showed the three top-ranked compounds that resulted from the docking
study, along with their corresponding molecular interactions with the protein molecule at
the binding site. In this case, various molecular interactions were observed that include
hydrogen bonds (H-bonds) to hydrophobic contacts, π-cation interactions, π-π stacking,
and salt bridges. In this study, ligand 44577154, shown in Figure 6a,b, was found to form
five hydrogen bond interactions and single π-π stacking with surrounding residues. The
distance between the hydrogen bond donor and acceptor is shown with the name of the
H-bond-forming residues to indicate the strength of the H-bond. Specifically, the Cys711

(3.52 Å), Ser798 (1.9 Å), and Thr796 (1.9 Å) residues were involved in the formation of
single hydrogen bonds, while Ser663 (2.8 Å and 2.1 Å) formed a double hydrogen bond
with the ligand. Moreover, the His713 residue displayed a stacking interaction with the
ligand. Ligand 127040817, represented in Figure 6c,d, was found to be walled by various
residues. Specifically, Asp540 (1.9 Å) formed a single hydrogen bond and salt bridge; Ser663

(2.1Å), Asp666 (2.99 Å), Ash665 (2.0 Å), and Gln605 (2.5 Å) each formed a single hydrogen
bond; and, lastly, His713 showed stacking. These are categorized as weak hydrogen bonds.
Ligand 127042987 formed individual hydrogen bonds with the Ser663 (1.7 Å), Ash665 (1.7Å),
Asp666 (2.1 Å), Asp540 (2.4 Å), and Ser798 (2.1 Å) residues, as well as salt bridges with the
Asp540 and Asp666 residues. In addition, stacking was observed between the ligand and
the His713 residue, as shown in Figure 6e,f. In contrast, the native ligand used as a control
for the experiment exhibited only two hydrogen bonds that include residue Arg731 (3.2 Å)
and Trp797 (2.1 Å), while Arg731 also showed a π-cation interaction with the ligand, as
shown in Figure 6g,h. The comparative study showed that the residue binding interactions
in the native ligand were not observed in the top three selected ligand complexes. This
indicates the binding of the ligand at a different binding cavity compared to the native
ligand. In the co-crystallized structure (PDB ID:6LD5), the ligand showed H-bonds with
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Thr796, Arg731, and Trp791. These interactions matched the docked complex of the native
ligand and protein, missing the Thr796 H-bonds. This specific interaction was also observed
in ligand 44577154, which indicates interactions similar to those of the native ligand. Similar
interactions were detected for potential inhibitors in previous studies in which ZIKV-RdRp
was targeted and residues Cys711, Arg731 and Asp666 showed interactions after molecular
docking [37,45]. Figure 3 shows that native interacting residues were also detected in the
hit compound complexes, but their distances were not optimum for forming the hydrogen
bonds. As discussed above, these complexes were generated in the rigid docking, so there
is a high possibility that the initial pose could change, and ligands can transition to the
minimum energy and maximum interaction state. In this regard, the best docked pose
complexes of the top three hits were used for studying their stability with the molecular
dynamics simulation. Here, the ligand could move in the binding site to achieve the
optimum interaction.
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Later, the simulation trajectory was used to map the interactions and their corre-
sponding changes to understand the stability of the protein–ligand complex. In the course
of studying the protein–ligand interaction, ionic interactions were observed to have the
highest bond strength; however, weaker interactions also play a crucial role in a physio-
logical system due to their tunability and their mediation by affinity and concentration.
Therefore, while considering the protein–ligand interaction, apart from just the strength of
the interactions, the type of interaction is also critical to understand the interplay between
the ligand and the protein under a physiological condition.

Figure 7 displays the 2D representation that was taken from the frames created during
the 100 ns MD simulation of the interaction between the ligand and the protein. This chart
displayed the percentage of frames that were associated with each form of interaction. In
this investigation, the cut-off was determined to be 50%, which indicates that the specified
bonds must be seen 50% of the time before the interaction can be regarded as a stable type.
During the MD simulation analyses, as depicted in Figure 7d, it was observed that the
native ligand formed hydrogen bonds with four residues, namely, Arg473, Arg731, Arg739,
and Trp797. Here, Arg473 and Arg739 had two hydrogen bonds with the native ligand, with
more than 50 % of the timeframe of the simulation. Here, it is notable that Arg731 and Trp797

are the native interaction detected in the crystallized structure and retained during the MD
simulation. However, Trp797 had only one hydrogen bond with >50% occupancy, while
Arg731 had π-cation interaction with 31% of occupancy. A salt bridge was also observed
between the protein–native ligand complexes with 84% of the timeframe of simulation.
Comparatively, the binding interaction of the docked complex showed that only Trp797

was retained during the MD simulation, while Arg731, which formed a hydrogen bond,
converted to a π-cation interaction with less than 50% occupancy. In contrast, ligand
44577154 formed hydrogen bonds with seven residues of the protein, namely, Asn612,
Ser663, Asp666, Cys711, Ser712, Arg473, and Ser798, while His713 formed a π-π stacking
interaction, and Arg473 formed a π-cation interaction with 39% and 66% of the total time
frame, respectively. Here, Ser663, Ser712, and Ser798 had one hydrogen bond each, whereas
Arg666 had two hydrogen bonds with > 50% occupancy, as shown in Figure 7a. Based
on the binding interactions of the docked complex (ligand 44577154), it was found that
Ser663 and Ser798 retained the hydrogen bond interactions with more than 50% occupancy
during the MD simulation. Figure 7b showed that ligand 127040817 had hydrogen bond
interactions with six different residues, Glu509, Asp540, Asp665, Ser798, Trp797, and Ile799,
while Leu513 showed hydrophobic contact, and Trp797 and His713 showed π-cation and π-π
stacking, respectively. However, there were no residues with more than 50% occupancy,
while Asp540, Ser798, and Ile799 had occupancies of 49%, 50% and 48%. In comparison with
the interactions of the docked protein–ligand complex, only Asp665 retained its hydrogen
bond with the ligand during simulation but with 30% occupancy. Ligand 127040817 had
the highest number of hydrogen bonds compared to the other compounds. As shown in
Figure 7c, the ligand had multiple hydrogen bond interactions with Ser472, Asp540, Arg473,
Ser663, Asp665, Asp666, and Ser712, all of which except Arg473 had occupancies > 50%, while
Arg473 had an occupancy of 49% for the total timeframe. Compared with the docked
complex of the protein–ligand (127040817), the hydrogen-bond-forming residues Asp665,
Asp666, Asp540, and Ser663 were retained during the MD simulation of the complex with
more than 50% occupancy. It was interesting to note that, for some of the residues, the
changes from the docked pose in the protein–residue interaction with ligand 127042987
was lesser compared to the other compounds, including the native ligand. Here, ligand
127042987 retained most of the hydrogen-bonding residues during the MD simulation,
which suggests that the bonds formed by ligand 127042987 are more stable than the bonds
formed by ligand 44577154 and ligand 127040817.
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(b) 127040817, (c) 127042987, and (d) the native ligand (G8O-G8L).

Intermolecular interaction mapping was also performed for the other two replicas,
as shown in the Supplementary Figure S3. It was observed that the interactions in the
two replicas were up to the 100 ns simulation trajectory discussed here. This ensured the
reproducibility of the results during the simulation.
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From the interaction analysis data, it can be inferred that the atoms of ligand
127042987 interacted more strongly with the protein residues when compared to the
other two test ligands, 44577154 and 127040817. Based on the MD simulation results,
ligand 127042987 can be concluded to act as a promising potential drug molecule when
compared to the ligands 44577154 and 127040817. In order to confirm the results obtained
from the MD simulation, an MM/GBSA study was performed to evaluate the ∆G binding
free energy.

3.3.4. SASA (Solvent Accessible Surface Area)

The SASA of the ligand molecule was calculated for the 100 ns simulation. As shown
in Figure 8, the solvent accessible surface area (SASA) of the ligand indicated the surface
area of the ligand that was exposed to the solvent. Here, the native ligand showed a
SASA of 90 Å2 for most of the simulation time frame, while it had few fluctuations when
SASA reached 120 Å2. Compound 44577154 showed comparatively higher SASA with a
magnitude from 120 Å2 to 180 Å2 at the initial phase during the MD simulation, which
gradually decreased to 60 Å2 for most of the simulation frames. Compound 127042987
had the lowest SASA, with 60 Å2 at the beginning of the 100 ns simulation, which
indicated that less of the ligand’s surface area was exposed to the solvent, similarly to
the binding surface of the protein. However, the SASA increased to the range of 120 Å2

to 180 Å2 for the later state of the simulation. In contrast, compound 127040817 had a
relatively higher SASA of 320 Å2 with a higher fluctuation, while most of the frames had
a SASA of 240 Å2. However, the solvation of the compounds was higher compared to
the native ligand.
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The SASA from the other two replicas of the 100 ns simulation was also calculated
as shown in the Supplementary Figure S4. It was observed that the ligands had a similar
SASA trend to the first 100 ns simulation. Here, 127040817 and 127042987 showed the same
behavior in SASA, while 44577154 showed a marginal change. Ligand 44577154 had a SASA
of 120 Å2 to 160 Å2 at the initial phase during the MD simulation; however, it gradually
decreased to 80 Å2 for most of the simulation. Running the simulation in triplicate showed
similar results in SASA, which confirmed the accuracy of the simulation outcome.

4. MM/GBSA Analysis (∆G Binding Free Energy)

The binding free energy (∆G) using the MM/GBSA approach has been found to be
more reliable and replicable as it takes into consideration various physical and chemical
parameters for determining the most stable conformation with the highest negative
energy. Here, the calculation of ∆G binding free energy was performed on the final 10 ns
of each trajectory, resulting in 500 frames, which means the energy was calculated after
every 20 ps. Similarly, the standard deviation of the binding free energy was calculated
for the last 10 ns of simulation trajectory. The results of the MM/GBSA are shown
in Table 2. The protein–ligand complex obtained from the MD simulation study was
subjected to the ∆G binding free energy study, and it was observed that the ∆G binding
free energy for ligand 127042987–protein complex was found to possess the highest
negative energy, which was −96.50 kcal/mol. It was also significantly higher than the
native protein–ligand complex, which was found to be −66.17 kcal/mol. The other two
ligand (ligands 44577154 and 127040817) complexes were found to possess a ∆G binding
free energy of −68.77 kcal/mol and −89.46 kcal/mol, respectively. Earlier studies using
MM/GBSA to evaluate potential inhibitors of ZIKV-RdRp showed higher binding free
energy (−25.04 kcal/mol) results compared to this study, indicating that the selected
top three hits had strong binding [46]. The results suggest that ligand 127042987 can
act as the most potential molecule for acting as a drug against Zika virus. The data in
Table 2 also suggest that the 127042987–protein complex had minimum fluctuation in
the MMGBSA score, which additionally confirms the stable binding of the ligand with
the protein.

Table 2. Average total binding free energy (kcal/mol) values computed by molecular mechan-
ics/generalized Born surface area (MM/GBSA) for ZIKV-RdRp, docked with the screened top three
compound complexes and the native ligand G8O-G8L complex.

MM/GBSA
Components(kcal/mol) 44577154 127040817 127042987 Native Ligand

∆GBind −68.77 ± 6.399 −75.49 ± 7.97 −96.50 ± 3.29 −66.17 ± 3.39
∆GBind Coulomb −34.41 ± 3.91 −21.41 ± 24.27 −56.98 ± 35.78 −32.82 ± 17.65
∆GBind Covalent 1.94 ± 2.20 4.72 ± 2.13 6.68 ± 1.92 1.78 ± 2.55
∆GBind Hbond −4.22 ± 0.34 −2.58 ± 0.73 −7.16 ± 0.40 −3.89 ± 0.22

∆GBind Lipo −17.56 ± 2.14 −26.48 ± 2.81 −26.58 ± 0.63 −20.08 ± 0.60
∆GBind Solv GB 49.09 ± 3.55 46.13 ± 25.21 60.67 ± 35.14 46.29 ± 17.33

∆GBind vdW −60.87 ± 4.74 −74.21 ± 5.33 −72.51 ± 3.35 −55.96 ± 1.95
Ligand Strain Energy 11.77 ± 3.68 13.96 ± 3.76 6.83 ± 1.39 4.21 ± 0.98

5. Principal Component Analysis

Principal component analysis (PCA) was employed to assess the impact of ligand
binding on the conformational dynamics of the protein in its unbound (apo) and bound
forms. The PCA encompassed the entire 100 ns trajectory, focusing exclusively on the
Cα atoms of the protein. The subfigures presented in Figure 9 illustrate the confor-
mational changes observed in the protein as a result of ligand binding. To establish
a reference for acceptable motion upon ligand binding, a control ligand (Figure 9b)
was included in the PCA. The covariance matrix’s Eigen vectors represented the prin-
cipal components of motion. The first principal component of the unbound protein
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conformation accounted for 27.98% of the overall motion. Subsequently, the second
(PC2) and third (PC3) components contributed 7.34% and 6%, respectively (Figure 9a).
In comparison, the control ligand bound to the protein exhibited variances of 21.74%,
8.69%, and 5.28% in its top three principal components (Figure 9b). These results indi-
cate a reduction in the degree of freedom upon ligand binding as the variance in the
principal components decreased for the ligand-bound protein. The principal compo-
nents of motion for the top three hit compounds (Figure 9c–e) demonstrated a similar
trend, indicating the restrained motion of the Cα atoms in the protein upon binding
with these compounds. The binding event restricts the movement and flexibility of
the protein, leading to a decrease in the available degrees of freedom. This loss of en-
tropy is often associated with the formation of specific interactions between the ligand
and the protein, such as hydrogen bonds, electrostatic interactions, and hydrophobic
interactions. These interactions stabilize the binding conformation and limit the pro-
tein’s conformational space, resulting in a decrease in entropy. Compound 44577154
brought the maximum loss of entropy (PC1 = 16.6) compared to the unbound state
(PC1 = 27.98%). This indirectly also showed the stronger binding of compound 44577154
with the protein, which restricted the conformational motion of the protein. The reduc-
tion in entropy upon ligand binding is a crucial factor in determining the thermody-
namics and energetics of the binding process. It contributes to the overall affinity and
specificity of the protein–ligand interaction. By constraining the protein’s motion and
promoting a more organized state, ligand binding facilitates the formation of a stable
complex and promotes specific biological functions or signaling pathways.
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6. Conclusions

This study targets the RNA-dependent RNA polymerase (RdRp) of Zika virus to
inhibit its growth by deactivating its enzymatic function. The known ligand, G8O-G8L,
which is co-crystallized with the protein RdRp was used as a reference in this investigation
to compare the outcome. The target ZIKV NS5 RdRp was subjected to computational
screening with anti-dengue compounds acquired from the DenvInd database. The docked
scores of compounds were compared with the reference ligand. Virtual screening resulted
in the selection of 12 compounds followed by ∆G binding free energy calculation to select
the top three hits for further investigation. In the MD simulation analysis of the top three
complexes, the RMSD and RMSF established that ligand 127042987 had higher stability
comparatively. The MM/GBSA analysis on the trajectory reconfirmed the results using
∆G binding free energy that showed that ligand 127042987 had the most stable complex;
thus, this compound should be taken further for in vitro studies to validate its inhibitory
action. Overall, this study proposed a possible inhibitor against Zika NS5 RdRp based on
computational simulations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15071501/s1, Figure S1: RMSD of the protein and ligand during
the 100 ns MD simulation of two replicates for the (a,b) 127042987 (c,d) 44577154 (e,f) 127040817;
Figure S2: RMSF of the protein residues during the 100 ns MD simulation of two replicates for the
(a,b) 127042987 (c,d) 44577154 (e,f) 127040817; Figure S3: Intermolecular interactions mapping during
the 100 ns MD simulation of two replicates for the (a,b) 127042987 (c,d) 44577154 (e,f) 127040817;
Figure S4: SASA (Solvent Accessible Surface Area) during the 100 ns MD simulation of two replicates
for the (a, b) 127042987 (c,d) 44577154 (e,f) 127040817.
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