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Abstract: Oncolytic adenoviruses (OAds) present a promising path for cancer treatment due to their
selectivity in infecting and lysing tumor cells and their ability to stimulate the immune response.
In this study, we use an ordinary differential equation (ODE) model of tumor growth inhibited by
oncolytic virus activity to parameterize previous research on the effect of genetically re-engineered
OAds in A549 lung cancer tumors in murine models. We find that the data are best fit by a model
that accounts for an immune response, and that the immune response provides a mechanism for
elimination of the tumor. We also find that parameter estimates for the most effective OAds share
characteristics, most notably a high infection rate and low viral clearance rate, that might be potential
reasons for these viruses’ efficacy in delaying tumor growth. Further studies observing E1A and P19
recombined viruses in different tumor environments may further illuminate the extent of the effects
of these genetic modifications.
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1. Introduction

Cancer remains one of the leading causes of death in the US, claiming nearly
600,000 lives each year [1]. Globally, cancer accounts for almost 16% of all deaths [2].
Current treatments for cancer, such as chemotherapy, radiation therapy, and surgery, have
significant physical and mental effects on the patient [3]. Due to these treatments’ low
specificity, that is, they damage the healthy parts of the body in addition to the cancer, they
introduce painful side effects during the treatment process [4]. For this reason, researchers
have been investigating alternative treatments for cancer.

Oncolytic viruses (OVs) have emerged as a potential cancer treatment option [5],
with the advantages of high specificity and few adverse effects [6]. Several Phase I and II
clinical trials using OVs on a variety of different cancers have been conducted in recent
years. Several trials have shown promising success of various strains of OVs in eradicating
tumors [7]. China approved the use of adenovirus H101, known under the name Oncorine,
for treatment of head and neck cancers in 2005 [8]. About a decade later in the USA, the FDA
approved T-VEC, a modified herpes virus, for the treatment of inoperable melanomas [9].
Current OVs struggle to perform well in in vivo environments. Systemically introduced
OVs tend to be eliminated by the host’s body before they reach the tumor, and when intro-
duced locally to the tumor site, the viruses struggle to permeate fully throughout the tumor
matrix [10]. When the OVs do manage to infect and kill tumor cells, the stimulated immune
response, in addition to anti-tumoral responses, also produces an anti-viral response. This
results not only in cancer cell death, but also removal of the virus before the tumor is fully
infected [11]. Both aforementioned issues can result in incomplete remission of the tumor,
allowing it to grow back [12].

Oncolytic adenoviruses (OAds), a subtype of oncolytic viruses, have been studied ex-
tensively due to their abilities to replicate rapidly and induce an immune response [5,13–15].
Current research shows that OAds are capable of reducing tumors, but cannot completely
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eradicate them, allowing the tumor to grow back after a period of partial remission [16,17].
Various genetic modifications intended to raise the efficacy of OAds and solve some of
the OVs’ shortcomings have been researched, including ways to diffuse the virus more
thoroughly within a solid tumor [18] or enhancing viral replication [19]. Complex tumor
stroma can inhibit the spread of the virus, but changes to the E1A gene have been shown
to overcome this issue [20,21]. The addition of the RNA inhibitor suppressor gene P19 to
the viral genome has been shown to enhance viral replication in insect cells [21], and in
adenoviruses specifically, significantly amplified adenovirus replication and oncolytic
activity [22].

The current understanding of the complex dynamics determining the effectiveness of
OVs is limited, but mathematical models can help illuminate and quantify the underlying
factors in oncolytic virus kinetics. Mathematical models for oncolytic viruses have been
adapted from a set of ordinary differential equations used to describe virus dynamics,
with varying levels of complexity [23,24]. Simpler models [23] assume perfect integration
of the virus with tumor cells, often unachievable with solid tumors, while more complex
models consider the effects of antiviral immune responses and anti-tumor responses trig-
gered by the virus [24–27]. Various studies have been performed using these models to
quantify the parameters involved in oncolytic virus kinetics, comparing parameter values
for different treatment outcomes [28,29].

Some studies have considered the effect of immune response on the tumor–virus
system, developing mathematical models that account for adaptive and delayed immune
responses [25,26,30–34]. The immune response hinders viral replication, but also can have
an anti-tumoral effect, leading to different outcomes based on the relative strength of
these effects [26,32]. Depending on the exact mathematical implementation of these effects,
the region of tumor eradication can be small [30,33,35] or can show immune response-
driven multi-stability [34]. Models that have been fit to clinical data suggest that the innate
immune response can severely diminish OV’s capacity to control a tumor [26,31].

In this paper, we continue building on this topic, comparing differences in parameters
between different OAd treatments in live murine models. We fit mathematical models of
OV dynamics to previously published data from OAd-treated xenograft tumors and find
that the data are best explained by a mathematical model that includes an immune response.

2. Materials and Methods
2.1. Experimental Data

Tumor data were obtained from the paper Novel group C oncolytic adenoviruses car-
rying a microRNA inhibitor demonstrate enhanced oncolytic activity in vitro and in vivo by
Doerner et al. [16], which observed the effects of novel OAds in mice with xenografted
A549 lung tumors. In this study, recombineered P19 expressing adenoviruses based on
adenovirus types 1, 2, and 6 were injected into different groups of mice. These three re-
engineered viruses also had higher tumor selectivity and permeability due to a modification
in the E1A gene [16]. A group of mice was injected with the HAd5 virus, and another was
injected with the H101 virus, an OAd treatment for head and neck cancers approved in
China [36]. Each treatment group initially consisted of five mice, which were sacrificed once
the tumor ulcerated or reached a mass of 1000 mm3. As such, the data do not represent the
progression of tumor growth in a single animal, they are an average of the five volumes
measured from each mouse. Measurements of the tumors were taken using calipers for up
to 160 days, and the volumes were calculated based on the tumor’s diameters. A more de-
tailed explanation of methods and data collection is available in [16]. We use the data from
Figure 6A, which contains the average cancer volume data in the live mouse models. Data
were extracted using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/ (accessed
on 16 June 2023)).

https://automeris.io/WebPlotDigitizer/
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2.2. Model Fitting and Statistical Analysis

We evaluate two different mathematical models in fitting the treatment data to see
if the added complexity of accounting for an immune response is justified. We initially
investigate a basic model of OV therapy without any immune response,

dT
dt

= λT − βTV

dE
dt

= βTV − kE (1)

dI
dt

= kE − δI

dV
dt

= pI − cV.

The tumor (T) grows at a rate λ. The virus (V) infects the tumor at rate β. The infected
cells then enter the eclipse phase (E), and become actively infectious after a time 1

k . Infected
tumor cells (I) die at a rate δ and produce more viral particles at rate p. The virus is cleared
from the cells at rate c.

We also use a model that includes an interferon response,

dT
dt

= λT − βTV

dE
dt

= βTV − kE

dI
dt

= kE − δI (2)

dV
dt

= I
(

p
1 + εF

)
− cV

dF
dt

= V − αF.

Here, the virus stimulates an interferon response (F), where ε characterizes the virus’
sensitivity to interferon, and α is the decay rate of interferon. We first investigate the
addition of an interferon response since the mice used in the original study are CB17 mice
that have a naturally occurring mutation that causes severe combined immunodeficiency
(SCID). These mice are not capable of mounting a significant T cell or B cell response, so
the adaptive immune response should not play a role in the viral infection in these animals.
We chose to model the effect of interferon as reducing viral production, as has been done in
other modeling studies [37–39]; although other assumptions for the effect of interferon are
also possible [40,41]. This model has two more parameters than the basic model.

In order to estimate the model parameters, we fit both these models. Model fitting is a
standard procedure whereby parameter values are systematically varied in an attempt to
match the model curve to the experimental data. We quantitatively assess how well the
model matches the data by calculating the sum of squared residuals (SSR) between the
model and observed values,

SSR =
n

∑
i=1

(yi − f (ti))
2, (3)

where n is the number of data points, yi is the experimentally observed tumor volume at
time t, and f (t) is the model’s predicted tumor mass at time t. The parameter values that
lead to the minimal value of SSR are considered the best fit parameters estimates.

Since not all viral particles from the initial injection of virus manage to infect cells, we
consider V0, or the initial amount of virus in the system, as a free parameter. Because infec-
tion begins when the virus is first introduced to the tumor, we assume the initial volume
of eclipse phase cells E(0), actively infectious cells I(0), and amount of interferon F(0)
are 0. Fitting was conducted in two stages with the control tumor used to estimate the
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base growth rate. Treated tumors were then assumed to have that same growth rate and
other viral parameters were estimated using fits to treated data. The list of parameters that
were estimated using this fitting procedure and the biological meaning of the parameters is
included in Table 1.

Table 1. Model parameters estimated by the fitting process.

Parameter Meaning

β Viral infection rate
V(0) Initial amount of virus
k Transition rate from eclipse to infectious cells
δ Death rate of infectious cells
p Viral production rate
ε Sensitivity to interferon
c Viral clearance rate
α Interferon clearance rate

For the fitting of the tumor kinetics model, we use various aspects of the scipy
Python package. First, the ordinary differential model of the tumor kinetics is solved by
the odeint function of the scipy.integrate sub-package, and the minimize function of
the scipy.optimize sub-package minimizes the sum of squared residuals (SSR) of the
model to the data. We used the Nelder–Mead minimization function to identify the best-fit
parameters [42]. Plots were generated using the matplotlib Python package [43].

To determine the 95% confidence intervals for the best-fit parameters and SSR’s, we use
1000 bootstrap replicates [44]. Bootstrapping was also used to determine possible parameter
distributions. Distribution graphs were made using pyplot from the matplotlib Python
package [43].

3. Results
3.1. Control Tumor

We used an exponential model to fit the untreated tumor curve. The fit of the model is
shown in Figure 1 along with the exponential growth rate estimate. We find that untreated
A549 tumors have a growth rate of 0.0996/day (0.0960–0.100/day 95% CI). The base tumor
growth rate will be fixed to this value for subsequent fits to the treated data.

λ SSR
/day

Control 0.09959 65,550
95% CI 0.09604–0.1003 22,640–95,550

Figure 1. Exponential model fit and best fit parameters of the untreated curve from Figure 6A of [16].
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3.2. Model without an Immune Response

The best-fit curves for the model without an immune response are displayed in
Figure 2, and best fit parameters with 95% confidence intervals are displayed in Table 2.
Parameter correlation plots and histograms are included in the Supplementary Material.
While the model is capable of capturing the plateaus in tumor growth caused by the virus,
along with the eventual rapid growth once the virus fails, it is not capable of capturing the
smaller growth and shrinkage in the tumor seen in the early part of the time series. For this
reason, we explored a model that included an immune response to see if it might be able to
capture the finer structure of the tumor time course.

Figure 2. Graphs of tumor data and model without immune response. (top left) Ad1d24.P19 (top
right) Ad2d24.P19 (center left) Ad5.P19 (center right) Ad6d24.P19 (bottom left) H101 (bottom right)
all treatment curves plotted together.
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Table 2. Parameter estimates for model without an immune response.

Adenovirus β V(0) k δ p c SSR

/day /days /days /days·mm3 /days

Ad1d24.P19 7.005 × 10−3 15.68 0.02882 0.03211 1.217 × 10−14 2.598 × 10−3 53,730

95% CI (5.402–9.487) × 10−3 11.28–19.97 0.0–0.09937 0.0–0.2212 (0–1.345) × 10−13 (3.923–49.29) × 10−4 20,460–91,360

Ad2d24.P19 0.4754 0.4621 0.04066 0.4067 2.089 × 10−13 0.02928 30,240

95% CI 0.2514–0.8510 0.2600–0.8649 0–2.325 0–1.494 (0–1.256) × 10−11 0.01892–0.06247 15,100–37,250

Ad5.P19 0.2704 0.3151 0.04268 0.4268 3.207 × 10−13 1.824 × 10−3 105,000

95% CI 0.1215–0.5603 0.1463–0.6748 0.0–1.625 0.0–0.9863 (0.0–9.800) × 10−12 (0.0–9.683) × 10−3 50,200–133,200

Ad6d24.P19 286.3 8.087 × 10−4 1.975 × 10−3 200.0 7.261 × 10−5 0.03025 12,530

95% CI 195.6–432.7 (55.35–1.201) × 10−3 0–0.01935 (6.709–13,540,000)
× 10−4 (0–6.589) × 10−4 0.02321–0.05481 6741–14,980

H101 107.1 1.716 × 10−3 0.1321 0.1321 1.704 × 10−17 0.06521 3511

95% CI 50.25–270.5 (7.213–40.17) × 10−4 0.01490–3.517 (4.935–2753) × 10−3 (0–3.275) × 10−16 0.03307–0.1552 1337–4795
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3.3. Model with an Immune Response

The best-fit model curves for the model including an immune response are displayed
in Figure 3, and best fit parameters with 95% confidence intervals are displayed in Table 3.
Parameter correlation plots and parameter histograms are included in the Supplementary
Material. The model that includes an immune response is able to capture the small changes
in growth of the tumor early in the time course and we see a substantial reduction in the
SSR for fits with this model compared to the basic model fits.

Many of these parameters have not been previously estimated for OAds. The viral
clearance rate ranges from ∼0.05–0.38/day. The infected cell lifespan ranges from ∼2–14 days.
A previous study measured adenovirus-infected cell lifespans of ∼1–4.5 days [45], which is
generally shorter than the lifespans measured here. We note, however, that the rate of trans-
fer from the eclipse state and the infected cell death rate are very similar for all five strains,
suggesting that it is difficult to distinguish the values of these two parameters. We also
find that decay of interferon is very slow, with α ranging from 4.8 × 10−13–2.4 × 10−7/day.
The most effective OAds (Ad6d24.P19, Ad1d24.P19, Ad2d24.P19) in delaying tumor pro-
gression share a few characteristics relative to the other viruses: a higher infection rate (β),
a high value of (ε), and a lower viral clearance rate c.

Figure 3. Graphs of tumor data and fits of the model with an immune response. (top left) Ad1d24.P19
(top right) Ad2d24.P19 (center left) Ad5.P19 (center right) Ad6d24.P19 (bottom left) H101 (bottom
right) all treatment curves plotted together.
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Table 3. Parameter estimates for a model with an immune response.

Adenovirus β V(0) k δ p ε c α SSR

/day /day /day /days·mm3 /day /day

Ad1d24.P19 14.51 8.793 × 10−3 0.07406 0.07406 1.243 × 10−4 47.58 0.06857 4.854 × 10−13 41,540

95% CI 1.691–76.10 0.0–0.2957 0.01–0.6070 (1.605–62.22)
× 10−3 (0–4.427) × 10−4 1.841–1042 (2.361–65.55)

× 10−3
(0–1.637)
× 10−11 19,420–120,700

Ad2d24.P19 39.00 6.354 × 10−4 0.2346 0.2333 0.02650 58,910 0.07022 5.804−8 17,790

95% CI 10.93–100.9 (1.459–18,480)
× 10−7 0.08211–1.161 0.08950–0.6671 (9.445–1108)

× 10−4 2480–246,700 0.04706–0.1565 (5.693–131,800)
× 10−11 6077–26,180

Ad5.P19 7.297 8.440 × 10−3 0.3198 0.3198 4.659 × 10−4 22.87 0.2127 5.053 × 10−12 15,000

95% CI 2.833–34.15 0.002776–
0.03845 0.1335–3.397 0.1211–2.588 (1.917–24.92)

× 10−4 7.208–84.24 0.1046–1.321 (6.966–142,700)
× 10−15 6554–18,850

Ad6d24.P19 45.35 7.078 × 10−4 0.3189 0.3162 2.073 × 10−3 6295 0.04982 2.421 × 10−7 4640

95% CI 22.46–114.2 (3.005–169.6)
× 10−5 0.08875–1.923 0.1195–0.9148 (1.605–64.76)

× 10−4 679.2–21,930 0.03503–0.1028 (7.127–691,000)
× 10−11 2041–6123

H101 1.223 × 10−5 1.460 × 10−4 0.4649 0.4647 6.166 × 107 2.884 0.3752 8.022 × 10−9 2826

95% CI (1.939–28.44)
× 10−6 0–1.457 × 10−3 0.2496–2.115 0.2428–1.390 (4.176–2043)

× 105 0.02134–10.85 0.1542–0.9240 0–1.335 × 10−7 978.5–3644
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3.4. Comparison of Models

We use the Akaike Information Criterion to evaluate which model fits the data better.
The AIC assigns a numerical value to each model based on the following equation,

AIC = n ln
(

SSR
n

)
+ 2k, (4)

where n is the number of data points for each set of tumor data, SSR is the sum of squared
residuals from the best fit model, and k is the number of parameters [46]. Having more
parameters penalizes the model, with lower AIC indicating a better-fitting model [24,47].
Models with an approximate difference of two units in their AIC scores are not considered
substantially different.

AIC values for the two models for each virus are given in Table 4. The lowest AICs
for each model have been bolded. With the exception of the H101 adenovirus, the AIC for
the model with immune response is lower than that of the basic model, indicating that the
immune model provides a better fit. This also indicates that the improvement in the model
fit justifies the extra complexity of the model from the addition of the immune response.

Table 4. Comparison of AIC values for models with and without immune response.

Adenovirus With Immune Response Without Immune Response

Ad1d24.P19 305.7 312.5

Ad2d24.P19 208.1 219.5

Ad5.P19 181.3 227.9

Ad6d24.P19 167.2 193.0

H101 102.9 102.6

3.5. Comparison of Parameter Estimates for Different OAds

Figure 4 displays the logs of the bootstrapped parameter values, grouped by parameter
for the different viruses. H101 is a clear outlier in its values of infection rate (β) and
production rate (p). This virus is also the least sensitive to the effect of interferon (lowest ε).
Among the remaining viruses, Ad1d24.P19 has particularly low infected cell death rates
and slow viral clearance. This is the virus that showed the longest delay before resumption
of tumor growth—long-lived infected cells and slow viral clearance could account for that.

Statistical tests were performed using the Mann-Whitney U-test by taking random
samples of ten data points from the 1000 bootstrap replicates, testing with an alternative
hypothesis that the median values are not equal, and recording the p-values. The test
was repeated 1000 times for each comparison, and the average p-value of the 1000 trials is
listed in the tables in the Supplementary Material. Significantly low p-values have been
bolded. The results here reflect the histogram representation, as viruses with high overlap
in parameter values tended to share higher p-values (i.e., their parameter values were very
likely to be similar). Significant p-values are any values below a value of 0.05. A short
summary of major differences is listed below.

The H101 OAd showed the most differences in parameter values from the other viruses.
H101 had significantly different β, p, and ε values from all the other viruses. The viral
clearance rate, c, of H101 was significantly higher than all viruses except Ad5.P19, while
the interferon clearance rate was significantly different from all viruses except Ad6d24.P19.
All of these differences likely contribute to H101’s poor performance in delaying tumor
growth as compared to the other viruses.
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Figure 4. Histogram plots of logs of parameter distributions: (top right) β, (top left) V(0), (second
row left) k, (second row right) δ, (third row left) p, (third row right) ε, (bottom left) c, and (bottom
right) α.

Several of the parameters appeared to be fairly distinct for all of the viral strains
examined here. The viral production rate, p, was significantly different for all viral strains.
The sensitivity of virus to interferon. ε, was significantly different for all strains except
Ad5.P19 and Ad1d24.P19, which show a substantial amount of overlap. Finally, the vi-
ral clearance rate was significantly different for all strains except Ad5.P19/H101 and
Ad2d24.P19/Ad6d24.P19.

There were also two parameters that showed a few significant differences. The infected
cell death rate, δ for Ad1d24.P19 was significantly different from the death rate of other
viral strains, which all had similar death rates. The experiments of Doerner et al. support
this idea, showing that Ad1d24.P19 has little effect on cell viability at 5 and 7 dpi in
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many cell lines [16]. Ad1d24.P19 also had a significantly different transition rate from the
eclipse phase, k, than all other strains except Ad2d24.P19. These factors likely explain the
particularly long plateau in tumor growth for this strain of virus. The virus is infecting
the tumor cells, which is slowing down proliferation of the cancer cells, but the infected
cells die slowly, so a balance is reached for a period of time where, overall, the tumor does
not grow.

3.6. Role of the Immune Response in Suppressing Tumors

While the experimental data suggest that none of the viruses eliminate the tumor,
mathematical models allow us to extrapolate beyond the end of the experimental data.
Figure 5 shows the total tumor volume (sum of uninfected, eclipse, and infected cells)
predicted by the two models up to 200 days post-infection. For all viruses, the model
without an immune response predicts that the tumor will continue to grow and viral
treatment fails to eliminate the tumor. The viral time courses for this model suggest that
the viral titer only decays from its initial value, so that an infection never really takes hold
in the tumor. The model with an interferon response, however, suggests that the initial
small bump observed in the experimental data is a pre-cursor to a larger oscillation that can
dramatically drive down the size of the tumor. This is a seemingly counter-intuitive result
since the interferon response in this model is assumed to have only an antiviral effect and
does not directly impact the tumor. However, the interferon response in this case slows,
but does not completely stop, viral production allowing for long lasting viral infections
that can infect and kill more cancer cells.
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Figure 5. Predicted tumor volume for the models with and without interferon.

4. Discussion

We find that an oncolytic virus model without an immune response is unable to repro-
duce experimentally observed tumor progression. The model without an immune response
fails to capture the small oscillation present in the treated tumor data and also predicts
that virus will simply decay. Other studies have also found it necessary to incorporate
an immune response to accurately capture the behavior of oncolytic viruses, although the
mathematical implementation of the immune response differed from the implementation
presented in this manuscript [31,48]. The importance of the immune response is also sup-
ported by experimental studies that have found that due to the interaction of OVs with
the tumor system, an immune response will almost always be elicited [49,50]. In many
cases, the interferon response has been observed to hinder the efficacy of OVs by inducing
an antiviral effect [51–54]. However, many cancer cell lines have a reduced sensitivity to
interferon [53,55–57]; therefore, an interferon response that slows viral replication without
completely suppressing it, as predicted by our model, is possible.

We find that the most effective OAds in delaying tumor progression, namely serotypes
-1, -2, and -6, share several characteristics not seen in the parameters of the other two
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viruses. Each effective OAd had an infection rate (β) with an order of magnitude of 1,
a relatively high sensitivity to interferon (ε), and a slow viral clearance rate. This potentially
indicates that the viruses had greater success in delaying tumor growth due to higher
infection rates and less clearance of the virus, allowing it to proliferate further. Other
studies have also noted the importance of high viral infectivity and low viral clearance
in tumor suppression [48,58,59]. The high value of ε is consistent with the idea that the
optimal immune response is one that builds slowly, allowing viral replication to slow,
but not stop replication, helping to prolong the infection. This is further corroborated by
the work of Mahasa et al., who note that recruitment of the body’s innate immune response
might aid in suppressing tumor growth [25]. Complete and fast permeation throughout the
tumor is critical since the host’s innate immune response initiates quickly, and can quickly
suppress the OV if the viral infection is not sufficiently established and we are aiming
for the immune response to not fully suppress the infection, but to slow down the initial
quick infection.

However, the model we used only evaluates one aspect of the various immune re-
sponses in the body; therefore, more complex models that consider responses other than
interferon response, and differentiate between antiviral and anti-tumor interferon responses,
should be considered as well. Various studies that consider both antiviral and anti-tumor
immune responses [25,60] indicate that the responses act in opposition, where the anti-
tumor response helps with tumor suppression, while the antiviral response clears the OV,
allowing the tumor to proliferate. Modeling this competition between the anti-tumor and
antiviral innate immune responses will give a clearer picture of OV–tumor interaction.
Other components of the immune response also play a role in OV’s ability to clear tumors
and should be considered in modeling studies. For example, natural killer cells also have
both antiviral and anti-tumor effects [61,62] that might enhance or mitigate the effect of
interferon. A better understanding of the role of the immune response in enhancing or
limiting OV effectiveness is becoming more crucial as researchers are starting to investigate
combination therapy using OVs and immunotherapies [26,40,63].

Conclusions for virus effectiveness in humans are limited by the fact that the data were
from animal models, and only observe efficacy in one type of tumor. Adenovirus replication
in mouse models is known to be limited without inserting the appropriate cell surface
receptors [64,65], particularly when trying to study OV therapy in immunocompetent mice.
Even when OAds show good replication in the mouse model, we need to keep in mind
the differences in immune responses between mice and humans [66,67], particularly when
there seems to be a fine balance between too much of an immune response, which will halt
replication of the virus, and not enough of an immune response, which will fail to establish
a long-lasting viral infection capable of killing the tumor.

Despite the limitations, our model has identified virus–host characteristics that lead
to improved OV performance and has highlighted the importance of incorporating an
immune response. Further studies that observe how the P19 and E1A gene modifications
perform in different tumor environments should be considered, but the RNAi suppression
caused by P19 shows a promising path forward in eliminating antiviral response.
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