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Abstract: Background: The relationship between superinfection by multidrug-resistant Gram-
negative bacteria and mortality among SARS-CoV-2 hospitalized patients is still unclear. Carbapenem-
resistant Acinetobacter baumannii and carbapenemase-producing Enterobacterales are among the most
frequently isolated species when it comes to hospital-acquired superinfections among SARS-CoV-2
patients. Methods: Herein, a retrospective study was carried out using data from adult patients
hospitalized for COVID-19. The interaction between in-hospital mortality and rectal carriage and
superinfection by carbapenemase-producing Enterobacterales and/or carbapenem-resistant Acine-
tobacter baumannii was assessed. Results: The incidence of KPC-producing Klebsiella pneumoniae
and/or carbapenem-resistant Acinetobacter baumannii rectal carriage was 30%. Bloodstream infec-
tion and/or pneumonia due to KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant
Acinetobacter baumannii occurred in 20% of patients. A higher Charlson comorbidity index (OR
1.41, 95% CI 1.24–1.59), being submitted to invasive mechanical ventilation/ECMO ≥96 h (OR 6.34,
95% CI 3.18–12.62), being treated with systemic corticosteroids (OR 4.67, 95% CI 2.43–9.05) and
having lymphopenia at the time of admission (OR 0.54, 95% CI 0.40–0.72) were the features most
strongly associated with in-hospital mortality. Conclusions: Although KPC-producing Klebsiella
pneumoniae and/or carbapenem-resistant Acinetobacter baumannii rectal carriage, and/or bloodstream
infection/pneumonia were diagnosed in a remarkable percentage of COVID-19 patients, their impact
on in-hospital mortality was not significant. Further studies are needed to assess the burden of
antimicrobial resistance as a legacy of COVID-19 in order to identify future prevention opportunities.

Keywords: COVID-19; superinfection; rectal carriage; carbapenem resistance; Acinetobacter baumannii;
KPC; ICU; mortality

1. Introduction

Since the end of 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
pandemic has represented a major burden to worldwide healthcare systems due to the high
number of infected patients requiring lengthy hospitalization and intensive care [1]. The risk
of COVID-19 mortality is higher in elderly patients, in males, in obese individuals, in those
with underlying chronic organ diseases, in the presence of high inflammation or coagulation
statuses, or in those with lymphopenia at admission [2]. In addition, SARS-CoV-2-mediated
organ injury has been associated with prolonged mechanical ventilation, ICU, or hospital
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stays [3]. The former, together with antimicrobial misuse/overuse, may have paved the
way to the dissemination of multidrug-resistant bacteria in these populations [4–7].

The intestinal tract represents a massive reservoir of potential pathogens that can,
under certain circumstances, reach the bloodstream and/or extra-intestinal sites. Of par-
ticular note, the rise in multidrug-resistant bacterial intestinal carriage drives superin-
fections and mortality [8,9], which are particularly worrisome in vulnerable populations.
Recently, a Spanish pilot study showed that the gut microbiota profile can become a predic-
tive biomarker for multidrug-resistant bacteria colonization in SARS-CoV-2 patients [10].
Among Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae have been
reported as the most frequently isolated species among COVID-19 patients with hospital-
acquired superinfections [5,6]. The antibiotic resistance pattern of these pathogens is very
diverse and dependent, among other factors, on local epidemiology and intensive care prac-
tices [7,11–15]. The data on carbapenem resistance for Acinetobacter baumannii have attracted
particular attention given its independent association with 14-day mortality [11] and the
risk of developing superinfections [14], and several outbreaks of ceftazidime/avibactam-
resistant KPC-producing Klebsiella pneumoniae have also been reported [16–19].

The relationship between intestinal carriage or superinfection by multidrug-resistant
Gram-negative bacteria and mortality among SARS-CoV-2 hospitalized patients is still
unclear [7]. This study aimed to evaluate the impact of carbapenemase-producing En-
terobacterales and carbapenem-resistant Acinetobacter baumannii rectal carriage and/or
superinfection on COVID-19 in-hospital mortality.

2. Materials and Methods
2.1. Setting

This retrospective observational study was conducted at the “City of Science and
Health of Turin”, a tertiary care teaching hospital with 1900 beds in Turin, North–West Italy.
This region presents a high prevalence of Gram-negative bacteria with complex resistance
phenotypes [19].

2.2. Study Design and Data Collection

This study included all patients (≥18 years old) admitted for laboratory-confirmed
SARS-CoV-2 infection from March to June 2020. Variables herein analyzed included de-
mographics, community acquisition of SARS-CoV-2 infection, comorbidities, intensive
care unit (ICU) admission, hospital lengths of stay, lung infiltrates and/or pulmonary
embolism on chest CT scan, blood tests at the time of admission, type of support and
therapeutic management (antivirals, immunosuppressors, and antimicrobial treatment),
carbapenemase-producing Enterobacterales and/or carbapenem-resistant Acinetobacter
baumannii rectal carriage over the course of the admission, carbapenemase-producing En-
terobacterales and/or carbapenem-resistant Acinetobacter baumannii bloodstream infection
and/or pneumonia over the course of the admission, and in-hospital mortality. All data
were extracted from electronic medical records.

2.3. Definitions

SARS-CoV-2 infection was defined as community-acquired if symptoms started within
72 h of admission. Chronic heart disease was considered only in the presence of class
II NYHA disease or worse. Chronic pulmonary disease was defined as a disorder that
affects the respiratory system, including asthma, chronic obstructive pulmonary disease or
pulmonary fibrosis. Chronic kidney disease was considered only if KDIGO was stage 3A or
worse. Chronic liver disease was defined as a progressive deterioration of liver functions
for more than six months. The Charlson comorbidities index [20] was calculated at hospital
admission. Bacterial superinfection was defined as a clinical deterioration with Systemic
Inflammatory Response Syndrome signs and the concomitant presence of carbapenemase-
producing Enterobacterales and/or carbapenem-resistant Acinetobacter baumannii identified
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in lower respiratory tract specimens or blood cultures after at least 48 h from the admission.
Systemic corticosteroids included dexamethasone and other glucocorticoids.

2.4. Microbiological Diagnostics

The laboratory confirmation of SARS-CoV-2 infection was performed using AllplexTM
2019-nCoV assay (Seegene Inc., Seoul, Republic of Korea) on naso/oropharyngeal swabs or
bronchoalveolar lavage fluid obtained from patients with signs or symptoms of SARS-CoV-2
infection. For patients with more than one positive test, the first episode was considered
for study purposes.

The detection of rectal carriage of carbapenemase-producing Enterobacterales and
carbapenem-resistant Acinetobacter baumannii for new admissions and inpatients was per-
formed on a weekly basis. Rectal swabs were collected using the FecalSwab™ system
(Copan, Brescia, Italy) and inoculated on a chromogenic screening plate (Chromatic CRE
medium, Lioflchem, Roseto degli Abruzzi, Italy) by automated direct plating using the
WASP® instrument (Copan, Brescia, Italy). Species identification was carried out through
MALDI-TOF MS analysis (Bruker Daltonics GmbH, Bremen, Germany), and carbapene-
mase production was investigated through genotypic testing (Xpert Carba-R assay; Cepheid
Sunnyvale, CA, USA) and/or lateral flow immunoassay (NG-test CARBA 5; NG Biotech,
Guipry, France). The laboratory confirmation of carbapenemase-producing Enterobac-
terales and/or carbapenem-resistant Acinetobacter baumannii bloodstream infection and/or
pneumonia was based on: (1) MALDI-TOF MS identification of Enterobacterales and/or
Acinetobacter baumannii on blood culture and/or lower respiratory tract specimens overnight
subcultures, (2) detection of carbapenemase genes in Enterobacterales with Xpert Carba-
R assay (Cepheid, Sunnyvale, CA, USA), and (3) detection of carbapenem resistance
(meropenem and/or imipenem) in Acinetobacter baumannii isolates using the Microscan-
WalkAway plus system (Beckman Coulter, Brea, CA, USA). Antimicrobial susceptibilities
were interpreted according to the current EUCAST breakpoints [21].

2.5. Statistical Analysis

The Multivariate Imputation by Chained Equations algorithm was used to input the
~1.2% of missing laboratorial results for the six variables D-dimer, lactate dehydrogenase,
creatine phosphokinase, NT-proBNP, troponin T, and ferritin. For each missing value,
50 chained models were averaged out to estimate the most likely values. Kernel density
estimations were used to visualize the probability density function of both initial and
imputed values and confirm that these had an almost perfect overlap. The imputation
of missing values had an almost imperceptible effect on both the mean and median of
the inputted variable. Summary descriptive statistics were presented as median [IQR]
and proportion of positive cases. Normality was assessed using the Shapiro–Wilk test. In
the case of categorical variables, proportions were compared using Fisher’s exact test. In
the case of continuous variables, the Mann–Whitney U test was employed. Univariate
and multivariate logistic regression models were fit to determine which features were
significantly associated with in-hospital mortality. Variables with a p-value < 0.05 in
univariate regression were further funneled into a multivariate logistic regression. Features
pertaining to hospitalization time were deliberately left out of the model as these were not
baseline predictors (i.e., could only be known after the fact) and were thus of questionable
clinical relevance for future cases. Data analysis was carried out using R 4.2.2 software.

3. Results
3.1. Patients Characteristics

Overall, 188 patients were included in this study (Table 1). The median age was
69 years [IQR 67–75], 71% were male, and 65% suffered from a community-acquired
SARS-CoV-2 infection. The main comorbidities observed were chronic heart disease (66%),
diabetes (27%), chronic pulmonary disease (22%), obesity (20%), chronic kidney disease
(19%), and active neoplasia (18%). The median Charlson comorbidity index was four
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[IQR 2–5]. In regards to the clinical presentation of a SARS-CoV-2 infection, 98% of the
patients presented with bilateral pneumonia or acute respiratory distress syndrome (ARDS)
criteria. During hospitalization, 86% of the patients underwent non-invasive ventilation
and/or O2 therapy. Invasive mechanical ventilation was required for 50% of patients.
Systemic corticosteroids and antimicrobial treatment were started in 81% and 96% of
patients, respectively. For critically ill patients (61%), the median length of ICU stay was 10
days [IQR 5–18], while the overall median length of hospital stay was 29 days [IQR 18–46].
Thirty percent of patients presented with KPC-producing Klebsiella pneumoniae and/or
carbapenem-resistant Acinetobacter baumannii rectal carriage during hospitalization, and
20% suffered from a bloodstream infection and/or pneumonia caused by these.

Table 1. Overall SARS-CoV-2 infection cohort summary statistics.

Patient Characteristics (n = 188)

Age, median [IQR] (years) 69 [67–75]
Male 71%
Community-acquired SARS-CoV-2 infection 65%
Chronic heart disease 66%
Chronic pulmonary disease 22%
Chronic kidney disease 19%
Chronic liver disease 7%
Neoplasia 18%
Solid organ transplant recipient 5%
Diabetes 27%
Obesity 20%
Autoimmune disease 3%
Charlson comorbidity index, median [IQR] 4 [2–5]
Critically ill patient 61%
ICU length of stay, median [IQR] (days) 10 [5–18]
Total hospital length of stay, median [IQR] (days) 29 [18–46]
Clinical presentation
Unilateral pneumonia 2%
Bilateral pneumonia or ARDS 98%
Pulmonary embolism 10%
D-dimer (ng/mL) 1496 [845–4396]
LDH (UI/L) 644 [458–814.25]
CPK (UI/L) 78 [37–215]
NT-proBNP (pg/mL) 725 [244–3222]
Troponin T (ng/L) 22 [11–53]
Ferritin (ng/mL) 1081.5 [551–1922]
Creatinine (mg/dL) 1.06 [0.74–1.45]
Lymphocytes count (109/L) 0.83 [0.5–1.2]
Procalcitonin (ng/mL) 0.33 [0.1–1.0]
CRP (mg/L) 74.5 [28–139]
Support and management
Invasive mechanical ventilation or ECMO ≥ 96 h 50%
NIV and/or O2 therapy 86%
Systemic corticosteroids 81%
Tocilizumab 8%
Hydroxychloroquine 13%
Lopinavir/ritonavir 11%
Remdesivir 7%
Antimicrobial treatment 96%
Multidrug-resistant bacteria colonization and superinfection
KPC-Kp and/or CR-ACB rectal carriage 30%
KPC-Kp rectal carriage only 18%
CR-ACB rectal carriage only 3%
KPC-Kp + CR-ACB rectal carriage 10%
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Table 1. Cont.

Patient Characteristics (n = 188)

KPC-Kp and/or CR-ACB BSI and/or pneumonia 20%
KPC-Kp and/or CR-ACB BSI 11%
KPC-Kp and/or CR-ACB pneumonia 12%
KPC-Kp BSI or pneumonia only 8%
CR-ACB BSI or pneumonia only 5%
KPC-Kp + CR-ACB BSI or pneumonia 6%
Outcome
In-hospital death 44%

Abbreviations: IQR: interquartile range; ICU: intensive care unit; ARDS: acute respiratory distress syndrome; LDH:
lactate dehydrogenase; CPK: creatine phosphokinase; CRP: C-reactive protein; ECMO: Extracorporeal Membrane
Oxygenation; NIV: non-invasive ventilation; KPC-Kp: Klebsiella pneumoniae carbapenemase-producing Klebsiella
pneumoniae; CR-ACB: carbapenem-resistant Acinetobacter baumannii; BSI: bloodstream infection.

3.2. Comparison of SARS-CoV-2 Survivors vs. Non-Survivors Clinical Features

The patients who did not survive hospitalization were older (median age 73, IQR
65–77, p-value < 0.01), were more likely to suffer more from chronic respiratory disease
(p-value = 0.02) and neoplasia (p-value = 0.03), presented a higher Charlson comorbidity in-
dex (p-value < 0.01), more often experienced bilateral pneumonia or ARDS (p-value = 0.01),
and more often required intensive care (p-value = 0.01, Table 2). The blood counts of patients
failing to survival hospitalization presented higher values of NT-proBNP (p-value = 0.01)
and creatinine (p-value = 0.02) and lower lymphocytes counts (p-value < 0.01). In addition,
these patients were more likely to undergo both invasive (p-value < 0.01) and non-invasive
ventilation and/or O2 therapy (p-value = 0.02) and were more often administered systemic
corticosteroids (p-value < 0.01). No statistically significant differences were observed for
KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acinetobacter baumannii
rectal carriage and/or bloodstream infection and/or pneumonia between survivors and
non-survivors in the univariate analysis.

Table 2. Comparison of SARS-CoV-2 survivors vs. non-survivors clinical features.

Alive|Dead Mann–Whitney U Test W Statistic|p-Value or
Fisher’s Exact Test Odds Ratio [95% C.I.]|p-Value

Patient characteristics (n = 188)
Age, median [IQR] (years) 67 [55–73]|73 [65–77] W = 2989, p < 0.01
Male 70%|72% 1.09 [0.55–2.18]|p = 0.87
Community-acquired SARS-CoV-2
infection 64%|67% 1.18 [0.61–2.67]|p = 0.64

Chronic heart disease 60%|72% 1.60 [0.83–315]|p = 0.16
Chronic pulmonary disease 15%|30% 2.39 [1.12–5.23]|p = 0.02
Chronic kidney disease 15%|23% 1.65 [0.74–3.71]|p = 0.19
Chronic liver disease 6%|10% 1.75 [0.51–6.42]|p = 0.40
Neoplasia 12%|25% 2.39 [1.05–5.60]|p = 0.03
Solid organ transplant recipient 6%|8% 0.84 [0.17–3.67]|p = 1
Diabetes 23%|31% 1.54 [0.76–3.11]|p = 0.24
Obesity 18%|22% 1.25 [0.57–2.74]|p = 0.58
Autoimmune disease 4%|2% 0.62 [0.06–4.49]|p = 0.69
Charlson comorbidity index, median
[IQR] 3 [2–5]|4 [3–6] W = 3016.5, p < 0.01

Critically ill patient 53%|71% 2.14 [1.12–4.16]|p = 0.01
ICU length of stay, median [IQR] (days) 2 [0–11]|9 [0–17] W = 3342.5, p < 0.01
Total hospital length of stay, median
[IQR] (days) 33 [23–57]|21 [15–35] W = 5940.5, p < 0.01

Clinical presentation
Unilateral pneumonia 4%|0% 0 [0–1.90]|p = 0.13
Bilateral pneumonia or ARDS 83%|95% 4.06 [1.16–17.19]|p = 0.01
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Table 2. Cont.

Alive|Dead Mann–Whitney U Test W Statistic|p-Value or
Fisher’s Exact Test Odds Ratio [95% C.I.]|p-Value

Pulmonary embolism 11%|8% 0.72 [0.23–2.09]|p = 0.62

D-dimer (ng/mL), median [IQR] 1390 [774–3902]|2066
[877–5141] W = 3856.5, p = 0.17

LDH (UI/L), median [IQR] 639 [480–839]|664 [444–809] W = 4422, p = 0.86
CPK (UI/L), median [IQR] 69 [36–173]|80 [38–282] W = 3973, p = 0.3
NT-proBNP (pg/mL), median [IQR] 617 [197–1751]|996 [371–5900] W = 3473.5, p = 0.01
Troponin T (ng/L), median [IQR] 20 [9–67]|24 [14–52] W = 3862, p = 0.18
Ferritin (ng/mL), median [IQR] 953 [555–1830]|1150 [537–1953] W = 3968, p = 0.29
Creatinine (mg/dL), median [IQR] 0.93 [0.72–1.29]|1.16 [0.76–1.53] W = 3540.5, p = 0.02
Lymphocytes count (109/L), median
[IQR]

1 [0.54–1.39]|0.61 [0.44–1.06] W = 5548.5, p < 0.01

Procalcitonin (ng/mL), median [IQR] 0.34 [0.1–1.0]|0.31 [0.15–0.99] W = 4019.5, p = 0.36
CRP (mg/L), median [IQR] 85 [27.7–140]|70.5 [27.8–70.5] W = 4515.5, p = 0.67
Support and management
Mechanical ventilation or ECMO ≥ 96 h 37%|66% 3.30 [1.74–6.36]|p < 0.01
NIV and/or O2 therapy 80%|93% 3.19 [1.17–10.18]|p = 0.02
Systemic corticosteroids 72%|92% 4.11 [1.64–11.82]|p < 0.01
Tocilizumab 7%|10% 1.49 [0.45–5.06]|p = 0.58
Hydroxychloroquine 10%|14% 1.31 [0.50–3.39]|p = 0.66
Lopinavir/ritonavir 8%|14% 2.04 [0.72–6.08]|p = 0.15
Remdesivir 9%|6% 0.69 [0.17–2.39]|p = 0.58
Antimicrobial treatment 95%|98% 2.02 [0.32–21.71]|p = 0.46
MDR bacteria colonization and
superinfection
KPC-Kp and/or CR-ACB rectal carriage 28%|34% 1.33 [0.68–2.61]|p = 0.42
KPC-Kp rectal carriage only 15%|20% 1.43 [0.63–3.27]|p = 0.44
CR-ACB rectal carriage only 4%|1% 0.31 [0.01–3.21]|p = 0.38
KPC-Kp + CR-ACB rectal carriage 9%|12% 1.46 [0.50–4.29]|p = 0.47
KPC-Kp and/or CR-ACB BSI and/or
pneumonia 17%|23% 1.43 [0.65–3.15]|p = 0.35

KPC-Kp and/or CR-ACB BSI 9%|13% 1.63 [0.58–4.70]|p = 0.34
KPC-Kp and/or CR-ACB pneumonia 8%|17% 2.45 [0.90–7.13]|p = 0.06
KPC-Kp BSI or pneumonia only 10%|6% 0.61 [0.16–2.06]|p = 0.42
CR-ACB BSI or pneumonia only 5%|5% 1.01 [0.19–4.88]|p = 1
KPC-Kp + CR-ACB BSI or pneumonia 3%|10% 3.60 [0.83–21.78]|p = 0.06

Bold characters denote statistical significance at p-level < 0.05. Abbreviations: IQR: interquartile range; ICU:
intensive care unit; ARDS: acute respiratory distress syndrome; LDH: lactate dehydrogenase; CPK: creatine
phosphokinase; CRP: C-reactive protein; ECMO: Extracorporeal Membrane Oxygenation; NIV: non-invasive
ventilation; MDR: multidrug-resistant; KPC-Kp: KPC-producing Klebsiella pneumoniae; CR-ACB: carbapenem-
resistant Acinetobacter baumannii; BSI: bloodstream infection.

3.3. Factors Associated with In-Hospital Mortality

The logistic regression analyses, when adjusting for all other possible confounding
factors, showed the higher Charlson comorbidity index (OR 1.41, 95% CI 1.24–1.59), being
submitted to invasive mechanical ventilation or ECMO ≥ 96 h (OR 6.34, 95% CI 3.18–12.62),
being treated with systemic corticosteroids (OR 4.67, 95% CI 2.43–9.05), and having a lower
lymphocyte count at the time of admission (OR 0.54, 95% CI 0.40–0.72) as the sole features
significantly associated with in-hospital mortality (Table 3). KPC-producing Klebsiella
pneumoniae and/or carbapenem-resistant Acinetobacter baumannii rectal carriage and/or
bloodstream infection and/or pneumonia had no significant association with in-hospital
mortality.
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Table 3. Logistic regression analyses of in-hospital mortality risk factors.

Feature
Univariate Logistic Regression Multivariable Logistic Regression

p-Value Odds Ratio 95% CI Upper 95% CI Lower p-Value Odds Ratio 95% CI Upper 95% CI Lower

Age <0.01 1.05 1.07 1.04 0.06 1.04 1.06 1.01
Male 0.78 1.09 1.51 0.78
Community-acquired
SARS-CoV-2 infection 0.60 1.17 1.60 0.86

Chronic heart disease 0.13 1.60 2.20 1.16
Chronic pulmonary disease <0.05 2.39 3.44 1.66 0.44 1.45 2.39 0.88
Chronic kidney disease 0.18 1.65 2.40 1.13
Chronic liver disease 0.31 1.76 3.08 1.00
Neoplasia <0.05 2.39 3.53 1.62 0.20 2.26 4.31 1.18
Solid organ transplant recipient 0.78 0.83 1.62 0.43
Diabetes 0.19 1.53 2.14 1.10
Obesity 0.53 1.25 1.81 0.86
Autoimmune disease 0.59 0.62 1.50 0.25
Charlson comorbidity index <0.05 1.27 1.36 1.18 0.01 1.41 1.59 1.24
Critically ill patient <0.05 2.15 2.93 1.57 0.23 0.41 0.87 0.19
ICU length of stay <0.05 1.02 1.03 1.01 - - - -
Total hospital length of stay <0.01 0.98 0.98 0.97 - - - -
Unilateral pneumonia 0.98 0 - 0
Bilateral pneumonia or ARDS <0.05 4.08 7.25 2.30 0.82 0.84 1.84 0.38
Pulmonary embolism 0.50 0.71 1.17 0.43
D-dimer 0.40 1.00 1.00 1.00
LDH 0.55 1.00 1.00 0.99
CPK 0.06 1.00 1.00 1.00
NT-proBNP 0.44 1.00 1.00 1.00
Troponin T 0.21 0.99 0.99 0.99
Ferritin 0.40 1.00 1.00 0.99
Creatinine 0.74 1.02 1.11 0.94
Lymphocytes count <0.01 0.48 0.62 0.37 0.03 0.54 0.72 0.40
Procalcitonin 0.59 1.00 1.02 0.99
CRP 0.76 0.99 1.00 0.99
Invasive mechanical ventilation
or ECMO ≥ 96 h <0.01 3.32 4.52 2.44 0.01 6.34 12.62 3.18

NIV and/or O2 therapy <0.05 3.20 5.23 1.96 0.19 2.71 5.83 1.26
Hydroxychloroquine 0.53 1.30 2.02 0.84
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Table 3. Cont.

Feature
Univariate Logistic Regression Multivariable Logistic Regression

p-Value Odds Ratio 95% CI Upper 95% CI Lower p-Value Odds Ratio 95% CI Upper 95% CI Lower

Systemic glucocorticoids <0.01 4.14 6.50 2.63 0.01 4.67 9.05 2.41
Tocilizumab 0.45 1.49 2.56 0.87
Lopinavir/ritonavir 0.13 2.04 3.31 1.26
Remdesivir 0.51 0.68 1.21 0.38
Antimicrobial treatment 0.40 2.02 4.73 0.86
KPC-Kp and/or CR-ACB rectal
carriage 0.36 1.33 1.83 0.97

KPC-Kp rectal carriage only 0.34 1.43 2.10 0.97
CR-ACB rectal carriage only 0.29 0.30 0.95 0.09
KPC-Kp + CR-ACB rectal
carriage 0.43 1.46 2.37 0.89

KPC-Kp and/or CR-ACB BSI
and/or pneumonia 0.32 1.43 2.07 0.99

KPC-Kp and/or CR-ACB BSI 0.30 1.62 2.62 1.01
KPC-Kp and/or CR-ACB
pneumonia 0.05 2.46 3.93 1.53

KPC-Kp BSI or pneumonia only 0.38 0.60 1.07 0.34
CR-ACB BSI or pneumonia only 0.98 1.01 2.01 0.50
KPC-Kp + CR-ACB BSI or
pneumonia 0.06 3.62 7.25 1.81

Bold characters denote statistical significance at p-level < 0.05. Abbreviations: CI: confidence interval; ICU: intensive care unit; ARDS: acute respiratory distress syndrome; LDH: lactate
dehydrogenase; CPK: creatine phosphokinase; CRP: C-reactive protein; ECMO: Extracorporeal Membrane Oxygenation; NIV: non-invasive ventilation; KPC-Kp: KPC-producing
Klebsiella pneumoniae; CR-ACB: carbapenem-resistant Acinetobacter baumannii; BSI: bloodstream infection.



Viruses 2023, 15, 1934 9 of 13

4. Discussion

Bacterial superinfections may result in significantly worst COVID-19 outcomes, in-
cluding increased mortality [5,22]. Of particular note, carbapenem-resistant Gram-negative
bacteria, such as carbapenemase-producing Enterobacterales and carbapenem-resistant
Acinetobacter baumannii, represent a significant threat due to the limited availability of
effective treatment options and the ease with which they spread across health care facili-
ties [19,23,24]. This study aimed to compare in-hospital COVID-19 mortality in the pres-
ence/absence of carbapenemase-producing Enterobacterales and/or carbapenem-resistant
Acinetobacter baumannii colonization and/or infection in an area with a heavy load of
endemic multidrug-resistant pathogens.

KPC-producing Klebsiella pneumoniae and carbapenem-resistant Acinetobacter bauman-
nii rectal carriage has been shown to increase the risk of subsequent infections [25], and
we have herein observed that a considerable percentage (30%) of COVID-19 patients do
present with KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acine-
tobacter baumannii rectal carriage. KPC-producing Klebsiella pneumoniae was the most
prevalent in the analyzed population, being identified in 27% of patients. For 35% of
such cases, KPC-producing Klebsiella pneumoniae was present together with carbapenem-
resistant Acinetobacter baumannii. Among the colonized patients, 20% developed subsequent
pneumonia and/or a bloodstream infection. No carbapenemases other than KPC were
identified among carbapenem-resistant Enterobacterales isolates. While during the early
stages of the COVID-19 pandemic, unremarkable increases in the incidence of infections
by carbapenemase-producing Enterobacterales were observed [26,27], such figures signif-
icantly changed later on [28]. Tiri et al. reported that the incidence of KPC-producing
Klebsiella pneumoniae in COVID-19 ICU patients increased significantly from 6.7% in 2019
to 50% in 2020 [29]. Likewise, several carbapenemase-producing Enterobacterales out-
breaks (including KPC-producing Klebsiella pneumoniae, ceftazidime/avibactam-resistant
KPC-producing Klebsiella pneumoniae and NDM-producers) have been reported world-
wide [16–18,30,31]. A review of studies on carbapenem-resistant Klebsiella pneumoniae in
COVID-19 patients from six countries (Italy, China, Egypt, United States, Spain, and Peru)
showed that 84% of infected patients were male, with a mean age of 61 years, and the
predominant carbapenemases were KPC and NDM. Several factors contributed to the
variable prevalence of carbapenemase producers, ranging from 0.35 to 53%, with the lowest
prevalence reported in the United States and the highest in China [32]. In the present study,
an incidence of 14% for KPC-producing Klebsiella pneumoniae superinfection was observed,
with 6% of patients developing pneumonia and/or a bloodstream infection due to both
KPC-producing Klebsiella pneumoniae and carbapenem-resistant Acinetobacter baumannii.
Overall, a KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acinetobacter
baumannii bloodstream infection and/or pneumonia occurred in 20% of COVID-19 pa-
tients. Superinfections by carbapenem-resistant Acinetobacter baumannii in ICU patients
with COVID-19 have been reported worldwide [24]. A multicentric Italian study reported
an increase in colonization with carbapenem-resistant Acinetobacter baumannii from 5.1 per
10,000 ICU-patient-days during January-April 2019 to 26.4 per 10,000 ICU-patient-days
during January–April 2020, with a predominance of OXA-23 producers [27]. This massive
increase in incidence among ICU patients coincided with the worst phases of the COVID-19
pandemic. Moreover, according to a recent report [33], OXA-23 can be considered the main
mechanism involved in carbapenem resistance in Acinetobacter baumannii strains isolated
from COVID-19 patients in our hospital setting.

Herein, the features most strongly associated with in-hospital mortality were a higher
Charlson comorbidity index, lymphopenia at admission, invasive mechanical ventila-
tion/ECMO ≥96 h, and treatment with systemic corticosteroids. The role of comorbidity
statuses is in line with previous reports [22]. Likewise, lymphopenia at admission has been
previously reported as being significantly associated with the progression to severe disease
(OR 4.20, CI 95% 3.46–5.09) and death (OR, 3.71, CI 95% 1.63–8.44) [34]. Lymphopenia is
not uncommon among COVID-19 patients and strongly correlates with critical illness. Such
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a deficiency may contribute to the cytokine storms and higher tissue damage observed
in severe COVID-19 infections, as well as to a delay in infection clearance [35]. The use
of systemic corticosteroids was found to be a very common and recommended practice,
especially during the second COVID-19 wave. Indeed, the use of dexamethasone resulted
in lower 28-day mortality, especially in patients receiving invasive mechanical ventila-
tion [36,37]. Nasir et al. showed that systemic steroid use was higher in COVID-19 patients
with bacterial co-infections (92% vs. 62% respectively; p-value = 0.001) compared to patients
without and that steroid use was associated with an increased risk of subsequent infec-
tions [38]. However, a study of 226 hospitalized COVID-19 patients showed that although
steroid use was associated with an increased incidence of superinfections, the mortality
rate was not significantly affected [39]. Our cohort of COVID-19 patients belongs to the
first wave when the evidence on COVID-19 patient management was limited. Therefore,
the association of systemic corticosteroids with increased mortality may be due to their
exclusive use in patients with a severe baseline prognosis.

Previous meta-analyses revealed bacterial co-infections and superinfections to be
significant mortality predictors in COVID-19 patients [5,22,23]. The mortality rates reported
in COVID-19 patients with bacterial co-infections and/or secondary bacterial infections
ranged from 6.5% to 66.7%; however, the observation periods and populations varied,
which may explain the wide variation in rates [40]. In addition to increased mortality,
other notable trends among COVID-19 patients with bacterial superinfection included
a prolonged length of hospital stay, more frequent admission to the ICU, and the use of
invasive mechanical ventilation [40].

In our study, the multivariate logistic regression showed no statistically significant
contribution of colonization and superinfections by KPC-producing Klebsiella pneumoniae
and/or carbapenem-resistant Acinetobacter baumannii on in-hospital mortality. In agreement
with our results, Pasero et al. reported that multidrug-resistant infections in COVID-19
ICU patients (mainly Gram-negative bacteria) were associated with longer lengths of
stay but not with higher mortality [40]. Likewise, Karrulli et al. showed that 50% of
COVID-19 ICU patients developed a multidrug-resistant infection, predominantly blood-
stream infections and pneumonia caused by carbapenem-resistant Klebsiella pneumoniae and
carbapenem-resistant Acinetobacter baumannii. However, these were not associated with
higher mortality [15]. On the one hand, it is possible that the severity of the SARS-CoV-2
infection overshadowed many other basic characteristics, particularly in the early stages of
the pandemic, when the best course of action was still far from clear. Indeed, a prospec-
tive study involving 48.902 patients admitted to 260 hospitals in England, Scotland, and
Wales in the first wave of the COVID-19 pandemic (admitted from February and June
2020) showed that co-infections or secondary infections were not associated with increased
mortality among ICU patients [41]. Assessing the association between a co-infection and
an outcome using observational data is complex. First, in the first wave of the pandemic,
due to the severity of the SARS-CoV-2 infection, a higher proportion of deaths within the
study occurred in the early stages of hospitalization; therefore, these patients had less time
to develop superinfections and to obtain microbiological investigation results. In addition,
the successful implementation of rapid diagnostics coupled with infectious counselling in-
tervention for the timely and appropriate use of new drugs such as ceftazidime/avibactam
and cefiderocol may suffice to counteract the putative positive influence of such infections
on mortality [34,42,43].

Our study has some limitations. First, it is a single-center study conducted in a setting
with a high diffusion of multidrug-resistant organisms. Second, the sample size is relatively
small and the patients were enrolled during only first four months of the SARS-CoV-2
pandemic. Third, the superinfections were sustained by non-multidrug-resistant bacteria,
multidrug-resistant species other than carbapenemase-producing Enterobacterales and
carbapenem-resistant Acinetobacter baumannii, and other pathogens such as viruses and
fungi were not included in the analysis, and this represents a potential bias.
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5. Conclusions

This study assessed the burden of colonization and infections caused by the main
multidrug-resistant Gram-negative bacteria in a cohort of patients hospitalized for COVID-19
during the first wave in Italy. A higher comorbidity status, the presence of lymphopenia at
admission, undergoing invasive mechanical ventilation/ECMO ≥96 h, and being treated
with systemic corticosteroids were the sole features herein observed as significantly asso-
ciated with in-hospital mortality. Although KPC-producing Klebsiella pneumoniae and/or
carbapenem-resistant Acinetobacter baumannii rectal carriage and/or infections were di-
agnosed in a remarkable percentage of COVID-19 patients, their impact on in-hospital
mortality was not significant. Further studies are needed to assess the burden of antimicro-
bial resistance as a legacy of COVID-19 in order to identify future prevention opportunities.
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