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Abstract: The frequency of locally transmitted dengue virus (DENV) infections has increased in
Europe in recent years, facilitated by the invasive mosquito species Aedes albopictus, which is well
established in a large area of Europe. In Italy, the first indigenous dengue outbreak was reported in
August 2020 with 11 locally acquired cases in the Veneto region (northeast Italy), caused by a DENV-1
viral strain closely related to a previously described strain circulating in Singapore and China. In
this study, we evaluated the vector competence of two Italian populations of Ae. albopictus compared
to an Ae. aegypti lab colony. We performed experimental infections using a DENV-1 strain that is
phylogenetically close to the strain responsible for the 2020 Italian autochthonous outbreak. Our
results showed that local Ae. albopictus is susceptible to infection and is able to transmit the virus,
confirming the relevant risk of possible outbreaks starting from an imported case.

Keywords: dengue virus; mosquito; arboviruses; Italy; Aedes albopictus; experimental infection

1. Introduction

Dengue fever is a mosquito-borne tropical disease caused by four distinct but closely
related serotypes of Dengue virus (DENV; family Flaviviridae, genus Flavivirus) that are
transmitted by Aedes mosquitoes [1]. The species Aedes aegypti, widely spread in endemic
areas, is considered the main vector of DENV. Although considered a secondary vector of
DENV, Ae. albopictus is however associated with virus transmission in several areas of the
world, including Europe [2]. The first Italian indigenous DENV outbreak was reported
in Montecchio Maggiore (Vicenza province, Veneto region) in August 2020 with 11 cases
secondary to an imported case from Indonesia [3]. To evaluate the role of Ae. albopictus in
DENV transmission, we analyzed the vector competence, through experimental infections,
of two Italian populations of Ae. albopictus. Potential vertical (transovarial) transmission
of DENV was also evaluated. Since it was not possible to isolate the DENV-1 strain
responsible for the 2020 Italian outbreak, either from mosquito pools or from human sera,
for the experimental infections, we used a phylogenetically highly related DENV-1 strain
circulating in Singapore.
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2. Materials and Methods
2.1. Virus and Mosquito Populations

DENV-1 isolate SG (EHI)D1/30889Y14 (accession number MG097876) was selected
based on the high genetic homology of 98.27% with the DENV-1 strain of the 2020 Italian
autochthonous outbreak (namely VI/Italy/2020, accession number MZ291446; Supplemen-
tary File). The dengue strain was kindly provided by the Environmental Health Institute,
National Environment Agency, Singapore for the purposes of the study. The virus was
grown in VERO cells and titrated via plaque assay [4]. Two geographically different Ae. al-
bopictus populations were collected from Rome (Lazio region, Central Italy) and Montecchio
Maggiore (Veneto region, northeast Italy), the latter being the town where the 2020 DENV-1
outbreak occurred. A long-established Ae. aegypti laboratory colony (collected in Reynosa,
Mexico, in 1998) was used as the reference. The eggs of two Ae. albopictus populations were
collected by using ovitraps and were reared in the insectarium of the Istituto Superiore di
Sanità in Rome. Adults were maintained before the test for a few generations (F3–F5) in
climatic chambers under the following conditions: 26 ± 1 ◦C temperature; 70% relative
humidity (RH); and a 14:10 h light/dark photoperiod. To check that the two Ae. albopictus
populations were virus free, 5 pools of 20 specimens (males and females) per pool for each
F0 offspring generation were analyzed for DENV via real-time PCR (qRT-PCR) [5].

2.2. Genetic Similarity Analysis

The sequence of the DENV-1 strain of the 2020 Italian autochthonous outbreak (VI/
Italy/2020; accession number MZ291446) [3] was compared to DENV-1 sequences available
in a sequence repository by using the BLASTN tool in order to identify the most related
viral strains. We found more than 200 isolates showing high homology with MZ291446
(<98% homology). Few of these were cultured. MG097876, circulating in Singapore where
Ae. albopictus was described, was selected because it was highly related (98.27%) and
isolated in cells.

2.3. Experimental Infection

The experimental infections were performed in a biosafety level 3 laboratory with
5–10 days old female mosquitoes that were allowed to feed for 60 min using a membrane
feeding apparatus containing a blood–DENV mixture. The virus was diluted in rabbit
blood to a final virus concentration of 5 log10 plaque-forming units (PFU)/mL. The infec-
tious blood was maintained at 37 ◦C through a warm water circulation system. Unfed and
partially fed mosquitoes were excluded from the study; only completely engorged females
were transferred to a climate chamber (set to the same environmental conditions as previ-
ously described) and were provided with a 10% sucrose solution. They were monitored for
28 days. At 0, 7, 14, 21, and 28 days post-infectious blood meal, 10–23 mosquitoes of each
species and population were individually processed. To determine the vector competence,
the whole body (head, thorax, and abdomen), legs plus wings, and saliva of the mosquitoes
were screened for DENV RNA to estimate the infection, dissemination, and transmission
rates (IR, DR, and TR), respectively [5]. Mosquito saliva was collected by inserting the entire
proboscis into a single quartz capillary filled with 1 µL of Vaseline oil. Vaseline enables
the clear identification of saliva droplets, helping to rule out the possibility that a negative
result for the virus in a saliva sample is due to a lack of saliva production. One microliter
of 1% pilocarpine, a saliva stimulant that is an analogue of acetylcholine [6], prepared in
phosphate-buffered saline (PBS) at 0.1% Tween 80, was applied on the mosquito thorax.
After 30 min, the medium containing the saliva was expelled under pressure from the
capillary into a 1.5 mL tube containing 500 µL of mosquito diluent consisting of PBS, 20%
heat-inactivated FBS, and a 1% penicillin/streptomycin/amphotericin B mix (Invitrogen
Corp., Carlsbad, CA, USA; GIBCO Brl, Rockville, MD, USA). Virus titers were quantified
by using crossing point values obtained from a qRT-PCR [7] and comparing them with a
standard curve obtained from 10-fold serial dilutions of virus stock of known concentra-
tion [8,9]. Potential vertical transmission of DENV was also analyzed. For this, mosquitoes
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were allowed to lay eggs (first gonotrophic cycle—FGC) after the infectious blood meal.
Larvae from the FGC were reared up to adulthood in the climatic chamber, and adults were
tested for DENV RNA via qRT-PCR analysis on pools (5 pools for Ae. albopictus from Rome,
3 pools for Ae. albopictus from Montecchio Maggiore, and 4 pools for Ae. aegypti), consisting
of 5 mosquitoes/pool.

2.4. Data Analysis and Statistics

Statistical significance tests were performed using a parametric Student’s t test. All
statistical analyses were performed using GraphPad Prism 5 software (GraphPad Software,
San Diego, CA, USA). For all analyses, a p-value ≤ 0.05 was considered significant.

3. Results

Both Ae. albopictus field populations collected in Montecchio Maggiore and Rome
were DENV free as all tested pools were negative. All tested Aedes populations showed
susceptibility to DENV-1 infection, allowing the virus to replicate and spread to the salivary
glands. The values of IR, DR, TR, and the mean viral titers are shown in Figure 1 and
Table 1, respectively.

Table 1. Infection rate (IR): number of positive bodies/number of tested fed females; dissemination
rate (DR): number of positive legs plus wings/number of positive bodies; transmission rate (TR):
number of positive saliva/number of positive bodies.

Species Days Post
Infection IR

Main
Value

(PFU/mL)
DR

Main
Value

(PFU/mL)
TR

Main
Value

(PFU/mL)

Ae.
albopictus

Rome

0 11/11 1.6 × 101 - -

7 7/21 6.3 × 101 0/7 0/7

14 9/22 7.6 × 102 8/9 1.3 × 101 3/9 0.4 × 101

21 3/15 3.0 × 102 2/3 0.7 × 101 0/3

28 2/12 4.1 × 102 0/2 0/2

Ae.
albopictus
Montec-
chio M.

0 12/12 1.9 × 101 - -

7 2/22 2.4 × 101 0/2 0/2

14 7/23 3.8 × 102 5/7 0.2 × 101 2/7 0.1 × 101

21 3/15 6.4 × 102 2/3 0.5 × 101 1/3 0.5 × 101

28 1/12 7.4 × 102 1/1 4.4 × 101 0/1

Ae.
aegypti

Reynosa

0 12/12 3.5 × 101 - -

7 4/22 1.9 × 101 0/4 0/4

14 4/23 4.2 × 101 3/4 0.5 × 101 0/4

21 3/10 1.4 × 103 3/3 1 × 101 2/3 0.2 × 101

28 4/12 1.9 × 102 3/4 3.3 × 101 2/4 0.2 × 101
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Figure 1. Infection (IR), dissemination (DR) and transmission rates (TR) in Aedes albopictus and Ae.
aegypti colonies at different collection times postinfection with DENV-1.
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To confirm the ingestion of infectious viral particles, the engorged mosquitoes were
analyzed immediately after the infectious blood meal. The results showed a viral titer of
approximately 1 log10 PFU/mL in the tested specimens. The viral titers detected in the
bodies of Ae. albopictus increased gradually in all mosquito specimens, reaching the highest
mean values of 7.6 × 102 PFU/mL 14 days post-infection (dpi) and 7.4 × 102 PFU/mL 28 dpi
in Rome and Montecchio Maggiore, respectively. In Ae. aegypti the highest mean titer was
1.4 × 103 PFU/mL achieved 21 dpi (Table 1). Viral titers were higher in Ae. aegypti compared
to Ae. albopictus populations, in particular at 21 dpi. The analysis indicated a progressive
increase in IR over time for both Ae. albopictus populations, reaching the maximum value
14 dpi (40% Rome, 30% Montecchio Maggiore); subsequently, IR values decreased at 21 and
28 dpi. Conversely, Ae. aegypti showed a steady increase in IR throughout the observation
period. DENV-1 was detected in legs plus wings from 14 dpi in all tested populations. All
three mosquito groups showed high DR values (range 67–100%). DENV-1 was detected in
saliva 14 dpi in both Ae. albopictus populations, highlighting a shorter extrinsic incubation
period (EIP) compared to Ae. aegypti, in which DENV-1 was first detected in saliva 21 dpi.
However, it was not possible to detect DENV-1 in the saliva after 21 dpi in Ae. albopictus
from Rome and 28 dpi in Ae. albopictus from Montecchio Maggiore. In contrast, DENV-1
was detected in the saliva of Ae. aegypti until 28 dpi. Nevertheless, DENV-1 titers were
relatively low in saliva (0.1 × 101–0.5 × 101 PFU/mL) in all analyzed populations (Table 1).
Cumulative values of IR, DR and TR calculated from 7 to 28 dpi are reported in Table 2.

Table 2. Infection rate (IR): number of positive bodies/number of tested fed females; dissemination
rate (DR): number of positive legs plus wings/number of positive bodies; transmission rate (TR):
number of positive saliva/number of positive bodies. Vector competence index (VCI): maximum
value 1.0.

Ae. albopictus
Rome

Ae. albopictus
Montecchio M.

Ae. aegypti
Reference Lab-Colony

IR 30% 18% 22%
DR 48% 61% 60%
TR 14% 23% 27%
VCI 0.04 0.04 0.06

The Aedes albopictus population from Rome exhibited a higher IR (30%) compared
to the other populations (18% for Ae. albopictus of Montecchio Maggiore and 22% for
Ae. aegypti). However, the results highlighted a higher mean value of TR for Ae. aegypti
(27%) compared to both Ae. albopictus populations (14% for Rome and 23% for Montecchio
Maggiore). There was no evidence of vertical transmission in the offspring of the three
Aedes populations.

4. Discussion

Dengue fever is a mosquito-borne tropical disease caused by DENV that has become a
major public health problem in recent years causing approximately 390 million infections
globally every year [10]. Several DENV strains have been implicated in autochthonous
transmission in Europe since 2010. In recent years, DENV-1 and -2 have been the most
prevalent serotypes in infections among European travelers [11]. Although Ae. albopictus is
considered a secondary vector of DENV, its widespread distribution and high density in
temperate areas represent a real risk for local outbreaks originating from imported cases.
Until November 2023, 126 autochthonous/non-travel associated dengue cases have been
reported in Europe in Italy (82), France (41), and Spain (3) [12,13]. In the summer of 2022,
65 autochthonous cases of DENV transmitted by Ae. albopictus were reported in France [14].
The unexpectedly high number of indigenous cases was however associated with nine
distinct virus introduction and transmission events. This demonstrates the high risk of
autochthonous transmission from imported cases but also the relatively small number of
secondary cases associated with each individual index case. The first dengue outbreak in
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Italy occurred in August–September 2020. The outbreak was geographically limited to
a small town in the Veneto region and caused very few indigenous human cases. Aedes
albopictus was the mosquito vector incriminated as it is present and abundant in the area.
This event could have been affected by various concomitant biotic and abiotic factors such
as the lower vectorial competence of the Ae. albopictus population compared to the global
primary vector, Ae. Aegypti, or the sudden change in atmospheric conditions with heavy
rains and a sudden drop in temperatures which, together with vector control operations,
led to a drastic decrease in the mosquito density. Another important determinant was
the concomitant SARS-Cov-2 pandemic, during which the health authorities imposed a
lockdown, effectively limiting people’s movements. This is confirmed by the fact that the
people infected with DENV-1 during the outbreak were all relatives and neighbors [3]. It
is known that the pathogenetic variation in virus strains, geographic distribution, vector
abundance, and climatic factors influence vector susceptibility to DENV [15]. Studies on
the role of possible mutations responsible for the better adaptation of arboviruses in Ae.
albopictus have recently been conducted. Bellone et al. demonstrated that consecutive
in vivo passages in Ae. albopictus resulted in the emergence of specific DENV-1 strains
exhibiting increased infectivity for this vector both in vivo and in cultured mosquito cells.
These alterations were facilitated by numerous adaptive mutations in the virus genome [2].
A comparative examination of the CHIKVs responsible for the Italian epidemics in 2007
and 2017 revealed that only the 2007 strain possessed the adaptive mutation E1 A226V for
Ae. albopictus. These results highlight the significance of genomic studies in elucidating the
potential role of the mutations in determining the adaptive capacity of a virus to different
vectors [16]. Moreover, arboviruses adapt to secondary vectors as exemplified by the
adaptation of Chikungunya virus to Ae. albopictus [17]. Therefore, a similar scenario cannot
be ruled out for DENV. Our findings demonstrated that the Asiatic DENV-1 strain that was
closely related to the 2020 Italian outbreak strain equally infected both Ae. aegypti and two
local populations of Ae. albopictus. Interestingly, the virus reached the salivary glands of Ae.
albopictus earlier than in Ae. aegypti. However, the virus survived longer in Ae. aegypti than
in both populations of Ae. albopictus, suggesting a longer transmission potential of DENV-1
in Ae. aegypti. In our study, strains of Ae. albopictus collected in different areas of the country
were infected with the same titer of DENV-1 in the same environment and experimental
conditions to evaluate their vector competence. Of note, in agreement with our results, the
DENV-1 strain used in the present study belonged to an established lineage during the
DENV-1 outbreak in Singapore in 2013–14 and demonstrated efficient infection of an Ae.
Albopictus-derived cell line [18]. The IR, DR, and TR rates in our study were not significantly
different between Ae. albopictus and Ae. aegypti populations. In addition, the viral titers
detected in the Ae. albopictus and Ae. aegypti populations were comparable. This result
highlights the potentially important role of Ae. albopictus in the transmission of DENV-1
in non-endemic areas. In fact, the shorter EIP observed in Ae. albopictus compared to Ae.
aegypti is noteworthy with regard to its potential to transmit DENV-1 effectively. Dengue
outbreaks in France and Italy in 2023 confirm the increasing risk of DENV transmission
in Europe potentially by Ae. albopictus, originating from imported cases. Data on the
presence, abundance, seasonal fluctuations, and evaluation of vectorial competence of
invasive mosquito species circulating in a non-endemic country are pivotal to assess the
risk of arboviral transmission chains and, together with strengthened surveillance systems,
for implementation of prevention and control measures to mitigate the adverse impacts on
human health.
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