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Abstract: Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding
capacity. ncRNAs frequently modulate gene expression through specific interactions with target
proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The
Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus
(ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity
and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their
transmission between hematophagous insect vectors and mammalian hosts. During this process, a
complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a
critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has
emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets
for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived
ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral
transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of
the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and
therapeutic strategies against flavivirus-related diseases.

Keywords: flavivirus; noncoding RNA; subgenomic flaviviral RNAs; viral replication; vector-borne
transmission; pathogenicity

1. Introduction

Within biological entities, a plethora of RNA molecules devoid of protein-coding
capability, termed noncoding RNAs (ncRNAs), exist. These RNAs are classified into two
principal categories based on transcript length: long noncoding RNAs (lncRNAs), which
exceed 200 nucleotides (nt), and short noncoding RNAs (sncRNAs), which are under
200 nt. The latter encompasses microRNAs (miRNAs), small interfering RNAs (siRNAs),
PIWI-interacting RNAs (piRNAs), small nuclear RNAs (snRNAs), vault RNAs (vtRNAs),
and transfer RNA-derived small RNAs (tsRNAs), among others [1]. Advancements in
technologies such as microarrays and high-throughput sequencing have led to the discovery
of an increasing array of ncRNAs. Studies demonstrate that a mere fraction, less than 2%, of
genes transcribe into messenger RNAs (mRNAs) with the capacity for protein translation,
with the overwhelming majority being ncRNAs [2]. Initially deemed “junk” RNA, ncRNAs
have been increasingly corroborated to exert significant regulatory functions within cellular
responses. ncRNAs engage in interactions with DNA, RNA, and proteins, modulating
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gene expression at transcriptional and posttranscriptional stages by influencing chromatin
remodeling, mRNA stability, and protein synthesis [3–5]. Furthermore, ncRNAs can bind
directly to target proteins, influencing protein function and localization and thus playing
pivotal roles in critical biological processes, including cell proliferation, differentiation,
apoptosis, and immune responses [6–8]. The relationship between ncRNAs and viral
replication, as well as pathogenesis, is important. Various pathogens, such as members of
the Adenoviridae, Herpesviridae, and Flaviviridae, are capable of producing their ncRNAs [4].
These pathogen-derived ncRNAs operate in regulatory capacities akin to host ncRNAs,
influencing protein functionality and stability, and thereby impacting viral propagation
and immune evasion within the host organism.

The Flavivirus genus belongs to the family Flaviviridae and comprises a group of single-
stranded, positive-sense RNA viruses. Arthropod-borne flaviviruses were initially discov-
ered within arthropods and are naturally transmitted through the bites of hematophagous
insects such as mosquitoes, ticks, and sandflies [9,10]. Over the past few decades, factors
such as global warming, increased human mobility, and viral evolution have led to the
expanding reach of flavivirus infections [11–13]. Several significant pathogens, including
dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever
virus (YFV), and tick-borne encephalitis virus (TBEV), have consecutively emerged and
caused outbreaks of both emerging and re-emerging infectious diseases in various regions,
posing a substantial threat to global public health. The flavivirus genome ranges from 9.2
to 11.0 kb in length, consisting of a 5′ noncoding region (5′ UTR), a 3′ noncoding region
(3′ UTR), and an intervening single open reading frame (ORF) [14]. Beyond serving as
a carrier of genetic information, viral RNA also plays a crucial role as a necessary reg-
ulator of the viral life cycle, orchestrating the complex interplay between the virus and
its host and vector. This regulatory role is pivotal in modulating viral replication and
the overall virulence of the virus. The flaviviral 5′ UTR is approximately 100 nt in size
and contains a unique m7GpppAmpN1 cap structure, compared to other members of
Flaviviridae, which protects viral RNA from degradation by 5′-3′ exonucleases [15,16]. The
5′ UTR also includes several functional structures, such as two conserved stem loops (SLA
and SLB) and the terminal hairpin structure (cHP), mediating interactions between the viral
genome and proteins/nucleic acids, and is closely associated with viral genome cyclization,
RNA synthesis, and viral protein translation [17–19]. The flaviviral 3′ UTR varies from
400 to 700 nt, forming multiple complex secondary structures. It contains three structural
domains: Domain I is the variable region, including two stem-loop structures (SL-1 and
SL-2) and some repeat sequences; Domain II is more conserved, containing two dumbbell
structures (DB1 and DB2) as well as multiple conserved sequences (CS) and conserved
repeat sequences (RCS); and Domain III is highly conserved, comprising the conserved
sequence 3′CS, a small hairpin structure (sHP), and the terminal stem loop (3′ SL) [20–24].
The 3′ UTR is vital for processes such as viral RNA synthesis, protein translation, virion
assembly, and pathogenicity [25–30]. Furthermore, the 3′ UTR is also the primary source
for the production of flavivirus-derived ncRNAs [31].

Arthropod-borne flaviviruses are subject to the regulatory effects of ncRNAs from
hosts, vectors, and viruses, which orchestrate the intricate “pathogen–vector–host” interac-
tions that govern viral proliferation, dissemination, and virulence (Table 1). This review
highlights the role of ncRNAs in flaviviral replication, vector-mediated viral transmission,
immune regulation, and disease manifestation. Furthermore, this review will discuss the
potential of ncRNAs as a basis for developing novel prophylactic and therapeutic strategies
against flavivirus infections.
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Table 1. Noncoding RNAs involved in flaviviruses infection.

ncRNAs Virus(es) Targets Functions References

sfRNA DENV

XRN1, DDX6, EDC3,
PHAX, SF3B1, Dicer,
Ago2, TRIM25, G3BP1,
G3BP2, CAPRIN1, Akt

dysregulate host mRNA stability; inhibit
RNAi machinery; antagonize type I
IFN-mediated antiviral responses; disrupt
the translation of antiviral ISGs; promote
virus-induced apoptosis

[32–38]

sfRNA WNV, KUNV XRN1, Dicer

dysregulate host mRNA stability; inhibit
RNAi machinery; assist the virus in
overcoming the mosquito midgut barrier;
antagonize type I IFN-mediated antiviral
responses

[34,39–41]

sfRNA ZIKV
DDX6, EDC3, PHAX,
SF3B1, CASP7, Viral
NS5

dysregulate host mRNA stability; facilitate
virus transmission by inhibiting cell death
in mosquito tissues; inhibit type I and type
III IFN signaling; promote apoptosis of
mammalian cells; impair brain
development by interfering with
Wnt-signaling and proapoptotic pathways

[33,42–44]

sfRNA JEV Viral antigenome,
IRF-3

inhibit viral antigenome synthesis and
protein translation; reduce
IFN-β-stimulated apoptosis

[45,46]

vsRNA DENV, WNV Viral genome suppress viral replication; possible
association with IFN signaling pathway [47,48]

KUN-miR-1 KUNV GATA4 facilitate viral replication [49]

DENV-vsRNA-5 DENV Viral NS1 suppress viral replication [50]

miR-548g-3p DENV Viral 5′UTR interfere with viral protein translation and
suppress viral replication [51]

miR-103a-3p ZIKV OTUD4 facilitate viral replication [52]

miR-383-5p DENV PLA2G4A suppress viral replication [53]

miR-133a DENV Viral 3′UTR suppress viral replication [54]

miR-484 DENV Viral 3′UTR suppress viral replication [55]

miR-744 DENV Viral 3′UTR suppress viral replication [55]

miR-252 DENV Viral E suppress viral replication [56]

miR-532-5p KUNV SESTD1, TAB3 suppress viral replication [57]

Hs_154 WNV CTCF, ECOP enhance viral-induced apoptosis and inhibit
viral replication [58]

miR-21 DENV, ZIKV modulate viral replication [59,60]

Let-7c DENV BACH1 induce the anti-oxidative and
anti-inflammatory response [61]

miR-281 DENV Viral 5′UTR enhance virus infection in midgut of
mosquitoes [62]

miR-1767 DENV facilitate viral replication [63]

miR-276-3p DENV facilitate viral replication [63]

miR-4448 DENV suppress viral replication [63]

miR-150-5p DENV AaCT-1 disrupt RNAi system and promote virus
transmission in the mosquito [36]
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Table 1. Cont.

ncRNAs Virus(es) Targets Functions References

miR-424 DENV SIAH1 facilitate TLR signaling activated cellular
defenses [64]

miR-148a-5p DTMUV SOCS1 promote IFN-α/β production [65]

miR-221-3p DTMUV SOCS5 inhibit IFN-β production [66]

miR-142-5p ZIKV IL6ST, ITGAV modulate (inhibit) JAK/STAT signaling
pathway; suppress virus binding to cells; [67]

miR-155 DENV, JEV, WNV,
ZIKV BACH1, PELI1, SHIP1 promote IFN-α production; modulate

virus-induced inflammatory response [68–74]

miR-432 JEV SOCS5 promote JAK/STAT signaling pathway [75]

miR-30e * DENV IκBα 3′UTR promote IFN-β production [76]

miR-146a DENV, ZIKV, JEV TRAF6, STAT1 suppress proinflammatory and innate
antiviral immunity [77–79]

miR-196a WNV CCR2, NFKBIA,
SMAD6 suppress viral-induced neuroinflammation [69]

miR-202-3p WNV
TNFRSF1B, CCR7,
BCL2L1, S100A8,
THBS1, CCL7, IL10

suppress viral-induced neuroinflammation [69]

miR-449c WNV

CXCL10, CXCL11,
NFKBIA, SERPINE1,
IL2RB, CCR1, MYC,
SNAI1, BCL6

suppress viral-induced neuroinflammation [69]

miR-125a-3p WNV PTGS2, IL1R1, IL10,
CCL4 suppress viral-induced neuroinflammation [69]

miR-451a JEV, WNV 14-3-3ζ induce neuronal apoptosis [80]

miR-124-3p ZIKV TFRC dysregulate NSC maintenance [81]

miR-204-3p ZIKV NOTCH2 impair NSC proliferation and differentiation [82]

miR-1273g-3p ZIKV PAX3 impair NSC proliferation and differentiation [82]

miR34c ZIKV BCL2, NOTCH, NUMB reduce NSC and GSC cell growth [83]

miR-145 ZIKV CDH2, ACTG1, ACTB,
CDK6

impair cell migration; involved in CNS
formation [84]

miR-9 ZIKV GDNF induce neuronal apoptosis [85]

miR-148a ZIKV MDFIC, SNX27, SKP1, impair cell migration; involved in CNS
formation [84]

miR-96-5p DENV regulate immune and inflammatory
responses [86]

miR-146a-5p DENV regulate immune and inflammatory
responses [86]

MALAT1 JEV regulate host cell death [87]

SUSAJ1 JEV suppress viral replication [88]

Zinc1, Zinc2,
Zinc22 ZIKV facilitate viral infection in mosquitoes [89]
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Table 1. Cont.

ncRNAs Virus(es) Targets Functions References

JINR1 JEV, DENV RBM10 facilitate viral replication, induce neuronal
cell death [90]

NEAT1 DENV IFI27 suppress antiviral response via the RIG-I
pathway [91,92]

The asterisk (*) indicates passenger strand. Abbreviations: DENV, dengue virus; WNV, West Nile virus; KUNV,
Kunjin virus; ZIKV, Zika virus; JEV, Japanese encephalitis virus; DTMUV, duck Tembusu virus; E, envelope
protein; NS, nonstructural protein; UTR, untranslated region; XRN1, 5′-3′ exoribonuclease 1; DDX6, DEAD-box
helicase 6; EDC3, enhancer of mRNA decapping 3; PHAX, phosphorylated adaptor for RNA export; SF3B1,
splicing factor 3b subunit 1; Ago2, Argonaute-2; TRIM25, tripartite motif containing 25; G3BP1, G3BP stress
granule assembly factor 1; G3BP2, G3BP stress granule assembly factor 1; CAPRIN1, cell cycle associated protein
1; Akt, protein kinase B; CASP7, caspase 7; IRF-3, interferon regulatory factor 3; GATA4, GATA binding protein 4;
OTUD4, OTU deubiquitinase 4; PLA2G4A, phospholipase A2 group IVA; SESTD1, SEC14 and spectrin domain
containing 1; TAB3, TGF-β activated kinase 1 and MAP3K7 binding protein 3; CTCF, CCCTC-binding factor;
ECOP, EGFR-coamplified and overexpressed protein; BACH1, BTB domain and CNC homolog 1; SIAH1, siah E3
ubiquitin protein ligase 1; SOCS, the suppressor of cytokine signaling; IL, interleukin; IL6ST, IL-6 signal transducer;
ITGAV, integrin subunit alpha V; PELI1, pellino E3 ubiquitin protein ligase 1; SHIP1, inositol polyphosphate-5-
phosphatase D; TRAF6, TNFR-associated factor 6; CCR, C-C motif chemokine receptor; CCL, C-C motif chemokine
ligand; CXCL, C-X-C motif chemokine ligand; NFKBIA, NF-Kappa-B inhibitor alpha; SMAD6, SMAD family
member 6; TNFRSF1B, TNF receptor superfamily member 1B; BCL2, BCL2 apoptosis regulator; BCL2L1, BCL2
like 1; BCL6, BCL6 transcription repressor; S100A8, S100 calcium binding protein A8; THBS1, thrombospondin 1;
SERPINE1, serpin family E member 1; IL2RB, interleukin 2 receptor subunit beta; MYC, MYC proto-oncogene,
BHLH transcription factor; SNAI1, snail family transcriptional repressor 1; PTGS2, prostaglandin-endoperoxide
synthase 2; IL1R1, interleukin 1 receptor type 1; TFRC, transferrin receptor; NOTCH2, notch homolog protein 2;
PAX3, paired box 3; NUMB, NUMB endocytic adaptor protein; CDH2, cadherin 2; ACTG1, actin gamma 1; ACTB,
actin beta; CDK6, cyclin dependent kinase 6; GDNF, glial cell derived neurotrophic factor; MDFIC, MyoD family
inhibitor domain containing; SNX27, sorting nexin 27; SKP1, S-phase kinase associated protein 1; RBM10, RNA
binding motif protein 10; IFI27, interferon alpha-inducible protein 27; RNAi, RNA interference; IFN, interferon;
ISG, interferon-stimulated gene; STAT1, signal transducer and activator of transcription 1; TLR, Toll-like receptor;
RIG-I, retinoic acid inducible gene-I; JAK/STAT, Janus kinase/signal transducer and activator of transcription;
NSC, neural stem cell; GSC, glioma stem cells; CNS, central nervous system.

2. Noncoding RNA Derived from Flaviviruses

Most viruses capable of producing ncRNAs are DNA viruses, making flaviviruses,
as positive-strand RNA viruses, particularly unique in their ability to form two classes
of ncRNAs: subgenomic flaviviral RNAs (sfRNAs) and viral small RNAs (vsRNAs) [93].
Although the viral genomic UTRs act as cis-acting ncRNAs, we will focus on the functions of
the aforementioned two types of virus-derived trans-acting ncRNAs in this review. sfRNA
represents the most extensively characterized ncRNA within flaviviruses, typically ranging
from 300 to 500 nt in size, possessing a highly structured conformation, and exhibiting
notable resistance to nucleases [94,95]. sfRNA production occurs concurrently with RNA
replication, arising from the incomplete degradation of the viral 3′ UTR by the cellular 5′-3′

exoribonuclease 1 (XRN1) [96]. XRN1, a fundamental component of the cellular RNA decay
pathway, degrades monophosphorylated mRNA in a 5′-3′ direction [97,98]. Flaviviral RNA
has evolved mechanisms to evade XRN1 degradation, with SL-1 and SL-2 structures in
the 3′ UTR Domain I (also known as xrRNA1 and xrRNA2), inhibiting XRN1-mediated
cleavage, resulting in sfRNAs of various lengths [99,100]. The structures of xrRNA1 and
xrRNA2 are conserved across different flavivirus species [93,101,102]. sfRNAs are highly
abundant in the cytoplasm, with levels several orders of magnitude higher than those of
genomic RNAs during DENV infection [32]. sfRNA is dispensable for viral replication;
mutants of Kunjin virus (KUNV), YFV, and DENV lacking the ability to produce sfRNAs
still retain viral replication capability [31,39,103]. However, sfRNAs modulate a variety of
cellular processes to ensure optimal viral adaptability and are closely related to immune
antagonism and disease occurrence.

During flaviviral replication, an assortment of viral small RNAs (vsRNAs), measuring
10–30 nucleotides in length, is produced. This category of vsRNAs includes viral siRNAs
and virus-encoded miRNAs. The viral replication process involves the liberation of viral
genomic RNA into the cytoplasm, whereupon viral RNA-dependent RNA polymerase
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(RdRp) employs circularized positive-strand RNA as a template to synthesize comple-
mentary negative-strand RNA. This synthesis leads to the formation of double-stranded
RNA (dsRNA) intermediates. The inherent hairpin structures within the UTR enable these
dsRNAs to be recognized and processed by ribonucleases such as Dicers, resulting in
their cleavage into vsRNA fragments [104]. In addition to this canonical pathway, sfRNAs
also act as templates for the generation of vsRNAs through atypical routes [49,50]. RNA
interference (RNAi) represents a critical antiviral pathway, wherein vsRNAs associate with
Argonaute-2 (Ago2) proteins to form the RNA-induced silencing complex (RISC), targeting
viral RNA for specific degradation and thus impeding viral replication [105]. Nevertheless,
viruses frequently coopt host cellular machineries for their propagation, manipulating vsR-
NAs to modulate gene expression within both the viral genome and host cellular context.
Several studies have elucidated the contributory roles of vsRNAs in the modulation of
viral replication and immune responses, suggesting a repertoire of vsRNA functionalities
extending beyond the conventional RNAi pathway [47,48,50]. The functional scope and
mechanistic insights of vsRNAs remain, as of now, a subject of considerable debate and
ongoing investigation.

3. Noncoding RNAs Regulate the Replication of Flavivirus

Upon entering cells, flaviviruses undergo nucleocapsid uncoating and release their
genomic RNAs, subsequently proceeding through stages of protein translation, RNA
replication, and virion assembly, culminating in the amplification of progeny virions. Accu-
mulating evidence suggests that ncRNAs interact with viral and cellular proteins/RNAs
during these processes, thereby directly or indirectly influencing virus proliferation. During
West Nile virus (WNV) infection, sfRNAs are known to augment intracellular viral replica-
tion. These sfRNAs engage in a competitive interaction with Dicer’s dsRNA substrates,
suggesting their role in facilitating viral replication by suppressing the RNAi antiviral
pathway [39]. During ZIKV infections, sfRNAs bind various intracellular RNA-binding
proteins, including several antiviral factors linked to RNA decay (such as DEAD-box heli-
case 6 [DDX6] and enhancer of mRNA decapping 3 [EDC3]) and RNA splicing (such as
phosphorylated adaptor for RNA export [PHAX] and splicing factor 3b subunit 1 [SF3B1]),
ultimately attenuating the cellular antiviral response [33]. sfRNAs are also implicated in
inhibiting XRN1, leading to an accumulation of uncapped transcripts and a concomitant
destabilization of mRNA homeostasis, which diminishes the resistance of cells to DENV
and KUNV infections [34]. In another study, a miRNA derived from the KUNV 3′ SL
region, termed KUN-miR-1, was shown to associate with GATA binding protein 4 (GATA4)
mRNA, enhancing its expression and viral replication [49]. In addition to the roles men-
tioned above, sfRNAs and vsRNAs contribute to the autoregulatory mechanisms of viral
replication. During JEV infection, the presence of sfRNAs correlates with the plateau phase
of negative-strand RNA synthesis. Empirical evidence indicates that the accumulation of
sfRNAs restricts the synthesis of negative-strand RNA and thereby moderates viral RNA
synthesis and protein translation [45]. Moreover, a distinct miRNA produced post-DENV
infection, designated DENV-vsRNA-5, specifically targets viral nonstructural protein 1
(NS1), constraining viral replication. The selective inhibition of DENV-vsRNA-5 markedly
escalates viral replication levels [50].

Host- and vector-derived ncRNAs also exert regulatory control over viral infec-
tions [106]. Certain miRNAs modulate viral replication by directly targeting viral genomic
RNAs. For instance, miR-548g-3p is upregulated during DENV infection, targeting the
DENV 5′ UTR and suppressing viral amplification [51]. In contrast, miR-133A, miR-484,
and miR-744 are downregulated upon DENV infection; these miRNAs bind to the DENV
3′ UTR, inhibiting viral replication [54,55]. Additionally, the Aedes aegypti miRNA miR-252
targets gene coding for the DENV envelope protein (E), reducing its expression and conse-
quently impeding viral replication [56]. Alternatively, a distinct class of miRNAs influences
viral infection indirectly by modulating host factors. miR-142-5p impairs the expression
levels of the integrin subunit alpha V (ITGAV), which assists the virus in internalizing into
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cells, thereby suppressing ZIKV replication [67]. miR-103a-3p stimulates the p38 mitogen-
activated protein kinase (MAPK) signaling pathway by targeting the gene OTU deubiquiti-
nase 4 (OTUD4), consequently leading to enhanced replication of ZIKV [52]. miR-383-5p
suppresses the expression of the phospholipase A2 group IVA (PLA2G4A), a host factor
crucial for the production of infectious DENV in hepatic cells [53,107]. miR-532-5p targets
the SEC14 and spectrin domain containing 1 (SESTD1) and TGF-β activated kinase 1 and
MAP3K7 binding protein 3 (TAB3) genes, inhibiting their expression and thus constraining
KUNV replication [57]. Furthermore, Hs_154 downregulates CCCTC-binding factor (CTCF)
and EGFR-coamplified and overexpressed protein (ECOP) gene expression, significantly
attenuating viral replication by enhancing WNV-induced apoptosis [58]. miRNAs may
exhibit differential regulatory effects across diverse viruses. Specifically, miR-21 enhances
the replication of DENV while exhibiting antiviral effects against ZIKV [59,60]. Further
investigation is required to elucidate the mechanisms by which miR-21 regulates flaviviral
replication. Recent research increasingly highlights the crucial role of cellular lncRNAs in
host–pathogen interactions. In murine neuronal cells infected with JEV, lncRNA-MALAT1
is markedly upregulated through the PKR-like ER kinase (PERK) endoplasmic reticulum
stress signaling pathway [87]. Additionally, swine lncRNA-SUSAJ1 has been documented
to inhibit JEV replication, suggesting its potential role as an integral component of the
cellular antiviral defense mechanism [88].

4. The Roles of Noncoding RNAs in Vector-Mediated Flavivirus Infections

Mosquitoes are the principal vectors for flavivirus transmission, playing an integral
role in the viral life cycle. Viral acquisition by mosquitoes occurs through blood feeding
from infected hosts. The virus must overcome the midgut barrier to establish infection
within the gut epithelial cells and subsequently spread to the hemolymph. Flaviviruses
traverse the hemolymph to infect various mosquito tissues, including fat bodies, ovaries,
salivary glands, and the nervous system, facilitating transmission to new hosts during
subsequent feeding events through salivary secretions [108–111]. Throughout evolutionary
history, flaviviruses have utilized ncRNAs as a strategy to antagonize and circumvent
the antiviral defenses of mosquitoes (Figure 1). The production of substantial amounts
of sfRNAs within the mosquito facilitates the efficient proliferation and transmission of
flaviviruses. It has been observed that the absence of sfRNA impedes WNV infectivity
in mosquitoes when delivered via blood feeding. In contrast, the direct intrathoracic
inoculation of viruses does not demonstrate this effect, indicating that the presence of
sfRNA markedly improves the efficiency of the viral passage across the midgut barrier [40].
Numerous studies support the facilitative role of sfRNA in the propagation of WNV, DENV,
and other flaviviruses within mosquito cells by modulating the RNAi machinery—an
essential antiviral defense in insects [39,112]. sfRNA is known to function as a molecular
decoy for Dicer and Ago2, thus attenuating the RNAi pathway [112]. Moreover, the
regulatory impact of sfRNA on mosquito gene expression, particularly in genes governing
apoptosis, has been demonstrated to foster an environment conducive to ZIKV replication
by suppressing cell death mechanisms in infected tissues [42]. In addition to enhancing
viral fitness within mosquitoes, sfRNA aids in the transmission of the virus from the vector
to the host. A recent study indicates that salivary extracellular vesicles of DENV-infected
mosquitoes contain sfRNAs. These sfRNAs assist the virus in establishing infection in
cells at the mosquito bite site by inhibiting interferon (IFN) induction and signaling [35].
A comparative study suggests that flaviviruses generate a greater quantity of vsRNAs
in mosquito cells than in mammalian cells [47]. In insects, various sizes of vsRNAs are
produced through different antiviral pathways. In Aedes aegypti mosquitoes and Aedes
aegypti-derived Aag2 cells, DENV infection induces the formation of approximately 21 nt
vsRNAs, which are products of the RNAi pathway [48]. In C6/36 cells, an RNAi-deficient
cell line derived from Aedes albopictus, DENV infection results in the production of a distinct
class of approximately 27 nt vsRNAs, subsequently confirmed to be generated through the
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PIWI pathway [113]. These vsRNAs play crucial roles in inhibiting viral infection in the
vector, and further research is needed to determine whether they have additional functions.
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Figure 1. Effects of noncoding RNAs on flavivirus transmission by mosquitoes. Mosquitoes may
acquire viruses by biting patients infected with flavivirus. After traversing the midgut, the viruses
enter the hemolymph and eventually reach the salivary glands, where the virus could be released
into a healthy individual during a bite. Throughout this process, noncoding RNAs (ncRNAs) derived
from the virus, humans, and mosquitoes play a crucial regulatory role. These ncRNAs either act
directly on the viral genome, influencing viral replication, or modulate the RNA interference (RNAi)
antiviral pathway in the mosquito.

Vector-derived ncRNAs are implicated in modulating the interaction between arthro-
pod vectors and viruses. miR-252 of Aedes albopictus is markedly upregulated after DENV
infection and has been shown to reduce the viral RNA load and expression of the viral
E protein [56]. Conversely, miR-281, a miRNA with midgut-specific expression in Aedes
aegypti, is upregulated following DENV infection and interacts with the 5′ UTR of the viral
genome, consequently enhancing viral replication and dissemination [62]. Another study
identified 46 altered miRNA expressions in the Aedes aegypti midgut post-DENV infection,
with miR-1767 and miR-276-3p enhancing DENV replication in C6/36 cells, while miR-4448
has the opposite effect [63]. A recent study has disclosed that ZIKV infection significantly
regulates the transcript levels of six lncRNAs in Aedes aegypti. Notably, the silencing of
three lncRNAs (designated Zinc1, Zinc2, and Zinc22), results in a marked reduction in
mosquito susceptibility to ZIKV infection [89].

During hematophagy, arthropods acquire various factors, including components
from host blood and metabolites from commensal microbes, which might influence viral
transmission [114–118]. A recent finding revealed that mosquitoes acquire a host-derived
miRNA, known as miR-150-5p, which has been shown to downregulate the expression
of the thrombospondin-related anonymous protein AaCT-1 mRNA, thereby disrupting
the RNAi antiviral framework and promoting DENV infection and propagation in the
mosquito [36].

5. Involvement of Noncoding RNAs in Innate Immunity against Flaviviruses

The innate immune system constitutes a formidable barrier against virus infection.
During a typical flavivirus infection, exogenous viral nucleic acids are recognized by var-
ious pattern recognition receptors (PRRs), triggering an IFN response and activating a
cascade of interferon-stimulated genes (ISGs). This leads to the production of proinflam-
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matory cytokines and the induction of an antiviral state within the cell [119]. Studies
have demonstrated that sfRNA, as a key regulatory factor, can subvert host immune de-
fenses, enabling more efficient viral replication and severe infection. For instance, WNV
sfRNAs assist in the viral evasion of type I IFN-mediated antiviral responses [41]. DENV
sfRNAs interact with the tripartite motif containing 25 (TRIM25) protein, preventing its
deubiquitination—a process crucial for activating the retinoic acid inducible gene-I (RIG-
I)-mediated IFN response—thereby inhibiting the translation of ISGs [32]. Furthermore,
DENV sfRNAs bind to G3BP stress granule assembly factor 1 (G3BP1), G3BP stress granule
assembly factor 2 (G3BP2), and cell cycle associated protein 1 (CAPRIN1), disrupting the
translation of antiviral ISGs [37]. Research on JEV has shown that sfRNAs impede the
phosphorylation and nuclear localization of interferon regulatory factor-3 (IRF-3), thereby
downregulating downstream IFN-β promoter activity and IFN-β mRNA levels. This
results in a reduction in IFN-β-induced apoptosis, supporting the role of sfRNA in coun-
teracting the host antiviral response and aiding in the establishment of persistent viral
infection [46]. A study indicated that WNV generates a higher quantity of vsRNAs in mice
lacking type I interferon receptors (IFNAR), with vsRNA levels inversely correlated with
the IFN response [120]. Conversely, DENV produces more vsRNAs in Huh7 cells (human
hepatocarcinoma cell line), which possess a complete IFN pathway, than in IFN-deficient
Vero cells (kidney epithelial cells from African green monkey) [47]. These findings imply a
potential association between vsRNAs and IFN signaling.

Host organisms harbor numerous miRNA-targeting genes contributing to innate im-
munoregulation. Upon viral infection, numerous miRNAs are regulated, thereby bolstering
the antiviral defense mechanisms to counteract the viral invasion. It has been observed that
miR-424 is upregulated during DENV infection, which suppresses the expression of the siah
E3 ubiquitin protein ligase 1 (SIAH1), preventing the ubiquitination and degradation of the
Toll-like receptor (TLR) signaling adaptor protein MyD88. This facilitates the stimulation
of Toll-like receptor 7 (TLR7)-associated antiviral immune signaling [64]. Furthermore,
DENV infection induces the upregulation of Let-7c and miR-30e*, wherein Let-7c plays
a crucial role in modulating the oxidative stress response and miR-30e* triggers IFN-β
signaling via the nuclear factor kappa-B (NF-κB)-dependent pathway, ultimately leading
to the suppression of viral replication [61,76]. Additionally, ZIKV infection significantly
reduces the cellular levels of miR-142-5p, which has been demonstrated to inhibit the
expression of the IL-6 signal transducer (IL6ST); IL6ST is associated with T cell response
and the activation of the Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathway, playing a role in antiviral defense [67]. During infection, flaviviruses
strategize to suppress host miRNAs associated with antiviral responses, thereby facilitating
immune evasion. DENV infection downregulates miR-155, which targets BTB domain
and CNC homolog 1 (BACH1), leading to the inhibition of viral protease activity, and
thereby aiding in the induction of IFN responses [68]. Duck Tembusu virus (DTMUV)
infection downregulates miR-148a-5p and upregulates miR-221-3p, which are known to
target the suppressor of cytokine signaling 1 (SOCS1) and the suppressor of cytokine
signaling 5 (SOCS5), respectively, resulting in significantly reduced production of type I
IFNs [65,66,121]. JEV infection leads to the downregulation of miR-432, which plays a role
in triggering the antiviral inflammatory response by modulating SOCS5 expression and
signal transducer and activator of transcription 1 (STAT1) phosphorylation [75]. Aside from
miRNAs with antiviral activity, certain host miRNAs may antagonize immune responses,
thereby assisting viral infection. miR-146a is upregulated in cells infected with DENV,
ZIKV, and JEV, which can downregulate the expression of the TNFR-associated factor 6
(TRAF6) and STAT1 genes, thereby suppressing the proinflammatory and antiviral path-
ways regulated by these two genes [77–79]. Cellular lncRNA is involved in modulating
immune responses, thereby influencing viral replication and pathogenicity. Specifically,
in neuronal cells infected with JEV, a notable increase in the expression of lncRNA-JINR1
is observed. LncRNA-JINR1 interacts with RNA binding motif protein 10 (RBM10) and
NF-κB, consequently promoting viral replication and virus-induced apoptosis [90].
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6. Noncoding RNAs and Their Implications in Flaviviral Disease Pathogenesis

Over 50% of known flaviviruses have been reported to be associated with human
diseases, often manifesting symptoms that include central nervous system disorders (such
as meningitis and encephalitis), fever, hemorrhagic fever, arthralgia, etc. ncRNAs play a
significant role in the pathogenesis of virus-induced diseases [122–124]. The function of
sfRNA in regulating virus-induced cytopathicity and pathogenicity has been elucidated in
DENV, YFV, ZIKV, and WNV. For instance, DENV sfRNAs have been reported to inhibit
protein kinase B (Akt) phosphorylation via a BCL-2-dependent mechanism, promoting
apoptosis by impeding the phosphoinositide 3-kinase and protein kinase B (PI3K-Akt) sur-
vival pathway [38]. Conversely, JEV sfRNAs inhibit IFN-β-stimulated apoptosis, aiding in
viral persistence [46]. sfRNAs are also implicated in neurogenesis. A prominent pathology
associated with ZIKV is microcephaly in fetuses [125]. Utilizing a murine pregnancy model,
researchers have determined that ZIKV sfRNAs are crucial for the virus to penetrate the
maternal placental barrier, facilitating ZIKV infection of the fetal brain. This study has
demonstrated that ZIKV sfRNAs bind and stabilize viral nonstructural protein 5 (NS5)
in human placental cells, leading to reduced phosphorylation and nuclear translocation
of STAT1, ultimately inhibiting various antiviral pathways and promoting apoptosis [43].
Additionally, sfRNAs induce apoptosis in neural progenitor cells within human cerebral
organoids, leading to their disintegration. Recent research employing a human 3D cere-
bral organoid model to explore the role of ZIKV sfRNAs in neural cell pathogenesis has
found that sfRNAs significantly downregulate the expression of genes related to neural
differentiation, potentially through interference with the Wnt signaling and proapoptotic
pathways [44].

Meanwhile, cellular miRNAs play a vital role in flaviviral pathogenesis. WNV in-
fection in murine brain tissues leads to a significant reduction in the levels of miR-196a,
miR-202-3p, miR-449c, and miR-125a-3p, which target cytokines, chemokines, and apop-
totic genes involved in WNV-induced neuropathogenesis [69]. Neuronal infection by
JEV/WNV leads to the overexpression of miR-451a, which in turn promotes virus-induced
neuronal cell death by regulating the 14-3-3ζ-JNK axis [80]. miR-155, known to regu-
late various stages of the innate immune response during virus-induced inflammation,
is upregulated during JEV, WNV, and ZIKV infections. Several studies have revealed
that miR-155 plays multiple roles in viral pathogenesis and cell survival by modulating
pathways related to neuroinflammation [69–74]. Furthermore, a genome-wide integrative
analysis has indicated that ZIKV infection of human neural stem cells (hNSCs) results in the
differential expression of a suite of miRNAs associated with microcephaly, including the
upregulation of miR-124-3p, which represses transferrin receptor (TFRC) mRNA, impeding
NSC proliferation [81]. ZIKV E protein upregulates miR-204-3p and miR-1273g-3p, which
target neurogenic locus notch homolog protein 2 (NOTCH2) and paired box 3 (PAX3),
thereby modulating the differentiation and apoptosis of NSCs [82]. Additional studies have
identified several miRNAs, such as miR34c, miR-145, miR-9, and miR-148a, which play
roles in the growth of NSCs and the development of congenital Zika syndrome, that were
upregulated following ZIKV infection [83–85]. Certain ncRNAs have the potential to serve
as biomarkers indicative of disease progression. miR-96-5p and miR-146a-5p have been
observed to undergo dysregulation in patients suffering from severe dengue disease. These
two exosomal miRNAs are implicated in targeting a range of genes that are closely associ-
ated with the immune and inflammatory response [86]. RNA-seq analysis has revealed that
in peripheral blood mononuclear cells of patients infected with dengue, lncRNA NEAT1
is negatively correlated with the severity of the disease [91]. Correspondingly, another
study has demonstrated that the knockdown of NEAT1 leads to the increased expression of
interferon alpha-inducible protein 27 (IFI27), thereby promoting antiviral defense through
the RIG-I pathway [92].
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7. Conclusions and Perspectives

Arthropod-borne flaviviruses are involved in transmission cycles characterized by
intricate three-way interplay among the pathogen, vector, and host. Future investigations
will need to utilize the advancements in next-generation sequencing and bioinformatics to
elucidate the role of ncRNAs in these complex interactions. A comprehensive understand-
ing of how flaviviruses employ ncRNAs to modulate gene expression and enhance viral
adaptability, as well as how hosts leverage ncRNAs to resist infection, will significantly
deepen our insight into flavivirus transmission dynamics in nature. Despite the widespread
prevalence of flaviviruses, effective antiviral therapies are lacking, and vaccines are avail-
able for only a few flaviviruses, such as YFV and JEV. Insights into the ncRNA-mediated
regulation of flavivirus propagation and pathogenicity will facilitate the development of
novel preventive strategies and control measures to curb flavivirus outbreaks. Due to the
base-pairing mechanisms of ncRNAs, they are amenable to being designed as therapeutic
targets against precise viral sequences, offering advantages over traditional targets. Their
pivotal involvement in viral replication, immune regulation, and disease pathogenesis po-
sitions ncRNAs as promising candidates for novel prophylactic and therapeutic modalities.
Therapeutic approaches include employing antiviral ncRNAs to inhibit viral replication
or designing inhibitors to obstruct the production of ncRNAs that facilitate viral trans-
mission, thereby averting viral immune evasion. The clinical efficacy of several antisense
oligonucleotide (ASO) and ASO anti-microRNA (antimiR) therapeutics targeting various
viruses, such as Cytomegalovirus (CMV) and Hepatitis C Virus (HCV), has been validated
in clinical trials [126]. Notably, RNA viruses have a high propensity to accumulate adaptive
mutations, leading to the emergence of drug-resistant strains. Therefore, it is imperative to
explore synergistic strategies that combine ncRNA therapeutics with other pharmaceutical
interventions. Moreover, the development of drugs targeting multiple ncRNAs, as well as
universal antiviral ncRNA therapeutics that modulate host innate immune responses and
inflammatory pathways, represents a promising avenue for future research. In the field of
vaccine development and disease diagnostics, ncRNAs also have significant roles. The in-
sertion of immunoregulatory miRNAs into the noncoding regions of the flaviviral genome
has been recognized as an effective technique for generating live attenuated vaccines. More-
over, ncRNAs present in the serum are being explored as potential diagnostic biomarkers
for indicating disease severity. In conclusion, ncRNAs are instrumental in adjusting the
equilibrium between flavivirus-induced pathogenicity and host antiviral defense. Broad
and detailed research is essential to better define the functionality of ncRNAs within the
context of flavivirus biology and to accelerate the progression of therapeutic interventions.
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