
Citation: Kamvuma, K.; Hamooya,

B.M.; Munsaka, S.; Masenga, S.K.;

Kirabo, A. Mechanisms and

Cardiorenal Complications of Chronic

Anemia in People with HIV. Viruses

2024, 16, 542. https://doi.org/

10.3390/v16040542

Academic Editor: Sonia Moretti

Received: 12 March 2024

Revised: 26 March 2024

Accepted: 29 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Review

Mechanisms and Cardiorenal Complications of Chronic Anemia
in People with HIV
Kingsley Kamvuma 1, Benson M. Hamooya 1 , Sody Munsaka 2 , Sepiso K. Masenga 1,3,*
and Annet Kirabo 3,4,5,6,*

1 HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone
Campus, Livingstone 10101, Zambia; kamvumak@yahoo.com (K.K.); benmalambo@gmail.com (B.M.H.)

2 Department of Biomedical Sciences, School of Health Sciences, University of Zambia,
Lusaka P.O Box 50110, Zambia; s.munsaka@unza.zm

3 Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37232, USA
4 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
5 Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
6 Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center,

Nashville, TN 37232, USA
* Correspondence: sepisomasenga@gmail.com (S.K.M.); annet.kirabo@vumc.org (A.K.)

Abstract: Chronic anemia is more prevalent in people living with HIV (PLWH) compared to the
general population. The mechanisms that drive chronic anemia in HIV are multifaceted and include
functional impairment of hematopoietic stem cells, dysregulation of erythropoietin production,
and persistent immune activation. Chronic inflammation from HIV infection adversely affects
erythropoiesis, erythrocyte lifespan, and erythropoietin response, leading to a heightened risk of
co-infections such as tuberculosis, persistent severe anemia, and increased mortality. Additionally,
chronic anemia exacerbates the progression of HIV-associated nephrotoxicity and contributes to
cardiovascular risk through immune activation and inflammation. This review highlights the cardinal
role of chronic inflammation as a link connecting persistent anemia and cardiovascular complications
in PLWH, emphasizing the need for a universal understanding of these interconnected pathways for
targeted interventions.

Keywords: anemia; chronic anemia; HIV; cardiovascular disease; kidney disease; people living with
HIV; immune activation; inflammation

1. Introduction

An estimated 38.4 million people worldwide were living with human immunodefi-
ciency virus (HIV) in 2021, and 1.5 million people were newly infected in the same year [1].
Hematological derangements are one of the most common complications among PLWH
and have an impact on the quality of their lives [2]. The most common hematological
complication of HIV is anemia, which has been associated with HIV disease progression
and increased mortality [3–5]. According to the World Health Organization (WHO), anemia
is a condition in which the number of red blood cells or the hemoglobin concentration
within them is lower than normal, i.e., <12 g/dL in females and 13 g/dL in males [6]. The
pathogenesis of anemia in HIV is multifactorial. PLWH are at higher risk of chronic anemia
than the general population due to concomitant micronutrient deficiencies (especially
iron), opportunistic infections, chronic immune activation and inflammation, antiretroviral
therapy (ART), and HIV infection of hematopoietic stem cells (HSCs) [7].

Recent data have shed light on the complex mechanisms through which immune
processes affect red blood cell production. Sub-optimal chronic inflammation is a hallmark
of HIV infection that persists even in the presence of ART [8,9]. The virus itself triggers
a cascade of immune responses, leading to a continuous state of inflammation [10]. This
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persistent immune activation is a result of the virus’s ability to evade immune surveillance.
This may be in part due to the formation of viral reservoirs and the presence of viral
antigens [11]. Consequently, immune cells are constantly activated, leading to the release
of pro-inflammatory cytokines, particularly interleukin-6 (IL-6) and tumor necrosis factor-
alpha (TNF-α) [12].

Chronic immune activation and inflammation are implicated in dysregulated iron
metabolism and persistent anemia [13]. Anemia that develops in this context is formally
known as anemia of chronic disease or anemia of inflammation. This anemia is associated
with elevated concentrations of pro-inflammatory mediators, which can upregulate hep-
cidin production [14,15]. Hepcidin is a hormone produced by the liver that regulates iron
homeostasis [16]. Hepcidin binds to ferroportin at numerous sites, including the gastroin-
testinal tract and reticuloendothelial system and limits the degree to which ferroportin is
available to transport iron across the plasma membrane [17–19]. HIV can impair the sur-
vival/proliferative capacity of hematopoietic progenitor cells (HPC) [20–22]. Progressive
depletion of HPCs or suppression of their function could result in hematologic abnormali-
ties, such as chronic anemia, thrombocytopenia, and neutropenia [23]. HIV-1 strains also
have an impact on the dynamics of CD34+, CD7+, and CD38+ hematopoietic progenitor cell
pool, resulting in impaired T-cell production potential that further exacerbates HIV-induced
anemia and disease pathogenesis [24].

The relationship between chronic kidney disease (CKD), chronic anemia, and car-
diovascular risk in PLWH presents a multifaceted challenge in modern healthcare. As
effective antiretroviral therapy (ART) prolongs the lives of PLWH, the evolving landscape
of their health necessitates a comprehensive understanding of the sophisticated relationship
between CKD, chronic anemia, and cardiovascular complications. This review elucidates
the complicated immune mechanisms that contribute to chronic anemia in HIV patients,
thereby providing insights that may appraise improved clinical management approaches.
The interplay between chronic anemia, CKD, and cardiovascular risk in PLWH has been
elaborated, addressing the evolving healthcare needs of this population.

2. Burden of Anemia in People with HIV
2.1. Prevalence of Anemia

Substantial variations in the prevalence of anemia in different countries in PLWH
have been reported, ranging from 1.3% to 95% in different geographic settings [3,7,25,26].
Globally pooled prevalence for anemia is approximately 39.7% (95% CI: 31.4–48.0%) among
children under the age of 15, 46.6% (95% CI: 41.9–51.4%) in adults (including both men and
non-pregnant women) aged 15 years and older, and 48.6% (95% CI: 41.6–55.6%) in pregnant
women [3]. The prevalence of anemia among adults living with HIV is higher in low and
middle-income countries (LIMCs), especially in sub-Saharan Africa [27]. The prevalence
of anemia is higher among adults with HIV in Southern Africa (58 to 70%) compared to
those from East Africa (21 to 40%) [28–32]. For instance, a randomized clinical trial of
ART efficacy in Africa, Asia, South America, the Caribbean and the USA showed that the
prevalence of anemia differed significantly among these countries, and the prevalence
was highest in Malawi, Haiti, South Africa, and Zimbabwe [33]. These differences across
regions can be explained by the levels of poverty, malnutrition, and poor socioeconomic
state of a given population.

2.2. Duration of ART and Anemia Risk

Approximately 95% of PLWH before the initiation of ART and up to 46% of PLWH
taking ART develop anemia at some point during their disease [32]. Initiating ART early
after HIV diagnosis, particularly before significant immune damage occurs, has been
associated with an increase in hemoglobin levels [34]. Early ART can lead to improved
immune function, reduced opportunistic infections, and better bone marrow function,
which may contribute to the resolution of anemia [34,35]. PLWH may already have anemia
at the time of HIV diagnosis due to the direct impact of the virus on bone marrow and
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red blood cell production [27,35]. Delayed HIV diagnosis and disease progression can
contribute to more severe anemia before initiating ART [36,37].

With successful viral suppression and long-term adherence to ART, anemia can often
improve [38]. As ART slows HIV replication and reduces the burden of opportunistic
infections and inflammation, normal bone marrow function is restored, reducing the
burden of anemia [7]. In some cases, patients may experience a transient worsening of
anemia during the early weeks or months of ART initiation [32].

There are limited studies that evaluated the risk of chronic anemia with respect to the
time and duration of ART. Harding et al. conducted a prospective clinical cohort study
of adult PLWH receiving care at eight sites across the United States between 2010 and
2018 [7]. They found that among the 12,249 PLWH who were free of anemia at baseline,
265 developed chronic anemia (lasting for at least 6 months) during follow-up for an in-
cidence of 0.46/100 people/year [7]. The incidence of anemia was 1.95/100 people/year,
and the incidence of severe anemia was 0.68/100 people/year [7].

A study by Belay et al. revealed a high prevalence of anemia, reaching 54.9% among the
participants [39]. The incidence rate of anemia was reported at 12.07 per 100 people/month,
emphasizing the substantial risk associated with ART. Interestingly, the study suggests a
temporal aspect, with 2.97% of women developing anemia in the first 6 months, escalating
to 80.26% in the last 6 months of follow-up [39]. This temporal trend raises questions
about the prolonged use of ART and its potential contribution to anemia development.
However, there are more studies that support the idea that early ART reduces the incidence
and prevalence of anemia. In a prospective study from China, the prevalence of anemia
among 436,658 PLWH initiating ART was 29%, and annually, this prevalence reduced to
17.0%, 14.1%, 13.4%, 12.6%, and 12.7%, respectively [40]. This reduction in prevalence was
reported in many studies. The persistence of anemia even after initiating ART is associated
with being anemic at initiation, use of Zidovudine, malnutrition, low baseline weight at
initiation, infection with tuberculosis, and female sex [27,32,40–42].

3. Underlying Mechanisms of Chronic Anemia in HIV
3.1. HIV Reactivation and Infection of Hematopoietic Stem Cells Mediated by the
TNF-α-Dependent NF-κB Pathway

HSCs, residing in the bone marrow, are the architects of the blood cell repertoire, giving
rise to various lineages, including red blood cells, white blood cells, and platelets [43]. Even
when ART successfully suppresses plasma viral loads to undetectable levels, the recovery
of HIV-1-related HSC proliferation and immune cell development is often incomplete [44].
This results in abnormalities of HSC development and differentiation, contributing to HIV-1
infection-induced immune pathogenesis in these patients [45]. The mechanisms for the
dysfunctional hematopoiesis occurring during chronic HIV-1 infection are still unclear.
However, HIV-1 infection may functionally impair hematopoietic progenitors through
either viral products, induction of persistent inflammatory responses, or direct infection of
HSCs [45].

HIV-1 infection may functionally impair HSC progenitors, potentially through the
action of viral products that are released during infection [22,23]. These viral products,
including but not limited to gp120 and transactivator of transcription (Tat), may play a role
in disrupting the clonogenic capacity of bone marrow HSCs, contributing to abnormalities
in the development and differentiation of HSCs [22,23,45], leading to chronic anemia and
immune dysfunction. In addition, HIV-1 proteins such as Nef [46] and prolonged treatment
with antiretroviral drugs could also compromise hematopoietic progenitors [47]. The exact
mechanisms by which these viral products interfere with hematopoiesis are still under
exploration, but their impact on HSC function can lead to disturbances in the delicate
balance of blood cell formation.

HIV-1 infection can functionally impair hematopoietic progenitors through direct
infection of HSCs, leading to a disturbance in hematopoiesis [48]. HIV utilizes the CD4
receptor and chemokine co-receptors, such as C–C chemokine receptor type 5 (CCR5) or
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C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, to enter
HSCs [49]. Renelt et al. also demonstrated that HIV-1 can infect hematopoietic stem
and progenitor cell (HSPC) subsets (CD34+CD38+ progenitors, MPPs, and HSCs) via host
cell expression of CD4/CXCR4/CCR5 [49], as shown in Figure 1. However, the level
of CXCR4/CCR5 expression in HSCs is low compared to immature and mature CD4+
cells [50]. Once inside, HIV-1 can establish a latent infection or integrate into the genome,
potentially affecting the normal functioning of HSCs. Hematopoietic stem and progenitor
cells and sites regulating hematopoiesis have been identified as one of the sites support-
ing HIV proviral integration contributing to clonal expansion and persistence of infected
cells [51–54]. A study by McNamar et al. demonstrated that all subsets of HSCs (CD34+
CD38− CD45RA−), including immature HPCs (CD133+) and multipotent progenitors
(MPPs), are latently infected by HIV-1 [55].
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Figure 1. HIV-1 infection of hematopoietic stem and progenitor cells via specific receptors. Hematopoi-
etic stem and progenitor cells are susceptible to HIV infection. HIV interacts with CCR5 and CXCR4
on stem cells in the bone marrow to disrupt hematopoiesis. CXCR4, C-X-C chemokine receptor
type 4; CCR5, CXC motif chemokine receptor 5.

HIV is reactivated by TNF-α through a nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB)-dependent mechanism [55]. In HIV-1 infection, TNF-α secretion
by multiple infected cells, including activated macrophages and T cells, is induced by
HIV viral proteins Tat and gp120 released extracellularly [56–59]. TNF-α binds to tumor
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necrosis factor receptors (TNFRs) on HSCs, initiating a dependent pathway by recruiting
two adaptor proteins, a TNF receptor-associated protein with a death domain (TRADD)
and serine–threonine kinase receptor-interacting protein 1 (RIP1) [60]. NF-κB is activated
in this way through the classical pathway [61]. TRADD then recruits and activates the TNF
receptor-associated factor (TRAF) and the β subunit of the inhibitor of nuclear factor-κB
(IκB) kinase (IKK) [62]. IKK contains kinases such as IKK1 and IKK2 and NF-κB essential
modulator (NEMO) [63,64]. The kinases phosphorylate and cause ubiquitin-proteosome
degradation of IκB, leading to the release of NF-κB dimers, which then translocate into the
nucleus to activate transcription from the HIV-1 long terminal repeat (LTR) [21,55,65,66].
Although TNF-α may be important in regulating immune response and inducing survival
and regeneration in HSCs [67,68], impaired regulation in HIV-1 infection and TNF-α-
induced reactivation of HIV-1 may reduce regenerative capacity, alter quiescence status,
and diminish HSC population [22,69]. The adverse effects of activation of the NF-κB
classical pathway include inducing secretion of inflammatory cytokines, especially via
inflammasomes, induction of adhesion molecules on endothelial cells promoting leukocyte
activation and transmigration, stimulating thrombotic effects, and oxidative stress [70–73],
as shown in Figure 2.

Viruses 2024, 16, x FOR PEER REVIEW 5 of 21 
 

 

HIV is reactivated by TNF-α through a nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB)-dependent mechanism [55]. In HIV-1 infection, TNF-α secretion 

by multiple infected cells, including activated macrophages and T cells, is induced by HIV 

viral proteins Tat and gp120 released extracellularly [56–59]. TNF-α binds to tumor necro-

sis factor receptors (TNFRs) on HSCs, initiating a dependent pathway by recruiting two 

adaptor proteins, a TNF receptor-associated protein with a death domain (TRADD) and 

serine–threonine kinase receptor-interacting protein 1 (RIP1) [60]. NF-κB is activated in 

this way through the classical pathway [61]. TRADD then recruits and activates the TNF 

receptor-associated factor (TRAF) and the β subunit of the inhibitor of nuclear factor-κB 

(IκB) kinase (IKK) [62]. IKK contains kinases such as IKK1 and IKK2 and NF-κB essential 

modulator (NEMO) [63,64]. The kinases phosphorylate and cause ubiquitin-proteosome 

degradation of IκB, leading to the release of NF-κB dimers, which then translocate into 

the nucleus to activate transcription from the HIV-1 long terminal repeat (LTR) 

[21,55,65,66]. Although TNF- may be important in regulating immune response and in-

ducing survival and regeneration in HSCs [67,68], impaired regulation in HIV-1 infection 

and TNF--induced reactivation of HIV-1 may reduce regenerative capacity, alter quies-

cence status, and diminish HSC population [22,69]. The adverse effects of activation of the 

NF-κB classical pathway include inducing secretion of inflammatory cytokines, especially 

via inflammasomes, induction of adhesion molecules on endothelial cells promoting leu-

kocyte activation and transmigration, stimulating thrombotic effects, and oxidative stress 

[70–73], as shown in Figure 2. 

 

Figure 2. TNF-α-NF-κB-dependent mechanism of HIV reactivation. Cells infected with HIV-1 in-

duce the production of TNF-α, which binds to TNF-α receptors, activating multiple signaling pro-

teins with NF-kB recruitment and translocation into the nucleus to bind to LTR on HIV-1, reactivat-

ing it. This results in impaired HSC survival and regeneration and multiple inflammatory responses. 

TNF-, tumor necrosis factor alpha; TNFR, tumor necrosis factor-alpha receptor; TRADD, TNF re-

ceptor-associated protein with a death domain; RIP1, receptor-interacting protein 1; TRAF, TNF re-

ceptor-associated factor; IκB inhibitor of nuclear factor-κB; IKK, inhibitor of nuclear factor-κB ki-

nase; NEMO, NF-κB essential modulator; LTR, HIV-1 long terminal repeat; ROS, reactive oxygen 

species; NF-κB, Nuclear factor kappa B; TAK1, transforming growth factor-β-activated kinase 1; 

TAB, TAK-1-binding proteins. 

Figure 2. TNF-α-NF-κB-dependent mechanism of HIV reactivation. Cells infected with HIV-1 induce
the production of TNF-α, which binds to TNF-α receptors, activating multiple signaling proteins
with NF-kB recruitment and translocation into the nucleus to bind to LTR on HIV-1, reactivating
it. This results in impaired HSC survival and regeneration and multiple inflammatory responses.
TNF-α, tumor necrosis factor alpha; TNFR, tumor necrosis factor-alpha receptor; TRADD, TNF
receptor-associated protein with a death domain; RIP1, receptor-interacting protein 1; TRAF, TNF
receptor-associated factor; IκB inhibitor of nuclear factor-κB; IKK, inhibitor of nuclear factor-κB
kinase; NEMO, NF-κB essential modulator; LTR, HIV-1 long terminal repeat; ROS, reactive oxygen
species; NF-κB, Nuclear factor kappa B; TAK1, transforming growth factor-β-activated kinase 1; TAB,
TAK-1-binding proteins.
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Despite having limited surface levels of HIV receptors and co-receptors compared
to differentiated CD4+ cells, HSCs remain susceptible to infection, highlighting the direct
impact of the virus on these critical cells involved in blood cell formation [49]. This direct
interference with HSC function contributes to hematological abnormalities, including
chronic anemia observed during chronic HIV-1 infection [23,74–76]. Studies evaluating
hematopoiesis in patients undergoing HIV treatment also support a direct role of the virus
in inducing anemia [77,78]. Bone marrow from HIV+ patients receiving ART but without
adequate response, so-called immunologic non-responders, demonstrates a decrease in the
number of HSCs compared with those with response to therapy [79].

The study by Li et al. (2022) utilized humanized mice as a robust animal model to
investigate the impact of chronic HIV-1 infection on HPCs [45]. The investigators found
that HIV-1 infection significantly depleted the population of CD34+CD38- early HPCs in
the bone marrow of humanized mice. This depletion was associated with a simultaneous
expansion of intermediate CD34+CD38+ HPCs [45]. The study highlights the preferential
depletion of early HPCs during chronic HIV-1 infection, shedding light on the potential
mechanisms contributing to hematological alterations in PLWH.

3.2. Other Mechanisms of HIV Impairment of Hematopoietic Stem Cells beyond the
TNF-α-Dependent NF-κB Pathway

When HIV infects HSCs, continued replication and activation of cellular death path-
ways leads to increased virion release, death of HSCs, and reduced production of red
blood cells, resulting in anemia [80]. HSCs that are latently infected and have the ability
to self-renew lead to the expansion of the latent HIV-1 reservoir, which becomes reacti-
vated and induces cellular death when these cells differentiate [80]. A humanized mouse
model study of the HIV viral protein Nef showed that Nef modulated the expression of
176 genes involved in hematopoietic cell development, including the downregulation of
genes involved in the expression of CD34+ CD38− hematopoietic stem/progenitor cells
and blocked human T-cell development at the progenitor level [81]. Another mechanism
that may be involved in impairing HSCs is the regulation of period circadian clock 2 (Per2)
on HPCs. Bordoni et al. found that HSCs of PLWH with a lower CD4 T cell count had a
lower relative telomere length and reduced white progenitor colonies compared to those
with a higher CD4 T cell count [82]. Compared with healthy individuals, PLWH had higher
expression of Per2 on HSCs, which correlates with reduced relative telomere length. Their
data suggests that Per2 is overexpressed in those with HIV infection, contributing to an
impaired immune reconstitution. Sirtuin 1, an inhibitor of Per2, is downregulated in HSCs
of PLWH [82]. There is still limited information from the literature reporting on underlying
mechanisms that promote HSC dysfunction.

3.3. Effect of HIV-1 Infection on Erythropoietin Production

The dysregulation of EPO emerges as a pivotal factor in the context of HIV-associated
chronic anemia. Recent investigations highlight the insufficient production of EPO and an
attenuated response to its physiological action in HIV patients. Notably, the coexistence
of anemia and decreased serum EPO concentration, independent of kidney damage, has
been observed in many HIV patients [23]. Moreover, HIV-1 has been shown to directly
impact EPO synthesis in vitro, indicating a multifaceted role of the virus in disrupting
hematopoietic regulation [83].

Various mechanisms contribute to this observed reduction in EPO levels. The up-
regulation of pro-inflammatory cytokines IL-1β and TNF-α by HIV is implicated in the
direct downregulation of EPO expression in vitro [84]. This effect is mediated through
cytokine-induced ROS, which, in turn, interferes with the binding affinities of EPO-inducing
transcription factors [84]. The promoter site of the gene encoding the transcription of EPO
is inhibited by GATA binding protein 2 and the NF-κB-dependent pathway [85]. As
discussed earlier, HIV-1 infection of T cells and HSCs activates the NF-κB dependent
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pathway, resulting in impaired hematopoiesis, the production of inflammatory cytokines
that further exacerbate and downregulate EPO production.

4. The Inflammatory Milieu in HIV Contributes to Chronic Anemia and Associated
Adverse Outcomes

The chronic nature of HIV-1 infection leads to sustained immune activation and in-
flammatory processes, which can negatively impact the hematopoietic microenvironment.
Inflammatory responses triggered by the virus may disrupt the normal functioning of
hematopoietic progenitors, affecting their survival, proliferative capacity, and differentia-
tion. Emerging evidence suggests that chronic inflammatory cytokine signaling can lead to
functional exhaustion of HSCs [86,87].

The pathogenesis of chronic anemia in PLWH involves a complex interaction of chronic
immune activation, iron dysregulation, and persistent inflammation, contributing to ad-
verse outcomes. Abioye et al. (2020) reported that chronic immune activation, particularly
observed in approximately 41–47% of anemia cases, is a significant contributor, with iron
deficiency anemia (IDA) accounting for 20–44% of cases [17]. Pro-inflammatory cytokines,
including interleukin-6 (IL-6), TNF-α, and interferon-gamma (IFN-γ), play central roles in
this process [88,89]. IL-6 induces hypoferremia via increased synthesis of hepcidin in the
liver, which inhibits absorption of iron in the duodenum and upper jejunum of the small
intestine [90,91]. TNF-α reduces EPO synthesis and is associated with low hemoglobin
synthesis in PLWH [92,93]. IL-1β associated with reduced EPO synthesis and blockade
of IL-1β is associated with reduced incidence of anemia and improvement of hemoglobin
levels [94].

Activated immune cells, such as macrophages and neutrophils, release these cytokines,
which inhibit erythropoiesis and directly suppress red blood cell production [89]. Similarly,
higher sCD14 levels and an increased count of CD14(dim)CD16(+) cells, often referred to as
“patrolling” monocytes, have been observed in anemic PLWH [95]. The persistent release of
pro-inflammatory cytokines creates a state of chronic inflammation, hindering the body’s
ability to produce an adequate number of red blood cells. Additionally, hepcidin, the master
regulator of iron homeostasis, is upregulated by these inflammatory signals [19]. Hepcidin
obstructs intestinal iron absorption and causes iron retention in reticuloendothelial cells,
resulting in restricted iron availability for erythropoiesis, shortened erythrocyte lifespan,
and suppressed erythropoietin response to anemia [89].

Observational studies, such as those by Roldan et al. (2017) and Pereira et al. (2022),
suggest that despite achieving viral suppression with the use of ART, sub-optimal inflam-
mation persists in people with HIV who have chronic anemia [93,96] but this does not
occur in individuals without chronic anemia [96]. This suggests that chronic anemia in HIV
contributes to persistent inflammation beyond ART. However, the underlying mechanisms
remain unclear.

Inflammation, fuelled by pro-inflammatory cytokines and immune cells, leads to
chronic anemia by multiple mechanisms, as shown in Figure 3. Firstly, the inhibition of
erythropoiesis directly impacts the production of red blood cells. Secondly, the shortened
lifespan of erythrocytes further exacerbates the decline in red blood cell levels [19]. Ad-
ditionally, the suppressed erythropoietin response to anemia hampers the body’s ability
to stimulate red blood cell production in response to low hemoglobin levels [97]. Inflam-
mation contributes to the complex pathogenesis of chronic anemia in PLWH, leading to
adverse outcomes such as a more pronounced systemic inflammatory profile, increased
risk of co-infections like tuberculosis, and higher mortality rates [98–100].
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Figure 3. Inflammatory mechanisms of chronic anemia in treated HIV infection. Inflammatory
cytokines produced by activated and HIV-1-infected cells inhibit EPO synthesis and increase hep-
cidin synthesis in the liver, resulting in a reduction in erythropoiesis, leading to anemia. Activated
macrophages destroy RBCs. HSCs, hematopoietic stem cells; RBCs, red blood cells; EPO, erythropoi-
etin; TNF-α, tumor necrosis factor alpha; ART, antiretroviral therapy.

In PLWH, monitoring inflammatory markers, such as C-reactive protein (CRP), interleukin-
6 (IL-6), and D-dimer, is crucial for predicting adverse outcomes, particularly in the context
of chronic anemia [101,102]. Studies have established that elevated levels of CRP and IL-6
are associated with a more pronounced systemic inflammatory profile, linking inflammation
to chronic anemia in PLWH [102]. The significance of these inflammatory markers extends
beyond mere association, as they are linked to adverse clinical outcomes, including a
heightened risk of tuberculosis (TB), immune reconstitution inflammatory syndrome (IRIS),
and mortality in PLWH [98,99,103].

Consistent evidence from various studies further strengthens the link between ane-
mia and adverse outcomes. The findings from a study conducted in Zambia revealed a
significant association between a hemoglobin level lower than 8.5 g/dL persisting for six
months or more and a hazard ratio of 4.5 for death [104]. This underscores the prognostic
importance of anemia in the context of HIV.

Remarkably, the severity of anemia plays a crucial role in predicting AIDS-related
mortality. These findings highlight the graded impact of anemia on disease outcomes in
HIV patients [105]. A study conducted during the HAART era in the United States demon-
strated a substantial 55% increased risk of neurocognitive disorders among individuals
with anemia compared to their non-anemic counterparts [105]. This suggests a potential
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neurological impact of anemia in the HIV population, contributing to the spectrum of
complications [105].

5. Chronic Anemia in HIV Is Associated with Chronic Kidney Disease and
Cardiovascular Disease
5.1. Chronic Anemia and Chronic Kidney Disease in HIV

Several factors, including HIV-associated nephropathy, erythropoietin deficiency,
chronic inflammation, and the nephrotoxic effects of antiretroviral medications, contribute
to the heightened risk of chronic kidney disease (CKD) in the presence of chronic ane-
mia [106,107]. HIV-related immunosuppression and comorbidities such as opportunistic
infections further amplify the impact of anemia on renal health [108].

PLWH face an elevated risk of CKD, often associated with non-communicable diseases
(NCDs) like diabetes and hypertension [109]. The prevalence of kidney disease in PLWH
is three to five times higher than in HIV-negative individuals [110]. CKD and chronic
anemia in this population are associated with adverse outcomes, including increased
morbidity and mortality, and are linked to cardiovascular disease (CVD) [111]. Anemia is a
common complication in both CKD and HIV infection, associated with an elevated risk
of cardiovascular events and all-cause mortality [112]. In CKD, anemia, linked to reduced
erythropoietin production, contributes to cardiovascular risk by promoting markers of
endothelial activation and left ventricular hypertrophy [113].

Anemia exacerbates the progression of HIV-associated nephrotoxicity, leading to struc-
tural and functional changes in the kidneys and promoting the development of CKD [114].
Furthermore, erythropoietin deficiency, a common feature in HIV-related anemia, not only
contributes to inadequate red blood cell production but is also implicated in renal injury,
creating a dual mechanism through which anemia may impact kidney health [115], as
shown in Figure 4.
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Figure 4. Chronic anemia and chronic kidney disease in HIV. Chronic anemia contributes to CKD
development through reduced renal perfusion, leading to renal injury. However, in the context of HIV,
CKD is a common complication that contributes to chronic anemia. CKD, chronic kidney disease.



Viruses 2024, 16, 542 10 of 20

Chronic inflammation and immune activation characteristic of HIV infection create
a pro-inflammatory environment, directly affecting renal function and contributing to
CKD. Anemia, often associated with inflammation, may further intensify these processes,
exacerbating renal damage [116–118]. Over time, inflammation leads to scarring in the
glomeruli, which can sometimes lead to chronic kidney disease (CKD) or end-stage renal
disease (ESRD) [119,120].

Although chronic anemia in PLWH may contribute to the development of CKD, more
often than not, anemia mostly occurs in the context of CKD due to the reduced production
of erythropoietin and is worsened as CKD progresses [121]. In addition, both HIV infection
and impaired kidney function synergize to increase the risk of chronic anemia [106,122].

5.2. Chronic Inflammation Increases the Risk for Cardiovascular Disease in HIV

Chronic inflammation contributes to persistent anemia and cardiovascular disease,
particularly in the context of HIV. The elevated risk of cardiovascular events among people
with HIV is primarily attributed to sustained inflammation [123,124]. Inflammatory me-
diators play a significant role in contributing to endothelial dysfunction, atherosclerosis,
and an increased susceptibility to thrombotic events [125]. This chronic inflammatory state,
combined with traditional cardiovascular risk factors, exacerbates the overall cardiovascu-
lar burden in individuals living with HIV [18,126]. Approximately 30% to 40% of patients
presenting with acute myocardial infarction (AMI) have anemia either upon admission or
during their hospital stay [7,127]. Chronic anemia, whether occurring independently or
in conjunction with other comorbidities, is associated with adverse outcomes [7,127]. A
study by Yan et al. (2023) demonstrated that inflammation correlated positively with iron
deficiency anemia and increased the risk for mild left ventricular systolic dysfunction [128].
Studies consistently emphasize that the presence of dysfunctional red blood cells (RBCs) in
anemic conditions significantly contributes to the exacerbation of cardiovascular disease
(CVD) severity [129,130].

Immune-mediated endothelial dysfunction is identified as a crucial mechanism con-
tributing to cardiovascular diseases in PLWH. HIV-related viral proteins, such as gp120,
Tat, and Nef, stimulate the production of adhesion molecules and contribute to various
cellular processes, including apoptosis, oxidative stress, and cytokine secretion [131,132].
Oxidative stress or increased ROS resulting from HIV viral proteins occurs through var-
ious mechanisms such as upregulation of cytochrome P450 2E1, Fenton–Weiss–Haber
reaction, and activation of NADPH oxidase (NOX) enzymes type 2 and 4 (NOX2 and
NOX4) [133]. Chronic anemia and immune activation in HIV patients synergistically con-
tribute to endothelial dysfunction, creating an environment conducive to increasing the risk
for cardiovascular complications [134–136]. HIV viral proteins also contribute to CVD de-
velopment by directly inducing mitochondrial dysfunction and increasing NO production
in cardiac cells, resulting in reduced myocardial contractility [137,138]. Endothelial dysfunc-
tion arising from both hypoxic effects of reduced oxygen-carrying capacity of erythrocytes
and HIV viral proteins leads to increased thrombotic events, accelerating atherosclerotic
processes leading to cardio-cerebrovascular adverse events and death [139,140]. Chronic
anemia also increases cardiac output and increases the risk for left ventricular hypertrophy,
consequently promoting heart failure [141–143], as shown in Figure 5.

Studies by Chennupati et al. and Wischmann et al. highlight the relationship between
chronic anemia and reduced nitric oxide production due to heightened inflammation and
increased formation of ROS [144,145]. The presence of chronic anemia in HIV patients
adds complexity to the interaction among the immune system, endothelium, and erythro-
poiesis. The diminished oxygen-carrying capacity of red blood cells in anemic conditions
contributes to tissue hypoxia, further aggravating endothelial impairment [139]. Janaszak-
Jasiecka et al. (2021) reported that hypoxia affects nitric oxide (NO) bioavailability by
influencing the control of endothelial nitric oxide synthase (eNOS) expression and activ-
ity [139]. NO is physiologically important for maintaining vascular tone and regulating
inflammation and growth factors [146–148]. The production of NO and L-citrulline is
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catalyzed by the enzyme eNOS, which uses L-arginine and molecular oxygen coupled
with the cofactor tetrahydrobiopterin (BH4) [149]. ROSs uncouple and degrade BH4, dis-
rupting NO production. This disruption is caused by a decrease in the cofactor BH4 and
a deficiency of the substrate L-Arginine, leading to the formation of superoxide instead
of NO, resulting in oxidative stress [139]. Reduced NO production by endothelial cells
leads to decreased vasodilation and vasorelaxation, induction of apoptosis, and necrosis,
leading to endothelial dysfunction [150,151]. PLWH have been reported to have reduced
levels of NO and increased inflammatory biomarkers such as IL-6 and high-sensitivity CRP
with concomitant increase in the cardiovascular risk marker asymmetric dimethylarginine
(ADMA) [152]. In addition to the contribution of hypoxia in disrupting NO homeostasis,
HIV viral proteins reduce the expression of eNOS, resulting in increased expression of
inducible NO synthase (iNOS) and more production of NO [132,153]. NO reacts with
oxygen radicals, producing peroxynitrites that damage endothelial cells and contribute to
the development of CVD. However, the exact mechanisms by which HIV viral proteins
disrupt NO homeostasis are unclear.
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induce endothelial dysfunction and increase cardiac output, leading to cardiovascular adverse events.
LVH, left ventricular hypertrophy; HF, heart failure; MI, myocardial infarction; CAD, coronary artery
disease; NO, nitric oxide; EC, endothelial cell; ROS, reactive oxygen species.

Beyond the NO pathway, iron deficiency emerges as a central player in the association
between chronic anemia and endothelial dysfunction. Iron deficiency, a common feature in
PLWH associated with anemic conditions, contributes to the generation of ROS, fostering
oxidative stress within the endothelium [154].
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Recent investigations have challenged the conventional understanding linking iron de-
ficiency anemia (IDA) with elevated endothelial NO signaling. Instead, studies, including
the work of Donaway et al., 2023, suggest that endothelial alpha hemoglobin (Hbα), rather
than changes in circulating hemoglobin, influences NO responses [155]. This nuanced
perspective on how iron deficiency impacts vascular function may have significant implica-
tions for cardiovascular health. Moreover, additional research has revealed that specific
subpopulations of iron-deficient anemic red blood cells display increased stiffness and
reduced size, contributing to aberrant shear stresses and fostering vascular inflammation.
Computational simulations corroborate these findings, indicating a causal relationship be-
tween the biophysical alterations of IDA red blood cells and endothelial dysfunction [129],
adding depth to the understanding of cardiovascular risk in anemic HIV patients.

Recent data reaffirm the prevalence of anemia and its strong correlation with immune
activation in individuals with coronary artery disease, bestowing a poorer prognosis and
an increased risk of cardio-cerebrovascular death [123,130]. This association is notably
amplified by chronic inflammation, traditional risk factors, and exposure to antiretroviral
drugs [123,130]. The widespread impact of anemia inflammation is further recognized in
patients with chronic kidney disease undergoing dialysis and those with congestive heart
failure, where iron deficiency hampers cardiovascular performance [19].

6. Therapeutic Strategies to Control Anemia in HIV

Addressing anemia in individuals with HIV requires a comprehensive therapeutic
approach due to its multifactorial origins. While ART is fundamental, its efficacy in com-
pletely resolving anemia is variable. Certain ART drugs, such as those in the integrase
strand transfer inhibitor (INSTI) class or regimens containing Zidovudine, may contribute
to anemia progression, necessitating careful selection of treatment regimens [42,127,156].
Opportunistic infections like tuberculosis, viral hepatitis, or bacterial infections can ex-
acerbate inflammation and worsen anemia in HIV patients [17]. Early identification and
treatment of these infections are crucial to control inflammation and support red blood
cell production. Chronic diseases, particularly tuberculosis, are common contributors to
anemia in this population [36,157].

Nutritional considerations play a pivotal role in managing anemia among individuals
with HIV/AIDS. Adequate nutrition, including iron, Vitamin B12, and folate, is essential
to counteract malnutrition-associated anemia. Nutritional counseling and support are
particularly important in resource-limited settings to effectively manage anemia. Iron
supplementation poses challenges in the context of inflammation; oral supplements may
exacerbate inflammation, while intravenous iron therapy could be considered once inflam-
mation is under control [158–161]. Combining iron with erythropoiesis-stimulating agents
(ESAs) has shown benefits in other conditions, but its efficacy and safety in HIV-related
anemia warrant further investigation through dedicated clinical trials [162,163].

A novel frontier in the management of anemia inflammation involves hepcidin-
modifying agents, currently in phase III clinical trials. Modulating hepcidin levels holds
promise for enhancing iron availability in HIV-related anemia, although more research is
needed to translate these insights into effective interventions [164]. This novel therapeutic
approach aims to antagonize hepcidin function and to mobilize iron from macrophages to
deliver it for erythropoiesis.

Furthermore, exploring innovative strategies for anemia in HIV patient treatment may
involve targeting the cytokine network. ω-3 poly-unsaturated fatty acids exhibit promise by
downregulating TNF-α and IL-6 production, showing efficacy in inflammation-associated
anemia in HIV and other inflammatory diseases like rheumatoid arthritis and diabetes
mellitus [165]. Notably, specific interventions such as anti-TNF therapy for mild anemia
in conditions like inflammatory bowel disease and rheumatoid arthritis have not been
explored in the context of HIV-related mild anemia, representing a potential area for future
investigation [6,19,89].
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7. Future Perspectives

Despite extensive research on the hematological complications of HIV, there is a
need for more in-depth exploration of specific mechanisms and pathways involved in
the interaction between chronic immune activation, inflammation, and dysregulated iron
metabolism, leading to persistent anemia. Additionally, limited attention has been given
to understanding the impact of HIV strains on the dynamics of hematopoietic progenitor
cells, specifically the CD34+. Further investigation into these areas may provide valuable
insights into the pathogenesis of hematological complications in PLWH, potentially paving
the way for more targeted therapeutic interventions and management strategies.

Further, there is a need for more comprehensive research elucidating the specific
molecular and cellular mechanisms underlying the relationship between chronic anemia
and immune-mediated endothelial dysfunction in the context of HIV. The exact pathways
through which chronic anemia exacerbates inflammation and contributes to cardiovas-
cular complications remain incompletely understood. Additionally, the literature could
benefit from studies that explore the impact of different antiretroviral drug regimens on
the development and progression of cardiovascular disease in HIV patients with chronic
inflammation and persistent anemia. Addressing these gaps in the literature is crucial for de-
veloping targeted interventions and improving the overall cardiovascular health outcomes
for individuals with HIV and concurrent chronic inflammatory and anemic conditions.

Understanding the impact of different antiretroviral drug regimens on inflammatory
markers in anemic patients with suppressed viral loads is crucial. Prospective studies
should investigate long-term consequences, including incident tuberculosis and mortality,
to inform early interventions. Biomarkers predicting treatment success and assessing inter-
ventions beyond antiretroviral therapy are essential. Clinical trials validating biomarkers
like the IL-6 and D-dimer score for predicting non-AIDS-related morbidity and mortality
would advance therapeutic strategies. An integrated approach combining basic science,
clinical research, and translational studies is key to advancing our understanding and
management of chronic anemia and inflammation in PLWH.

8. Conclusions

In conclusion, the prevalence of HIV globally underscores the significance of under-
standing and addressing its associated hematological complications, with chronic anemia
being a common and impactful manifestation. This comprehensive review has illumi-
nated the complex interaction between chronic anemia, inflammation, and cardiovascular
disease in individuals living with HIV. The multifactorial mechanisms driving chronic
anemia in HIV, including hematopoietic stem cell impairment, dysregulated erythropoietin
production, and persistent immune activation, underpins the complexity of this inter-
action. Chronic inflammation emerges as a central link linking persistent anemia and
cardiovascular complications, adversely affecting erythropoiesis, erythrocyte lifespan, and
the cardiovascular system. The heightened risk of co-infections, tuberculosis, and mor-
tality further emphasizes the clinical significance of chronic anemia in individuals with
HIV. Additionally, the review highlights the aggravating impact of chronic anemia on
HIV-associated nephrotoxicity and its contribution to cardiovascular risk. Recognizing the
cardinal role of chronic inflammation in these interrelated pathways emphasizes the need
for universal understanding and targeted interventions to address the evolving healthcare
needs of individuals living with HIV. This review provides valuable insights for clini-
cians and researchers, paving the way for enhanced clinical management approaches and
targeted interventions to mitigate the burden of chronic anemia and its cardiovascular
implications in the context of HIV.
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