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Abstract: Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal
viruses are common in filamentous fungi, and some of them can affect the growth and development
of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this
study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes
hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of
total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing.
The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel
viruses or viral fragments were characterized from the four species of macrofungi. Based on the
phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders:
Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mi-
toviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were
widely distributed among the studied species. Furthermore, the number and overall abundance of
viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those
in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By
employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence
of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes
versicolor, significantly contributing to research on mycoviruses in macrofungi.

Keywords: macrofungi; virome; viral diversity; ambi-like viruses

1. Introduction

Despite the fact that macrofungi have been extensively studied in terms of diversity,
research on these organisms still presents many gaps, attracting the interest of researchers
around the world. Evolutionarily, macrofungi belong to two main phyla, Ascomycota and
Basidiomycota, while ecologically, they can be associated with dead organic matter, plants,
and animals [1]. Macrofungal variety is essential not only for ecosystem maintenance,
but also for human survival [2]. Many of these organisms are valuable because they are
rich in proteins and vitamins and play an essential role in the human diet [3]. In recent
decades, a large number of useful substances from higher fungi with important biological
functions, such as blood pressure reduction, immunity enhancement, anti-cancer, and anti-
HIV properties, and other pharmacological activities, have been isolated, identified, and
characterized [4]. Initially, the demand for edible fungi was met by gathering them from
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the wild; however, with the recognition of their nutritional value, the demand increased,
and eventually, wild collection was supplanted by artificial cultivation [5]. In China,
there are over 4000 species of wild macrofungi, of which 1020 are edible species and over
480 dangerous ones [6].

Mycoviruses live and reproduce in the cells of filamentous fungi, yeasts, and oomycetes
and are found in all major fungal taxa [7]. The frequency of viral infection ranges from a few
percentage points to more than 90% in plant-associated fungi [8]. In 1962, fungal viruses
that cause La France disease were first identified in Agaricus bisporus [9]. Mycoviruses are
generally classified according to the genomic structure and shape of the viral particles, and
most of them possess RNA genomes of double-stranded (ds) RNA, positive single-stranded
(+ss) RNA, or negative single-stranded (−ss) RNA. Recently, a range of single-stranded,
circular DNA viruses have been found in fungi, including Fusarium graminearum, Botrytis
cinerea, and Sclerotinia sclerotiorum [10–13]. According to the International Committee on
Taxonomy of Viruses (ICTV), mycoviruses with +ssRNA genomes are classified into twelve
families: Alphaflexiviridae, Barnaviridae, Botourmiaviridae, Deltaflexiviridae, Endornaviridae,
Fusariviridae, Gammaflexiviridae, Hypoviridae, Mitoviridae, Narnaviridae, Hadakaviridae, and
Yadokariviridae. Mycoviruses with −ssRNA genomes are classified into one family and two
orders, i.e., Mymonaviridae, and Serpentovirales and Bunyavirales, respectively. Mycoviruses
with dsRNA genomes are grouped into eight families, Amalgaviridae, Chrysoviridae, Megabir-
naviridae, Partitiviridae, Polymycoviridae, Quadriviridae, Spinareoviridae, and Totiviridae, and
one genus, Botybirnavirus, in the kingdom Orthornavirae. Finally, the family Genomoviridae
was established for mycoviruses with a single-stranded DNA (ssDNA) genome [14].

The development of high-throughput sequencing (HTS) technologies and various
viruses (including several novel viral families) have been identified over the last several
years [15,16]. For example, spiliviruses are linked to yeast narnaviruses and include RNA-
dependent RNA polymerase motifs that are encoded by several positive-sense (+), single-
stranded (ss) RNA genomic segments [17]. Furthermore, ambiviruses consist of small,
single-stranded, circular RNA genomes (3–5 kb) with two large open reading frames (ORFs)
divided by intergenic regions. They undergo rolling-circle replication and encode their own
viral RdRps. In general, ambiviruses are distinct infectious RNAs that show hybrid features
of viroid-like RNAs and viruses [14,18]. The majority of mycoviral studies are focused on
plant-pathogenic fungi because of the potential for using virus-induced hypovirulence to
control fungal infections [19,20]. For example, Cryphonectria hypovirus 1 has been used
successfully to suppress chestnut blight in Europe [21,22]. Additionally, it was recently
discovered that a single-stranded DNA (ssDNA) genome from the Genomoviridae family
has a lot of potential for treating Sclerotinia disease caused by Sclerotinia sclerotiorum by
reducing its virulence [10,23]. Although some mycoviruses cause hypovirulence in their
host fungi, the vast majority of mycoviral infections are thought to be asymptomatic
(or cryptic), which is reinforced by the recent discovery of massive numbers of viruses
in various plant-pathogenic fungal populations [24]. On the other hand, fungal virome
investigations have also indicated that virus-free fungal individuals may be uncommon
in nature and that infection with numerous viruses in one fungal strain is widespread in
many fungal species [25,26]. Studies on fungal viromes, similar to those on the viromes of
other species, have contributed to our understanding of the diversity of viruses. Studies on
fungal viromes, similar to those on the viromes of other species, have contributed to our
understanding of the diversity of viruses of several important fungi, including Sclerotinia
sclerotiorum [17], Fusarium graminearum [11], and Botrytis cinerea [13]. Many new fungal
viruses have been reported, with positive single-stranded RNA viruses predominating.
However, there are still large gaps in the study of the viral diversity of macrofungi.

In this study, by using high-throughput sequencing, we described the diversity of
fungal viruses from ninety fungal strains of four species (Amanita strobiliformis, Coprinellus
micaceus, Trametes hirsuta, and Trametes versicolor) that were collected from Wuhan, China.
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2. Materials and Methods
2.1. Sample Collection, DNA and RNA Extraction

In total, 90 fungal strains of the species Amanita strobiliformis (n = 15), Coprinellus
micaceus (n = 40), Trametes hirsuta (n = 20), and Trametes versicolor (n = 15) were collected
from Wuhan City, Hubei Province, China, in 2021 (for details, see Supplementary Materials
Table S1), and isolated, as described previously [25]. The strains were cultured on potato
dextrose agar (PDA) and mycelial plugs stored at −80 ◦C in 20% glycerol. For DNA
extraction, the mycelial plugs of each strain were inoculated on a PDA plate (one plug per
plate) covered with cellophane for four days, and the mycelium was then collected. The
genomic DNA of each strain was extracted by using the cetyltrime-thylammonium bromide
(CTAB) method [27]. Mycelium samples weighing 0.2 g were quickly ground into powder
in liquid nitrogen and transferred into 2 mL Eppendorf tubes containing 800 µL of CTAB
buffer. After having been evenly mixed, the mixture was heated to 65 ◦C in a water bath
for 0.5 h and then supplemented with 400 µL of phenol and 400 µL of chloroform–isoamyl
alcohol (24:1) and evenly mixed again. The mixture was centrifuged at 12,891× g for 10 min,
and the supernatant was transferred to a new tube. This process was repeated once. Then,
the supernatant was mixed with 800 µL of chloroform–isoamyl alcohol and centrifuged at
12,891× g for 10 min. The final supernatant was transferred to a new tube, and two times
the volume of anhydrous ethanol was added to it. After having been evenly mixed, the
mixture was stored at −20 ◦C for 2 h and then centrifuged at 12,891× g for 10 min. The
supernatant was removed, and the precipitated DNA was then washed with 100 µL of 75%
ethanol twice. After having been air-dried, the genomic DNA was dissolved in 50 µL of
ddH2O and stored at −20 ◦C. The ITS-DNA (internal transcribed spacer DNA) regions
were obtained using PCR amplification [25].

For RNA extraction, 90 strains were grown for 4 days on a cellophane membrane
placed over a PDA plate. Following the manufacturer’s recommendations, 0.5 g of mycelial
mass from each strain was collected, and RNA was extracted from it by using a Trizol RNA
extraction kit (Aidlab, Beijing, China) [28]. Prior to library construction and sequencing,
RNA quality was evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA) and quantified using a NanoDrop 2000 (Thermo Fisher, Shanghai, China).
Before use, the RNA solutions were stored at −80 ◦C.

2.2. High-Throughput Sequencing, Analysis and RT-PCR Confirmation

Four libraries were generated by combining equal quantities of total RNA (2 µg) from
each strain by their species and sending them to GENEWIZ (Suzhou, China) for RNA
sequencing (Supplementary Materials Table S1). GENEWIZ performed ribosomal RNA
depletion (Ribo-Zero rRNA Removal Kit; Illumina, Inc., San Diego, CA, USA), library
preparation (~1 µg of RNA; TruSeq RNA Sample Preparation Kit; Illumina, Inc.), and high-
throughput sequencing by using the HiSeq X-ten system (Illumina, Inc.). Unqualified reads
were filtered out. The assembly of the ~150 bp readings was performed by using SPAdes
(v3.6.1) with the “--meta” option being selected and all other parameters being set to their
default values [29]. BLASTx was used to identify sequences similar to the virus-related
contigs by using Diamond software (v0.8.22) and the National Center for Biotechnology
Information’s non-redundant protein database (https://www.ncbi.nlm.nih.gov/) (accessed
on 20 December 2023) [30]. The NCBI ORF Finder program (http://www.ncbi.nlm.nih.
gov/gorf/gorf.html) (accessed on 23 December 2023) was utilized to identify the ORFs,
and the online motif search tool (https://www.genome.jp/tools/motif/) (accessed on 23
December 2023) was utilized to identify the conserved domains. The multiple-sequence
alignment of RNA-dependent RNA polymerase proteins (RdRps), methyltransferase, and
conserved helicase domains was performed by using Clustal Omega (https://www.ebi.
ac.uk/Tools/msa/clustalo/) (accessed on 25 December 2023). Total RNA was used as a
template to synthesize first-strand cDNA and a 25 µL PCR reaction mixture was prepared,
containing components like 12.5 µL ExTaq Mix (TaKaRa, Wuhan, China), 1 µL cDNA
template, 2 µL specific primers (Supplementary Materials Table S3), and 9.5 µL ddH2O, as
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described previously [28,31]. PCR products were visualized in 1.5% agarose gels (Biowest,
Hong Kong, China) with GelRed (Saibeike, Beijing, China). The purified PCR amplicons
were inserted into the pMD18-T vector and then transformed into Escherichia coli DH5α
competent cells. Three positive clones were selected from the transformed competent cells
for sequencing analysis (Tianyi Huayu Gene Technology, Wuhan, China) [31].

2.3. Phylogenetic Analysis

The phylogenetic analysis was constructed based on the amino acid sequence of the
RdRp region between viral contigs and reference viruses (viral reference sequence selection:
a. Similar viral sequences or families were chosen based on the available literature [13,17];
b. NCBI-blastp was used to obtain the sequences that were the closest to the viral contigs
in this paper; c. The model species of mycoviruses are downloaded from ICTV (Interna-
tional Committee on Taxonomy of Viruses) (https://ictv.global/taxonomy) (accessed on
25 December 2023), which is related to viral contigs in this work. The Muscle program in
MEGA X software (version: 10.1.7) was used for the multiple-sequence alignment of RNA-
dependent RNA polymerase proteins (RdRps) and polyproteins. All phylogenetic trees
were built by using the neighbor-joining approach with a bootstrap value of 1000 iterations
with MEGAX [32]. The sequences of the closest species were used as an outgroup. Some
assembly contigs (AsALV3, CmHV1, CmTV1, and CmDFV1, which was too short) did not
contain conserved RdRp motifs and could not be used for phylogenetic analysis, so the
relationships were analyzed based on the BLASTn results [17].

2.4. Viral Diversity

Salmon (v1.9.0) software was used to map the sequence reads to their viral contigs [33].
The viral relative abundance was then calculated as the proportion of viral reads divided by
the total reads in the library [34,35]. The richness index was calculated by using the vegan
(v2.6-2) package in R [36]. The t-test was performed by using the stats (v4.3.1), package
in package R (v4.1.0), and p < 0.05 was considered to indicate statistical significance. The
all-data visualization was performed by using ggplot2 (v3.3.6) software. The raw sequence
reads from the meta-transcriptomic libraries are available at the NCBI Sequence Read
Archive (SRA) database under the bio-projects PRJNA1060783 (four species of macrofungi),
PRJNA632510 (Botrytis cinerea), PRJNA778037 (Botrytis cinerea), and PRJNA598316 (Sclero-
tinia sclerotiorum). The viral diversity analysis methods for Botrytis cinerea and Sclerotinia
sclerotiorum are consistent with those for macrofungi. Lastly, the assembled contig se-
quences in this research study were deposited in GenBank databases and are available
under the accession numbers indicated in Table 1.

Table 1. Mycoviruses identified in four species of macrofungi.

Viral Name Length (nt) Best Match Identity (aa) Family Genome Accession
Number

Amanita
strobiliformis

ambi-like virus 1
4503 UJT31805.1 Phlebiopsis

gigantea ambi-like virus 1 40% unclassified +ssRNA PP105116

Amanita
strobiliformis

ambi-like virus 2
3116 QMP84024.1 Rhizoctonia

solani ambivirus 1 35% unclassified +ssRNA PP105117

Amanita
strobiliformis

ambi-like virus 3
1258 QPB44667.1 Tulasnella

ambivirus 2 26% unclassified +ssRNA PP105118

Amanita
strobiliformis

negative-
stranded RNA

virus 1

2421

YP_010784559.1 Soybean
leaf-associated

negative-stranded RNA
virus 4

34% Mymonaviridae −ssRNA PP105119

https://ictv.global/taxonomy


Viruses 2024, 16, 597 5 of 17

Table 1. Cont.

Viral Name Length (nt) Best Match Identity (aa) Family Genome Accession
Number

Trametes
versicolor

ambi-like virus 1
3426

WNH24528.1
Heterobasidion ambi-like

virus 15
37% unclassified +ssRNA PP105120

Coprinellus
micaceus

ambi-like virus 1
4687 QPB44674.1 Tulasnella

ambivirus 5 40% unclassified +ssRNA PP105121

Coprinellus
micaceus

hypovirus 1
3416 WMI40060.1 Rhizoctonia

cerealis hypovirus 40% Hypoviridae +ssRNA PP105122

Coprinellus
micaceus

barnavirus 1
2292 UHS71731.1 Sclerotinia

sclerotiorum barnavirus 1 36% Barnaviridae +ssRNA PP105123

Coprinellus
micaceus
totivirus 1

1544 WPH57541.1 Rhizoctonia
solani toti-like virus 1 48% Totiviridae dsRNA PP105124

Coprinellus
micaceus

deltaflexivirus 1
1273

QTH80200.1
Pestalotiopsis

deltaflexivirus 1
47% Deltaflexiviridae +ssRNA PP105125

Coprinellus
micaceus

negative stranded
RNA virus 1

802
QTT60994.1 Phytophthora

condilina negative
stranded RNA virus 2

40% unclassified −ssRNA PP105126

Coprinellus
micaceus

ourmia-like virus
1

784
YP_010805005.1

Armillaria mellea
ourmia-like virus 1

45% Botourmiaviridae +ssRNA PP105127

Trametes hirsuta
deltaflexivirus 1 7224 QOX06047.1 Lentinula

edodes deltaflexivirus 1 39% Deltaflexiviridae +ssRNA PP105128

Trametes hirsuta
deltaflexivirus 2 7884

UUW06602.1 Cat Tien
Macrotermes

Deltaflexi-like virus
32% Deltaflexiviridae +ssRNA PP105129

Trametes hirsuta
ambi-like virus 1 4788 WPS91567.1 Fusarium

graminearum ambivirus 1 32% unclassified +ssRNA PP105130

Trametes hirsuta
ambi-like virus 2 2980

WNA22195.1 Downy
mildew lesion associated

ambivirus 2
31% unclassified +ssRNA PP105132

Trametes hirsuta
mitovirus 1 4067 QOX06058.1 Lentinula

edodes mitovirus 1 43% Mitoviridae +ssRNA PP105131

Trametes hirsuta
fusarivirus 1 4953 UJT31800.1 Phlebiopsis

gigantea fusarivirus 1 44% Fusariviridae +ssRNA PP105133

Trametes hirsuta
fusarivirus 2 2275

YP_010799383.1
Sclerotium rolfsii

fusarivirus 2
57% Fusariviridae +ssRNA PP105134

Trametes hirsuta
benyvirus 1 671 QWC36503.1 Bemisia

tabaci beny-like virus 3 42% Benyviridae +ssRNA PP105135

+ssRNA, −ssRNA and dsRNA indicate positive- and negative-strand single-stranded RNAs and double stranded
RNAs, respectively.

3. Results
3.1. Metatranscriptomic Identification of Mycoviruses in Four Species of Macrofungi

A total of ninety fungal strains of Amanita strobiliformis (n = 15), Coprinellus micaceus
(n = 40), Trametes hirsuta (n = 20), and Trametes versicolor (n = 15) were identified by sequenc-
ing the PCR products of their ITS region. Then, their total RNA was used to construct
four meta-transcriptomic sequencing libraries based on the fungal species (the fungal
composition of each of the four total RNA pools is available in Supplementary Materials
Table S1). The four pools yielded a total of 63 GB of reads, with an average of about 15 GB
of reads per pool. After trimming and decontamination, the cleaned reads of each pool
were assembled. The contigs from each library were analyzed separately by using BLASTx
against a nonredundant protein database, and a total of 20 putative mycoviruses with
nearly complete genomes (n = 5, containing complete ORFs) or partial contigs (n = 15) were
identified. They are considered novel mycoviruses or viral contigs, since they share less
than 60% amino acid identity with the closest matching reference sequences (Table 1). The
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e-values, query cover for viral annotation, and viral reads were calculated. The viral contigs
were also confirmed by using RT-PCR, and the results show that many strains could be
co-infected by multiple viruses (Figure S1; Supplementary Materials Table S2). All the raw
sequencing reads were stored in the Sequence Read Archive (SRA) database: BioProject
accession No. PRJNA1060783, BioSample accession numbers from SAMN39245089 to
SAMN39245092, and SRA runs from SRR27412070 to SRR27412073.

The composition and taxonomy of all mycoviruses are summarized in the Sankey
diagram in Figure 1. The putative viral genomes showed affinity with nine distinct lineages,
including Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviri-
dae, Totiviridae, Mitoviridae, and Mymonaviridae (Figure 1). Of the putative viral sequences,
the majority (85%) were predicted to represent single-stranded, positive-sense RNA [ss (+)
RNA] genomes, and 41% were related to ambi-like viruses (Figure 1). Of the remaining
sequences, one was predicted to represent the toti-like virus, and two were predicted to
have negative-sense RNA (nsRNA) genomes (Figure 1 and Table 1). The viral compositions
were different among the four libraries. The list of putative mycoviruses was summarized
for each library, and we found that eight (belonging to the known families Deltaflexiviridae,
Mitoviridae, Fusariviridae, and Benyviridae) of these viruses originated from Trametes hirsuta,
seven (belonging to the known families Hypoviridae, Barnaviridae, Totiviridae, Deltaflexiviridae,
and Botourmiaviridae) from Coprinellus micaceus, four from Amanita strobiliformis, and one
from Trametes versicolor (Figure 1). None of the viruses were found in more than one species
of the analyzed fungi, even though these fungal strains were collected from the same region
or have close genetic relationships. In addition, the number of reads on the mapping-to-
viral contigs was counted for these viruses (Supplementary Materials Table S2). The relative
abundance rates of all mycoviruses identified in the different libraries were calculated.
The mycoviruses related with ambi-like viruses were the most abundant, and their reads
accounted for more than 47% of all viral reads. At the species level, Amanita strobiliformis
negative-stranded RNA virus 1 showed the highest relative abundance, accounting for 29%
of all viral reads (Figure 1).
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3.2. Positive, Single-Stranded RNA Mycoviruses

A total of 17 mycoviruses with +ssRNA genomes were identified in this study. They were
classified as Mitoviridae (n = 1), Botourmiaviridae (n = 1), Benyviridae (n = 1), Barnaviridae (n = 1),
Deltaflexiviridae (n = 3), Fusariviridae (n = 2), Hypoviridae (n = 1), and ambi-like viruses (n = 7).

Mitoviridae: A novel mitovirus, named Trametes hirsuta mitovirus 1 (ThMV1), was
characterized with two predicted ORFs and has an almost complete sequence of 4067 nt with
43% shared amino acid identity with Lentinula edodes mitovirus 1 (Figure 2a; Table 1). It was
identified as belonging to the genus Mitovirus based on the phylogenetical tree (Figure 2b).
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Figure 2. Phylogenetic analysis of mycoviruses belonging to the families Mitoviridae and Botourmiaviri-
dae and the genome structure of ThMV1. (a) The genome structure of ThMV1. (b,c) The phylogenetic
trees of virus sequences within the families Mitoviridae and Botourmiaviridae, respectively. All amino
acid sequences of RNA-dependent RNA polymerases (RdRps) were aligned with Muscle, and then
phylogeny was derived using neighbor-joining in MEGA X (bootstrap analysis of 1000 replicates).
The viral sequences found in our work were indicated by the red star and the color red.

Botourmiaviridae: A viral contig, Coprinellus micaceus ourmia-like virus 1 (CmOLV1),
was found to have a partial sequence of 784 nt and 45% shared RdRp identity with members
of the family Botourmiaviridae (Figure S2; Table 1). The phylogenetic analysis results suggest
that CmOLV1 clusters into a group with members belonging to the family Botourmiaviri-
dae (Figure 2c).

Barnaviridae: A 2292 nt incomplete fragment was similar to the barnaviruses and was
tentatively named Coprinellus micaceus barnavirus 1 (CmBV1) (Figure S2). The predicted
RdRp shares 38% of its identity with Sclerotinia sclerotiorum barnavirus 1, belonging to the
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family Barnaviridae (Table 1). CmBV1 and other barnaviruses are within a well-supported
clade of the family Barnaviridae (Figure 3a).
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Figure 3. Phylogenetic trees of viral sequences belonged to the families Barnaviridae, Benyviridae, and
Fusariviridae, respectively. (a) Phylogenetic tree of virus sequences within the family Barnaviridae.
(b) Phylogenetic tree of virus sequences within the family Benyviridae. (c) Phylogenetic tree of
virus sequences within the family Fusariviridae. All amino acid sequences of RNA-dependent RNA
polymerases (RdRps) were aligned with Muscle, and then phylogeny was derived using neighbor-
joining in MEGA X (bootstrap analysis of 1000 replicates). The viral sequences found in our work
were indicated by the red star and the color red.

Benyviridae: One novel viral contig (Trametes hirsuta benyvirus 1; ThBV1) related to
the members of the family Benyviridae was identified. The partial fragment is 671 nt long,
containing the conserved RdRp domain, and shares 42% amino acid identity with Bemisia
tabaci beny-like virus 3 (Figure S2; Table 1). The phylogenetic analysis results demonstrate
that ThBV1 is grouped with mycoviruses belonging to the family Benyviridae (Figure 3b).

Fusariviridae: We discovered two novel viruses from the family Fusariviridae, tentatively
designated as Trametes hirsuta fusarivirus 1 (ThFV1) and Trametes hirsuta fusarivirus 2
(ThFV2). The assembly contigs were 4.95 and 2.23 knt in size, respectively. ThFV1 encodes
a polyprotein with conserved RdRp domains and shares 44% identity with the previously
identified Phlebiopsis gigantea fusarivirus 1. ThFV2 encodes a polyprotein with conserved
RdRp domains and shares 57% identity with the previously discovered Sclerotium rolfsii
fusarivirus 2 (Figure S2; Table 1). The phylogenetic analysis results based on the conserved
RdRps show that ThFV1, ThFV2, and other members of the family Fusariviridae are grouped
into one large branch with good support (Figure 3c).

Deltaflexiviridae. We also identified three other mycoviruses belonging to the family
Deltaflexiviridae, which we tentatively named Trametes hirsuta deltaflexivirus 1 (ThDFV1),
Trametes hirsuta deltaflexivirus 2 (ThDFV2), and Coprinellus micaceus deltaflexivirus 1
(CmDFV1). ThDFV1 and ThDFV2 polyproteins (including replicases) share 39% and 32%
of their identity with the Cat Tien Macrotermes Deltaflexi-like virus (UUW06602.1) and
Lentinula edodes deltaflexivirus 1 (QOX06047.1), respectively (Table 1). The assembled
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genome of ThDFV1 consists of 7255 nt with one large predicted ORF, which encodes a
putative replication-associated polyprotein and contains four conserved domains: methyl-
transferase, PRK10263, viral helicase 1, and RdRp. ThDFV2 presents an incomplete contig
with two ORFs, ORF1 (6267 nt) and ORF2 (>1006 nt), where the former encodes RdRp,
viral helicase 1 (Hel), and methyltransferase (Met), respectively, while the latter encodes a
protein with an unknown function (Figure 4a). The phylogenetic analysis results show that
ThDFV1 and ThDFV2 are in a well-supported clade with other deltaflexiviruses (Figure 4b).
The CmDFV1 sequence was incomplete (1273 nt), only a blastp result was obtained, and
47% aa identity was observed between the polyprotein of CmDFV1 and Pestalotiopsis
deltaflexivirus 1 (Figure S2; Table 1).
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Figure 4. Phylogenetic analysis of sequences belonged to the family Deltaflexiviridae and genome
structures of ThDFV1 and ThDFV2. (a) The genome structures (containing viral methyltransferase,
viral helicase, and RdRp) of ThDFV1 and ThDFV2. (b) The phylogenetic tree of virus sequences
within the family Deltaflexiviridae. All amino acid sequences of RNA-dependent RNA polymerases
(RdRps) were aligned with Muscle, and then phylogeny was derived using neighbor-joining in MEGA
X (bootstrap analysis of 1000 replicates). The viral sequences found in our work were indicated by
the red star and the color red.
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Novel +ssRNA viruses with circular genomes: In our investigation, seven putative
ambi-like viruses (three from Amanita strobiliformis, one from Coprinellus micaceus, two from
Trametes hirsute, and one from Trametes versicolor) consisted of circular genomes with two
ORFs (Table 1). These were putatively termed Amanita strobiliformis ambi-like virus 1
(AsALV1), AsALV2, AsALV3, Coprinellus micaceus ambi-like virus 1 (CmALV1), Trametes
hirsuta ambi-like virus 1 (ThALV1), Trametes hirsuta ambi-like virus 2 (ThALV2), and
Trametes versicolor ambi-like virus 1 (TvALV1). The lengths of the obtained fragments
ranged from 1258 to 4788 nt (Figure S2). The results of the alignment of the protein
sequences with the reference viral sequences suggest that they share amino acid identities
ranging from 26% to 40% (Table 1). Among them, the full sequences for ThALV1 and
CmALV1 are 4788 and 4687 nt long, respectively. The domain of RNA-dependent RNA
polymerase may be encoded by ORFA (Figure 5b). The phylogenetic analysis results
demonstrate that they are grouped with the mycoviruses related to ambiviruses (Figure 5a).
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Figure 5. Phylogenetic analysis and genome structure of ambi-like viruses. (a) The phylogenetic tree
of virus sequences related to ambi-like viruses. All amino acid sequences of RNA-dependent RNA
polymerases (RdRps) were aligned with Muscle, and then phylogeny was derived using neighbor-
joining in MEGA X (bootstrap analysis of 1000 replicates). (b) The genome structures of CmALV1
and ThALV1. The viral sequences found in our work were indicated by the red star and the color red.

3.3. Negative Single-Stranded RNA Mycoviruses

Bunyavirales and Mymonaviridae: One novel viral fragment (Coprinellus micaceus
negative-stranded RNA virus 1; CmNSV1) related to the members of Bunyavirales was
identified. The viral contig is 802 nt, and the partial RdRp encoded by CmNSV1 shares
40% of its identity with that of Phytophthora condilina negative-stranded RNA virus 2
(Table 1). Amanita strobiliformis negative-stranded RNA virus 1 (AsNSV1) was also found
to have a partial contig (2421 nt) and to share 34% aa identity with the RdRp of soybean
leaf-associated negative-stranded RNA virus 4. A phylogenetic tree was constructed by
using the aforementioned RdRp sequences. CmNSV1 forms a well-supported clade with
several other fungal bunyaviruses but it is significantly phylogenetically distant from the
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members of the family Peribuyaviridae (Figure 6). AsNSV1 groups with mymonaviruses
and could be a new member of the family Mymonaviridae (Figure 6).
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Figure 6. Phylogenetic analysis of putative −ssRNA viruses. All amino acid sequences of RNA-
dependent RNA polymerases (RdRps) were aligned with Muscle, and then phylogeny was derived
using neighbor-joining in MEGA X (bootstrap analysis of 1000 replicates). The viral sequences found
in our work were indicated by the red star and the color red.

In addition to the mycoviruses mentioned above, other detected +ssRNA and dsRNA
viral contigs included members of the families Hypoviridae (n = 1) and Totiviridae (n = 1).
Due to incomplete viral sequences (the length of obtained RdRp sequences was not enough
for phylogenetic analysis), these viral contigs (AsALV3, CmHV1, CmTV1, and CmDFV1)
are only included in Table 1.

3.4. Comparison of Viromes from the Phyla Ascomycota and Basidiomycota

Previous investigations on mycoviromes have concentrated on important plant-pathogenic
fungi. We gathered the mycovirome database from the NCBI-SRA, which includes three viral
libraries for Sclerotinia sclerotiorum and thirty viral libraries for Botrytis cinerea, both of which
are members of the phylum Ascomycota, and compared it with our findings. The results
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show that the top five viral families with the highest relative abundance among the fungi
of the phylum Ascomycota (S. sclerotiorum and B. cinerea) were Mitoviridae, Botourmiaviri-
dae, Hypoviridae, Tombusviridae, and Fusariviridae, while the top five viral families among
the four species of Basidiomycota fungi were ambi-like viruses, namely, Mymonaviridae,
Deltaflexiviridae, Mitoviridae, and Fusariviridae, respectively (Figure 7a). The abundance of
these viral families varied greatly across the libraries. Moreover, we discovered that at the
family level, the total abundance and diversity (richness) of mycoviruses from Ascomycota
fungi were much higher than those from Basidiomycota (total viral abundance: p < 0.0001;
richness: p < 0.01) (Figure 7b,c).
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Figure 7. Comparison of mycoviral diversity in the phyla Ascomycota and Basidiomycota fungi. (a) The
pie chart shows the proportions of the top five virus families in the phyla Ascomycota (S. sclerotiorum
and B. cinerea) and Basidiomycota (A. strobiliformis, C. micaceus, T. hirsuta, and T. versicolor) fungi. (b) The
abundance of the top five viral families in two fungal phyla. (c) Comparison of the viral abundance
and richness index in two fungal phyla (** and ****, representing p < 0.01 and 0.0001, respectively).

4. Discussion

Fungi are widely distributed, with conservative estimates ranging from 1.5 to 5 million
species on Earth. There are over 2.82 × 108 species of fungal viruses that can parasitize them.
However, only a few thousand species of fungal viruses have been characterized [13,17,26,37].
In this study, we showed that various mycoviruses exist in populations of macrofungi (A.
strobiliformis, C. micaceus, T. hirsute, and T. versicolor) in China. More specifically, twenty
putative viral sequences, which share 26% to 57% amino acid identity with known viruses,
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were identified. According to the published literature, more than 80 distinct viruses with
either a dsRNA or ssRNA genome and infecting a total of 34 macrofungal species have
been identified. These macrofungal viruses are classified into 12 families (Partitiviridae,
Totiviridae, Chrysoviridae, Endornaviridae, Hypoviridae, Betaflexiviridae, Gammaflexiviridae, Bar-
naviridae, Narnaviridae, Virgaviridae, Benyviridae, and Tymoviridae) [38]. In this study, we
obtained many new viral fragments from four species of macrofungi. These viruses could
be grouped into ten distinct lineages, including Barnaviridae, Benyviridae, Botourmiaviridae,
Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bun-
yavirales. These results imply that macrofungi harbor diverse unknown viruses that are
worthy of further exploration.

This is the first report of a mitovirus in Trametes hirsute. Mitoviruses are a group
of naked viruses with linear +ssRNA genomes, possessing one large ORF that encodes
an RdRp of 2.3–3.6 knt in size [39–41]. They are thought to replicate in mitochondria,
since they often use mitochondrial genetic code for the translation of RdRps [42,43]. In
addition, a novel mitovirus, named Heterobasidion mitovirus 3 (HetMV3), was identified
in Heterobasidion annosum. HetMV3 has a genome length of 5.0 knt and contains three open
reading frames (ORFs) [39]. Similarly, a mitovirus, ThMV1, whose nearly complete genome
was identified in our study, possesses two ORFs and the six characteristic conserved
motifs of mitoviruses [44] (Figure S3). The phylogenetic analysis results also support that
ThMV1 belongs to the family Mitoviridae (Figure 2b). The amino acid sequence identity
was low, 43%, for all reported mitoviruses, so it is thought to be a novel member of the
genus Mitovirus.

In this study, we determined three novel deltaflexiviruses. The order Tymovirales
consists of five recognized families (Alpha-, Beta-, Delta-, and Gamma-flexiviridae, and Ty-
moviridae) with +ssRNA viral genomes, and all members have a linear genome of 5.9–9.0 kb
in length [45]. In this study, only three potential members were identified: ThDFV1,
ThDFV2, and CmDFV1. Of these, a BLAST search revealed that ThDFV1 and ThDFV2
are most closely related to Lentinula edodes deltaflexivirus 1 and Cat Tien Macrotermes
Deltaflexi-like virus, respectively; their aa sequence identity values are less than 40%. The
conserved motifs in the Mtr (methyltransferase), Hel (helicase), and RdRp domains of
ThDFV1 and ThDFV2 are similar to those of deltaflexiviruses [46,47] (Figure S4). Further-
more, the phylogenetic analysis results show that they are clustered with viruses in the
viral family Deltaflexiviridae with 100% bootstrap support (Figure 4b). These results suggest
that ThDFV1 and ThDFV2 may be novel members of this family. However, CmDFV1 was
not analyzed in depth in this study due to the short sequence obtained.

In this study, we identified seven viral contigs related to ambi-like viruses. The earliest
evidence of ambi-like viruses was found in endomycorrhizal fungi [48]. Numerous phy-
topathogenic fungi, including C. parasitica [49], Armillaria spp. [50], and H. parviporum [51],
have also been found to harbor this viral group in recent years. They have a non-segmented
RNA genome of 4.5–5.0 kb with an ambisense coding nature that possesses two open
reading frames (ORFs) (A and B) on each strand [52]. Moreover, in the above study, the
authors also showed that fungal ambi-like viruses contain viroid-like elements that undergo
rolling-circle replication and encode their own viral RdRps. Thus, ambiviruses are distinct
infectious RNAs showing hybrid features of viroid-like RNAs and viruses [18]. In our study,
7 of 20 were ambi-like viruses, suggesting that these viruses might be widespread in fungi
in the phylum Basidiomycota, highlighting macrofungi as an evolutionary hub for RNA
viruses and viroid-like elements. These findings indicate that an in-depth understanding of
virus composition in macrofungi is necessary. However, the effects of these viruses on the
host remain unknown and need to be further investigated.

Cross-species transmission of fungal viruses has been reported in other fungi under
laboratory conditions, such as S. sclerotiorum/S. minor [53], Aspergillus niger/A. nidulans [54],
and C. parasitica/C. nitschkei [55]. Recent findings have also demonstrated that the cross-
species transmission of mycovirus LbBV1 was achieved only through the inoculation of
mixed spores of Leptosphaeria biglobosa and B. cinerea on PDA or on stems of oilseed rape
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with the efficiency rates of 4.6% and 18.8%, respectively [28]. In all these cases, the donor
and recipient species belonged to the same genus or had ecological niche intersections. In
our study, the comparison of the viromes of four species of macrofungi showed that the
highest number of mycoviruses were identified in Trametes hirsuta and the lowest in Trametes
versicolor. Moreover, none of the viruses were shared among the analyzed macrofungi,
implying that viral cross-species transmission among them may rarely occur. The reason for
this result may be the different ecological niches or vegetative incompatibility among them.

The composition of fungal viruses in the phyla Basidiomycota and Ascomycota was quite
different. In Ascomycota (including S. sclerotiorum and B. cinerea), we found that viruses
belonging to the family Mitoviridae appeared to be the dominant viruses, comprising
70% of the total viral reads. However, the dominant viruses among the four species of
macrofungi in this study were ambi-like viruses (comprising 47% of the total viral reads).
Moreover, the viral richness and total virus abundance detected in the S. sclerotiorum and B.
cinerea samples were significantly higher than those of the four species of macrofungi. In a
previous study, it was observed that antiviral RNA silencing was impeded by a mitovirus
CpMV1, which is consistent with its mitochondrial replication [56]. Therefore, this may be
one reason as to why mitoviruses are widely distributed in S. sclerotiorum and B. cinerea.
On the other hand, viral diversity may be influenced by inter-species horizontal gene
transfer events. For example, Sclerotinia sclerotiorum alphaflexivirus 2 was isolated from
the hypovirulent strain S. sclerotiorum. The phylogenetic analysis results show that SsAFV2
clusters with Botrytis virus X (BVX) based on the multiple-sequence alignment of helicase,
RdRp, and CP, but the methyltransferase of SsAFV2 was found to be most closely related to
Sclerotinia sclerotiorum alphaflexivirus 1, suggesting that SsAFV2 is a new member of the
Botrexvirus genus within the Alphaflexiviridae family [57]. However, more research is needed
to determine why ambi-like viruses are so common among the macrofungi analyzed in
further study.

5. Conclusions

For the first time, in this study, we showed the existence of various mycoviruses in
Amanita strobiliformis, Coprinellus micaceus, Trametes hirsuta, and Trametes versicolor. Twenty
putative mycoviruses were identified and categorized into ten distinct lineages, including
Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, To-
tiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Furthermore, seven viruses or viral
contigs with circular genomes, i.e., AsALV1 to AsALV3, TvALV1, CmALV1, ThALV1, and
ThALV2, may belong to a novel viral family. In addition, none of the viruses are shared
among the analyzed macrofungi, and there is significantly lower mycoviral diversity in
these four macrofungi than in other pathogenic fungi (S. sclerotiorum and B. cinerea). In
general, by employing metatranscriptomic analysis, the origin and evolution of many
mycoviral groups were studied in macrofungal species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v16040597/s1, Figure S1: PCR confirmation of mycovirus contigs
in four species of macrofungi strains (including Amanita strobiliformis, Coprinellus micaceus, Trametes
hirsuta, and Trametes versicolor). The viral primers were designed according to the contig sequences,
and primers used are listed in Supplementary Materials Table S3. Figure S2: A schematic diagram
shows the structure of other viral sequences. The conserved domains include RNA-dependent
RNA polymerase (RdRp) and viral helicase (Hel), which are indicated on their fragments. Figure S3:
Conserved amino acid sequence motifs of the putative RNA-dependent RNA polymerases of Trametes
hirsuta mitovirus 1 (ThMV1), Cryphonectria cubensis mitovirus 2a (CcMV2a), Ophiostoma mitovirus
1a (OnuMV1a), Sclerotinia homoeocarpa mitovirus (ShMV), Ophiostoma mitovirus 3a (OnuMV3a),
and Cryphonectria parasitica mitovirus 1-NB631 (CpMV1-NB631). “*” indicates identical amino acid
residues; and “.” indicates low chemically similar amino acid residues. Figure S4: Multiple alignment
of amino acid sequences of conserved domains including methyltransferase (Mtr), viral RNA Helicase
(Hel), and RNA-dependent RNA polymerase (RdRp) domains of Trametes hirsuta deltaflexivirus
1 (ThDFV1), ThDFV2, Sclerotinia sclerotiorum deltaflexivirus 1 (SsDFV1), Sclerotinia sclerotiorum
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deltaflexivirus 2 (SsDFV2), and Fusarium graminearum deltaflexivirus 1 (FgDFV1). “*” indicates
identical amino acid residues, and “.” indicates low chemically similar amino acid residues. Table S1:
Macrofungi strains from China used in this study. Table S2: The blastp, PCR confirmation and reads
of mycovirus contigs in four species of macrofungi. Table S3: Primers used to detect viral contigs.
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