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Abstract: West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne
viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic
cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals
can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and
has since spread globally, notably in Europe, causing periodic outbreaks associated with severe
cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated
in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited
impact on human health. There has been a recent expansion of these viruses’ geographic range in
Europe, facilitated by factors such as climate change, leading to increased human exposure. While
sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in
their pathogenicity and their impact on both human and animal health. While WNV has been
more extensively studied and is a significant public health concern in many regions, USUV has
recently been gaining attention due to its emergence in Europe and the diversity of its circulating
lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is
important to the implementation of effective surveillance and control measures. This perspective
provides a brief overview of the current situation of these two viruses in Europe and outlines the
significant challenges that need to be addressed in the coming years.
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1. WNV and USUV: Two Closely Related Viruses

Environmental changes have a major impact on the emergence or re-emergence of
infectious diseases [1]; thus, climate change and modifications of ecosystems resulting
from biodiversity loss and changes in land use can represent environmental threats to
human and animal health. Emerging infectious diseases, especially vector-borne diseases,
are closely linked to changes in ecological processes influenced by such anthropogenic
factors. Climate change, urbanization, and land use have an impact on vector dynamics,
particularly mosquitoes, as well as on host reservoir populations and the transmission of
pathogens by vectors. In recent decades, the number of emerging arboviruses (viruses
transmitted through the bite of an infected arthropod) described worldwide has increased
considerably. Certain arboviruses in particular have expanded their geographic range,
resulting in an increased number of human outbreaks, thus representing an emerging threat
for human health [2].

Among them, West Nile Virus (WNV) and Usutu Virus (USUV) are two closely related
neurotropic mosquito-borne viruses [3]. Both are enveloped, single-stranded RNA viruses
belonging to the Japanese encephalitis virus serocomplex within the Orthoflavivirus genus,
Flaviviridae family. WNV was first isolated from a woman in the West Nile district of
Uganda in 1937, while USUV was first identified in Swaziland in 1959 from field-caught
Culex neavei mosquitoes [4–6]. These viruses are maintained in similar transmission cycles
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involving ornithophilic mosquitoes, with resident or migratory birds acting as amplifying
hosts (Figure 1).
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(vectors). Infection can spread to humans and a diverse range of vertebrates, which are generally
considered incidental or “dead-end” hosts.

On the European continent, the main vector of these viruses is the Culex pipiens
mosquito [7–9]. Experimental vector competence has nevertheless been demonstrated by
Aedes albopictus, as well as natural carriage [10–12]. USUV was also identified in Aedes
japonicus japonicus mosquitoes [13]. Birds are currently considered the major factor in the
spread of WNV throughout Europe, particularly through wetland areas such as the Po Delta
in Italy, the Aliakmonas Delta in Greece, and the Rhône Delta in France. These marshy
areas combine the parameters for a successful transmission cycle, being rich in mosquitoes;
often harboring equine and human populations; and, above all, attracting a multitude of
migratory birds which stop there to rest during migration. For example, the American robin
Turdus migratorius appears to have been a major player in the dissemination of WNV on the
American continent [14]. Furthermore, passerine birds, especially sparrows, are considered an
important potential reservoir for WNV and USUV. The pathogenicity of WNV is particularly
pronounced in certain avian species such as the European goshawk (Accipiter gentilis), which
can die from the infection, whereas sparrows show lower mortality despite having high
viremia [15,16]. Though they are considered reservoirs, some avian species are particularly
sensitive to USUV infection, with a high mortality rate following infection. This is notably
the case for Eurasian blackbirds (Turdus merula), great grey owls (Strix nebulosa), and house
sparrows (Passer domesticus) [17,18]. Viral and necrotic lesions, notably neurological, have
been identified in numerous organs of carcasses of these species. A significant die-off of
birds, predominantly Eurasian blackbirds, across the European continent, notably in 2018,
also underscores the potent pathogenicity of USUV among diverse avian populations [19–22].
Several avian species in particular, including the common kestrel (Falco tinnunculus) and the
less common whitethroat (Sylvia curruca), may have contributed to the introduction of USUV
into Europe, with Eurasian blackbirds, magpies, and sparrows subsequently spreading the
virus across the European continent [23,24].

Natural occurrences of WNV and USUV have also been observed in over 100 mam-
malian species, including wild boars, wild ruminants, bats, rodents, and shrews [23,25–32].
It would, therefore, appear that mammals living in the wild are naturally exposed to these
viral infections. Further investigation into their potential as hosts could shed light on their
role in the virus transmission cycle. WNV and USUV infection in horses, like in humans, is
considered to be an epidemiological dead end [33].
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In humans, the incubation period of WNV is approximately 3 to 6 days, with a maxi-
mum range of 2 to 15 days, following a bite by an infected mosquito [34]. Approximately
20 to 30% of cases are symptomatic. The most common symptoms include fatigue and
headaches, associated with flu-like symptoms which are referred to as “West Nile Fever”
(WNF) [35]. It is estimated that approximately 1% of cases are characterized by West Nile
neuroinvasive disease (WNND), such as encephalitis, meningitis, meningoencephalitis,
or acute flaccid paralysis [35]. In instances of neuroinvasive complications, the mortality
rate stands at around 10%, primarily affecting vulnerable individuals such as elderly or
immunocompromised patients [36,37]. Severe sequelae can persist in 20 to 40% of indi-
viduals who survive [36]. For USUV, the small number of human cases that have been
characterized thus far offer a less comprehensive understanding of the associated patho-
genesis compared to WNV. Seroprevalence studies indicate that the majority of cases of
USUV are asymptomatic or associated with only mild symptoms. The symptomatic phase
of the infection has been described as possibly featuring moderate fever, along with a skin
rash or febrile jaundice [38]. In a small number of cases, severe neurological complications
may occur, such as meningitis, encephalitis, or meningoencephalitis [39]. It is worth noting
that severe complications most often manifest in immunocompromised patients, but have
occasionally been described in healthy individuals [40].

2. Expansion of the Distribution Range of These Viruses in Europe

The geographical distribution of WNV in Europe has expanded considerably over the
past two decades. Europe’s first WNV epidemic occurred in 1996 in Romania, with 835 de-
tected cases, including 17 deaths [41]. This was followed by cases of meningoencephalitis
associated with WNV infection in Russia in 1999, where approximately 40 deaths were
recorded [42]. The circulation of WNV also affects avian and equine populations, with signifi-
cant epizootics, including the 220 cases of equine infection reported in France in 2000 and the
significant bird mortality reported in 2018 and 2019 [43]. Between 2012 and 2021, a total of
3632 autochthonous cases of WNV infection in humans were reported in Europe [44].

USUV was first identified in Austria in 2001 [45] and retrospectively in Italy in 1996 [46],
where it was linked to the deaths of a significant number of birds, including blackbirds [47].
From that point on, USUV began to be detected sporadically in animals (mainly birds)
and mosquito vectors in several European countries (Germany, Belgium, Spain, France,
Hungary, Italy, the Czech Republic, and Switzerland), suggesting its endemicity in those
areas [39,40,48]. In both 2016 and 2018, new epizootics occurred in multiple European coun-
tries, among them, Austria, Belgium, France, Germany, Hungary, and the Netherlands [39].
Regarding cases in humans, to date, over 100 cases of acute human infection have been
reported in Europe, including approximately 30 patients with neurological symptoms [40].

While WNV and USUV were not considered endemic in Europe until the 2010s, recent
years have seen epidemiological patterns of these viruses in several European regions that
call for an urgent, in-depth analysis of their endemicity [49]. Over the past decades, WNV
and USUV have been periodically detected in Europe, being associated mainly with sporadic
cases in humans, horses, and birds, and, until recently, being limited to certain European
regions [50]. For example, the occasional outbreaks of WNV over the past two decades
have tended to take place in Central and Southern Europe [16,51–54]. The geographical
distribution and intensity of WNV and USUV outbreaks in recent years, however, suggest
a change in the epidemiological situation in Europe. Presently, epidemiological trends in
various European regions indicate the endemic presence of these viruses, rather than merely
periodic introductions from endemic areas. For instance, the recurrent detection of identical
strains of WNV in the same region over several consecutive years has been confirmed in
Northern Italy, Southern France, Hungary, and Austria [48,49,55,56]. WNV has also begun to
affect higher latitudes within Europe, while the number of countries with USUV outbreaks is
rapidly increasing [16,57–62] (Figure 2).
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Figure 2. Distribution of WNV and USUV in Europe. Countries reporting only USUV: Belgium,
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In 2018, the largest European WNV epidemic took place, with 2083 cases and 181 recorded
deaths, representing more human cases than in the previous seven years [34,39,44,63,64]. This
epidemic was concomitantly associated with a major USUV epidezootic, which affected
several European countries and caused massive mortality in several bird species [39]. The
year 2022 was another year of intense WNV circulation, as exemplified by Italy, where a
season of dramatic transmission levels (over 500 WNV-positive cases, with over 50 deaths)
was symptomatic of the disease’s high endemicity in certain European countries [65]. In 2023,
the geographical expansion of these viruses continued, with 707 human cases of WNV being
identified, mainly in Italy, Greece, and Romania. Cases of WNV infection were seen in several
regions for the very first time, as were cases of USUV infection, albeit to a lesser extent. This
was the case in the Nouvelle Aquitaine region of France [66,67].

Alongside the geographic spread of these viruses, the diversity of circulating lineages
and strains must also be considered. WNV exhibits significant genetic diversity, encompassing
at least nine distinct lineages [68]. Among these, two major lineages (lineages 1 and 2) have
been responsible for the human outbreaks observed in Europe in recent years [69]. Lineages 3,
4, 5, 6, 7, 8, and 9 are represented only by a few isolates. Lineage 1 was responsible for the
highest number of human and equine infections in Europe until 2004, and is also the lineage
that has spread in North and Central America [70]. Lineage 2, which had been circulating in
avian populations, first appeared in the human population in Hungary, and has more recently
spread throughout Europe and the Mediterranean region [71]. It is probable that USUV, like
WNV, spread from Africa to Europe through the migrations of its avian reservoir host. These
viral circulations explain the multiple introductions of the virus into Europe from Africa and
the different lineages that have emerged, which are also linked to the transmission cycle.
Eight lineages have been delineated for USUV strains, named according to the origin of the
first isolated strain (i.e., three African and five European lineages) [72]. All lineages, except
the Africa 1 lineage, have been detected in Europe [72] (Figure 3). Although the majority of
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circulating strains currently in Europe are of European lineages, it is probable that African
lineages continue to be introduced onto the continent, such as the Africa 2 and 3 lineages,
which were discovered in Culex mosquitoes in France and Germany in 2018 [73–75].
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3. Main Challenges to Overcome
3.1. Diagnostic Tools

Typically, the diagnosis of a WNV or USUV infection involves identifying specific
antibodies or detecting the viral genome in whole blood; serum; or, occasionally, cere-
brospinal fluid (CSF). However, acknowledging the narrow diagnostic window and low
viral levels in the blood, the molecular testing of urine samples may broaden detection at a
later stage. To date, viral detection in urine has been performed on WNV patients, on mice
experimentally infected with USUV, and on USUV patients showing neurological symp-
toms. However, further studies are required to evaluate the routine utility of molecular
virus detection [76,77]. Direct diagnosis hinges on detecting viral RNA in blood and CSF
using a reverse-transcription polymerase chain reaction (RT-PCR). Because of the limited
detection timeframe available for molecular tests, most human infections are diagnosed
using serological methods. The most commonly used serological methods for detecting
arbovirus-specific antibodies include enzyme-linked immunosorbent assays (ELISA) and
neutralization tests. Distinguishing between the two infections poses a challenge, however,
especially when serological methods are employed. While commercial ELISA assays are
available and are relatively quick and inexpensive, they lack specificity in distinguishing
between WNV and USUV due to a high degree of serological cross-reactivity. This cross-
reactivity arises from similarities in their antigenic structures, with both their envelope and
non-structural 1 antigens sharing a high amino acid homology. It is, therefore, necessary to
perform virus-specific microneutralization tests, such as plaque reduction neutralization
tests (PRNT), to confirm positive cases and to discriminate between WNV and USUV. While
these microneutralization tests are more specific, they are time-consuming and can also
produce cross-reactions [78].

Because of the constrained diagnostic capabilities and challenges in distinguishing
between WNV and USUV infections, it is likely that numerous human USUV infections
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have gone undiagnosed or been incorrectly diagnosed as WNV infections [79]. An impor-
tant hurdle in diagnosing USUV infection in humans has been the limited availability of
validated commercial tests. Diagnosis in European countries has usually relied on inter-
nally developed laboratory methods [67]. The lack of homogeneity in the molecular or
serological tests used in Europe to identify these viruses makes the data on their circulation
less consistent. Therefore, research efforts should prioritize the development of specific
serological tests to accurately distinguish between flavivirus infections. This is crucial to
gain a deeper understanding of the epidemiology of these two viruses. It is also necessary
to monitor and identify circulating strains and lineages. It is known, for example, that WNV
lineages 1 and 2 are especially responsible for epidemics in humans. The presence of multi-
ple circulating lineages of USUV emphasizes the necessity of monitoring the emergence of
any new strains, some of which might exhibit heightened pathogenicity for humans [80,81].
It is also important to assess the potential implications of the co-infection or sequential
infection of the two viruses and their different strains for existing diagnostic capabilities.

3.2. Blood and Organs Safety

Despite WNV causing only a short-lived viremia in humans, the potential viral expo-
sure of donors in endemic regions is now acknowledged as a critical threat to transfusion
safety. The virus can be efficiently transmitted even in donations from recently infected
donors in whom virus concentrations are extremely low. Being the arbovirus with the
most reported cases of transfusion transmission, particularly in the USA [82], WNV has
significant implications for blood safety and security. Testing for WNV infection has been
conducted on stem cell, tissue, and organ donations in several European countries where
WNV is endemic. In the majority of cases, precautionary measures against WNV trans-
mission were implemented during the transmission season and/or were prompted by the
identification of the first human case. Only one case of WNV transmission from a single do-
nation to two recipients has been documented in the EU, indicating that the existing blood
safety measures effectively block WNV-infected blood donations from entering the EU
blood supply [83]. However, the expanding distribution of WNV calls for a broader screen-
ing for the virus’ presence in blood products, and could lead to difficulties in managing
blood donations in the most exposed areas.

Molecular and serologic surveillance in several European countries has identified
USUV infections in blood donors [40]. While USUV is currently circulating more exten-
sively than WNV in many European countries, no transfusion-associated USUV infections
have been reported to date. However, the prevalence of USUV among blood donors re-
mains unclear, as countries with USUV, but without WNV circulation, are not mandated
to screen blood donations for orthoflavivirus RNA. Although no transfusion-associated
USUV infections have been reported thus far, further investigations on this issue must be
conducted. The co-circulation of WNV and USUV in multiple EU countries, combined with
the undetermined transfusion risk and clinical significance of human USUV infections, also
requires additional attention [84]. Shifts in the epidemiology of established infections and
the rising incidence of WNV and USUV infections may call into question the applicability
of current EU legislation concerning blood, tissues, and cells. In nations where blood
donations are screened for WNV only, health authorities must recognize that positive WNV
screening outcomes could stem from USUV infections and require further differentiation.

3.3. Vaccines and Treatments

Despite these viruses’ potential impact on human and animal health, current manage-
ment approaches remain limited. While numerous efforts are underway to develop specific
or broad-spectrum treatments for arboviruses, vector control remains the predominant
method of prevention. However, vector management has proven less effective for WNV
and USUV compared to arboviruses transmitted by Aedes albopictus, such as ZIKV or DENV.
This is primarily due to the presence of animal reservoirs for these viruses, making vector
control less suitable. Currently, there are no targeted treatments available for WNV or
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USUV in humans. Supportive symptomatic treatments, such as the use of paracetamol
for pain and/or fever, hydration (oral or, in some cases, intravenous), and antiemetics
(medication to alleviate vomiting and nausea), may be employed. The monitoring of vital
signs such as intracranial pressure and respiratory rate, along with recommendations for
rest, are also advised for particularly vulnerable patients.

While inactivated and recombinant vaccines for WNV are available for horses, the
vaccination rate remains low [85,86]. Human vaccines against WNV have been developed,
but none have yet undergone phase III clinical trial evaluation [87]. There are no authorized
vaccines against USUV infection. One study details the protective impact of a recombinant
DNA vaccine against lethal USUV challenge in an alpha/beta interferon receptor-deficient
mouse model, and another documents the protective effects of an attenuated WNV-dengue
virus 2 chimeric vaccine [88,89]. The development and approval of human vaccines face
several limitations, including economic considerations, particularly for USUV, given that it
has been implicated in only a limited number of human cases. Those limitations also include
safety concerns, particularly the potential risk of antibody-dependent enhancement (ADE)
with other orthoflaviviruses, such as Zika Virus or Dengue Virus [90]. The question of
potential ADE effects or cross-protection also arises between WNV and USUV, notably due
to their phylogenetic proximity and the fact that they co-circulate in the same geographic
regions. Several studies have investigated the effect of cross-immunity between theses
two viruses. Notably, the protective role played by USUV immunization before challenge
with a lethal WNV strain has been demonstrated [91,92]. Moreover, a chimeric virus
carrying the E protein of USUV in the WNV genome has shown an attenuated profile
in mice compared to wild-type WNV [93]. Another study demonstrated that previous
exposure to an attenuated WNV vaccine protects mice from a lethal USUV challenge [89],
while the vaccination of adult mice with WNV-recombinant subviral particles induces low
detectable levels of circulating IgG cross-reactive with USUV [94]. Interestingly, a study of
pre-existing Usutu Virus immunity patients identified the presence of five atypical cases of
WNV infection, characterized by the presence of WNV RNA and WNV IgG at the time of
diagnosis, but found no IgM response during follow-up [95]. These data remain partial,
however, and were typically conducted on murine models lacking an interferon response.
In addition, the effect of different viral lineages must also be investigated, particularly
as they exhibit differential virulence. Furthermore, studies must factor in the notion of
cross-immunity in avian models, which are the main reservoirs of these viruses. Further
investigation involving a larger number of cases is necessary to more precisely delineate
the clinical and virological characteristics of WNV and USUV infection in individuals with
pre-existing flavivirus immunity. One of the focuses of such an investigation should be to
determine whether USUV infection offers cross-protection against WNV disease and vice
versa or potentially increases the risk of more severe illness through antibody-dependent
enhancement.

3.4. Development of Local Networks for One Health Approaches

The coexistence of WNV and USUV in both space and time presents considerable
hurdles for surveillance and control efforts. It is difficult to precisely assess the impact
of changing climate conditions, including alternating periods of drought, heavy rainfall,
and conséquent flooding, on the epidemiology of WNV and USUV infection [96]. This is
especially true when considering the potential effect on bird migration, the abundance and
dynamics of vectors, and virus replication within these vectors, all of which may vary with
temperature fluctuations. This underscores the necessity for enhanced monitoring and
surveillance programs. While WNV and USUV share similarities in biology, ecology, and
epidemiology, significant differences exist in their pathogenicity and their effects on human
and animal health. These differences require comprehensive study, which necessitates
the establishment of local surveillance networks. Such surveillance initiatives would
require prompt identification and swift reactions from competent authorities. Augmenting
surveillance programmes and improving diagnostic capabilities are key to the prompt and
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effective detection and management of epidemics or situations with epidemic potential.
This requires the implementation of programs grounded in “One Health” principles if
the spread of these viruses is to be properly appreciated and addressed. That framework
acknowledges the interconnectedness of human health, animal health, and environmental
health. This involves implementing strategies that rely on entomological, veterinary, and
human surveillance activities. The virus was detected in mosquitoes and birds before
any cases were reported in humans or horses. An integrated “One Health” surveillance
system involving mosquitoes and birds across multiple European countries has already
demonstrated its utility in the early detection of WNV/USUV circulation. This is notably
exemplified in Italy, which serves as a model for organizing an integrated network for
monitoring WNV and USUV viruses.

An analysis of the epidemiological landscape in Europe is crucial for devising effective
surveillance strategies. That analysis is complex, however, due to various factors inherent
in the epidemiology of WNV and USUV. An accurate assessment of their prevalence would
require comprehensive surveillance across their diverse hosts, necessitating tailored sampling
methods for humans, equids, wild birds, and mosquitoes. The fact that their outbreaks are not
evenly distributed across Europe, with certain regions experiencing more frequent occurrences,
would also have to be taken into account. In addition to this, virus dispersal via bird migration
complicates any distinction between continuous presence and intermittent reintroductions,
necessitating long-term studies to distinguish the two scenarios. It is also crucial that the viral
strains circulating in Europe be studied more deeply to determine whether or not the same
virus lineage persists over time, rather than a succession of different genotypes. Studying
the potential viral persistence across seasons via mosquito overwintering is also essential.
Ongoing research could offer new insights into the strains of WNV and USUV circulating in
Europe, identifying potential molecular indicators of host specificity and virulence, as well
as the consequences of their co-circulation in shared host and vector populations. Obtaining
virus sequences or viral strains is challenging, however, due to the typically low prevalence of
WNV and USUV in their respective host populations and the difficulty in accessing molecular
samples of these viruses.

To date, the surveillance of WNV and USUV in birds has primarily focused on species
found dead or easily captured and monitored; thus, most European countries currently
rely on passive surveillance (i.e., on found dead birds). Given that not all species die from
infection, however, more active programs (i.e., entomological or using animal sentinels)
must be developed to study these viruses’ circulation in wild bird populations. However,
the specific role of different bird species in maintaining the epidemiological cycle and
transmitting these viruses to humans remains largely unknown. Similarly, the role of
different mosquito species in the transmission of these viruses has not been well defined,
with a notable lack of investigation into their individual vector competence for each of
the two viruses, as well as in the context of co-infection. Indeed, the question of possible
(albeit rare) competition between these two viruses must also be raised, especially in the
case of co-infection within avian vectors and hosts [97]. Co-infections of arboviruses in
mosquitoes may lead to an increase or a reduction in the transmission levels of one or both
viruses. While several existing studies propose that USUV is disadvantaged by WNV in
mammalian, avian, and mosquito cells during co-infection, further research on this point is
required, preferably invoving a larger number of studied strains [98,99].

To conclude, WNV and USUV are now endemic in several countries in Southern
Europe, with a gradual increase in cases detected in geographic areas further north. These
viruses have many similarities, but also significant differences, all of which need to be better
understood. Be it sequential or simultaneous, their co-circulation in an increasing number of
geographic areas raises important questions and challenges. Indeed, the ecological niches of
WNV and USUV overlap in many regions, leading to competition and interaction between
them within mosquito vectors and avian hosts. To predict both viruses’ transmission
patterns, assess the risk of spillover events to humans and animals, and develop effective
control strategies, the genetic diversity, evolutionary dynamics, and ecological interactions
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of WNV and USUV populations must be better understood. Achieving this requires the
application of integrated approaches, using adapted and sized surveillance networks for
the simultaneous monitoring of both viruses, as well as further fundamental research into
the pathogenicity and transmissibility of the wide variety of circulating strains.
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Nile virus infection among humans in Serbia, August to October 2012. Eurosurveillance 2013, 18, 20613. [CrossRef]

61. Savini, G.; Capelli, G.; Monaco, F.; Polci, A.; Russo, F.; Di Gennaro, A.; Marini, V.; Teodori, L.; Montarsi, F.; Pinoni, C.; et al.
Evidence of West Nile virus lineage 2 circulation in Northern Italy. Vet. Microbiol. 2012, 158, 267–273. [CrossRef]

62. Barzon, L.; Pacenti, M.; Franchin, E.; Pagni, S.; Lavezzo, E.; Squarzon, L.; Martello, T.; Russo, F.; Nicoletti, L.; Rezza, G.; et al.
Large human outbreak of West Nile virus infection in north-eastern Italy in 2012. Viruses 2013, 5, 2825–2839. [CrossRef]

63. Aberle, S.W.; Kolodziejek, J.; Jungbauer, C.; Stiasny, K.; Aberle, J.H.; Zoufaly, A.; Hourfar, M.K.; Weidner, L.; Nowotny, N. Increase
in human West Nile and Usutu virus infections, Austria, 2018. Eurosurveillance 2018, 23, 1800545. [CrossRef]

64. Camp, J.V.; Nowotny, N. The knowns and unknowns of West Nile virus in Europe: What did we learn from the 2018 outbreak?
Expert Rev. Anti. Infect. Ther. 2020, 18, 145–154. [CrossRef] [PubMed]

65. Riccardo, F.; Bella, A.; Monaco, F.; Ferraro, F.; Petrone, D.; Mateo-Urdiales, A.; Andrianou, X.D.; Del Manso, M.; Venturi, G.;
Fortuna, C.; et al. Rapid increase in neuroinvasive West Nile virus infections in humans, Italy, July 2022. Eurosurveillance 2022, 27,
2200653. [CrossRef] [PubMed]

66. Aquitaine-Agence Régionale de Santé Nouvelle. Confirmation d’une Infection Autochtone à Virus Usutu (Secteurs des Landes et
de Gironde). 2022. Available online: https://www.nouvelle-aquitaine.ars.sante.fr/communique-de-presse-confirmation-dune-
infection-autochtone-virus-usutu-secteurs-des-landes-et-de (accessed on 20 March 2024).

67. Gonzales, G.; Bigeard, G.; Migné, C.; Touzet, T.; Fontaine, A.; L’Ambert, G.; De Lamballerie, X.; Zientera, S.; Duvi-gnaud, A.;
Malvy, D. Circulation Active du Virus West-Nile en Gironde, Région Nouvelle-Aquitaine. 2023. Available online: https://www.
plateforme-esa.fr/fr/circulation-active-du-virus-west-nile-en-gironde-region-nouvelle-aquitaine-point-au-04-08-2023 (accessed
on 20 March 2024).

68. Pachler, K.; Lebl, K.; Berer, D.; Rudolf, I.; Hubalek, Z.; Nowotny, N. Putative new West Nile virus lineage in Uranotaenia
unguiculata mosquitoes, Austria, 2013. Emerg. Infect. Dis. 2014, 20, 2119–2122. [CrossRef]

69. Habarugira, G.; Suen, W.W.; Hobson-Peters, J.; Hall, R.A.; Bielefeldt-Ohmann, H. West nile virus: An update on pathobiology,
epidemiology, diagnostics, control and “One health” implications. Pathogens 2020, 9, 589. [CrossRef]

70. Wijayasri, S.; Nelder, M.; Russell, C.; Johnson, K.; Johnson, S.; Badiani, T.; Sider, D. West Nile virus illness in Ontario, Canada:
2017. Can. Commun. Dis. Rep. 2019, 44, 32–37. [CrossRef] [PubMed]

71. Martin, M.F.; Simonin, Y. West Nile virus historical progression in Europe. Virologie 2019, 23, 265–270. [CrossRef]
72. Cadar, D.; Lühken, R.; van der Jeugd, H.; Garigliany, M.; Ziegler, U.; Keller, M.; Lahoreau, J.; Lachmann, L.; Becker, N.; Kik, M.;

et al. Widespread activity of multiple lineages of Usutu virus, Western Europe, 2016. Eurosurveillance 2017, 22, 30452. [CrossRef]

https://doi.org/10.3390/v11090814
https://doi.org/10.3390/pathogens9121005
https://www.ncbi.nlm.nih.gov/pubmed/33266071
https://doi.org/10.3390/pathogens9110908
https://www.ncbi.nlm.nih.gov/pubmed/33143300
https://doi.org/10.2807/1560-7917.ES.2020.25.32.1900543
https://www.ncbi.nlm.nih.gov/pubmed/32794446
https://doi.org/10.1038/s41426-018-0021-5
https://www.ncbi.nlm.nih.gov/pubmed/29535293
https://doi.org/10.1016/j.ympev.2019.106617
https://www.ncbi.nlm.nih.gov/pubmed/31521822
https://doi.org/10.1186/s12862-021-01902-w
https://www.ncbi.nlm.nih.gov/pubmed/34579648
https://doi.org/10.2807/ese.16.02.19762-en
https://www.ncbi.nlm.nih.gov/pubmed/21251489
https://doi.org/10.3201/eid1204.051379
https://www.ncbi.nlm.nih.gov/pubmed/16704810
https://doi.org/10.1111/j.1939-1676.2011.0715.x
https://www.ncbi.nlm.nih.gov/pubmed/21457323
https://doi.org/10.2807/1560-7917.ES2013.18.43.20613
https://doi.org/10.1016/j.vetmic.2012.02.018
https://doi.org/10.3390/v5112825
https://doi.org/10.2807/1560-7917.ES.2018.23.43.1800545
https://doi.org/10.1080/14787210.2020.1713751
https://www.ncbi.nlm.nih.gov/pubmed/31914833
https://doi.org/10.2807/1560-7917.ES.2022.27.36.2200653
https://www.ncbi.nlm.nih.gov/pubmed/36082685
https://www.nouvelle-aquitaine.ars.sante.fr/communique-de-presse-confirmation-dune-infection-autochtone-virus-usutu-secteurs-des-landes-et-de
https://www.nouvelle-aquitaine.ars.sante.fr/communique-de-presse-confirmation-dune-infection-autochtone-virus-usutu-secteurs-des-landes-et-de
https://www.plateforme-esa.fr/fr/circulation-active-du-virus-west-nile-en-gironde-region-nouvelle-aquitaine-point-au-04-08-2023
https://www.plateforme-esa.fr/fr/circulation-active-du-virus-west-nile-en-gironde-region-nouvelle-aquitaine-point-au-04-08-2023
https://doi.org/10.3201/eid2012.140921
https://doi.org/10.3390/pathogens9070589
https://doi.org/10.14745/ccdr.v45i01a04
https://www.ncbi.nlm.nih.gov/pubmed/31015803
https://doi.org/10.1684/vir.2019.0787
https://doi.org/10.2807/1560-7917.ES.2017.22.4.30452


Viruses 2024, 16, 599 12 of 13

73. Eiden, M.; Gil, P.; Ziegler, U.; Rakotoarivony, I.; Marie, A.; Frances, B.; L’Ambert, G.; Simonin, Y.; Foulongne, V.; Groschup, M.H.;
et al. Emergence of two Usutu virus lineages in Culex pipiens mosquitoes in the Camargue, France, 2015. Infect. Genet. Evol. 2018,
61, 151–154. [CrossRef]

74. Simonin, Y.; Sillam, O.; Carles, M.J.; Gutierrez, S.; Gil, P.; Constant, O.; Martin, M.F.; Girard, G.; Van de Perre, P.; Salinas, S.;
et al. Human Usutu virus infection with atypical neurologic presentation, Montpellier, France, 2016. Emerg. Infect. Dis. 2018, 24,
875–878. [CrossRef]

75. Ziegler, U.; Fast, C.; Eiden, M.; Bock, S.; Schulze, C.; Hoeper, D.; Ochs, A.; Schlieben, P.; Keller, M.; Zielke, D.E.; et al. Evidence for
an independent third Usutu virus introduction into Germany. Vet. Microbiol. 2016, 192, 60–66. [CrossRef] [PubMed]

76. Clé, M.; Barthelemy, J.; Desmetz, C.; Foulongne, V.; Lapeyre, L.; Bolloré, K.; Tuaillon, E.; Erkilic, N.; Kalatzis, V.; Lecollinet, S.; et al.
Study of Usutu virus neuropathogenicity in mice and human cellular models. PLoS Negl. Trop. Dis. 2020, 14, e0008223. [CrossRef]
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