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Abstract: Commentary on Tawar, R.G.; Duquerroy, S.; Vonrhein, C.; Varela, P.F.; Damier-

Piolle, L.; Castagné, N.; MacLellan, K.; Bedouelle, H.; Bricogne, G.; Bhella, D.; Eléouët, J.-

F.; Rey, F.A. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of 

respiratory syncytial virus. Science 2009, 326, 1279-1283. 

 

RSV is a non-segmented, negative strand RNA virus (family: Paramyxoviridae; order: 

Mononegavirales). The viral RNA of this group of viruses is always bound to the viral nucleoprotein 

(N) and this N-RNA structure is the template for viral transcription and replication by the viral RNA-

dependent RNA polymerase complex consisting of L (Large protein; actual polymerase) and P 

(Phosphoprotein; polymerase co-factor). In a recent article in Science, Tawar and coworkers published 

the crystal structure of the RSV nucleoprotein in complex with cellular RNA [1]. All the N-RNAs of 

the viruses in the Mononegavirales order form helical structures and, because these are very flexible, 

they are not simple objects for structural biology studies. Fortunately, recombinant nature has helped a 

bit; when the nucleoproteins of vesicular stomatitis virus (VSV), rabies virus and RSV were expressed 

in bacteria or insect cells, they bind to short cellular RNAs (possibly tRNA molecules) and form short 

N-RNA complexes that close up into rings through protein-protein contacts [1-3]. When such circular 

recombinant complexes are separated into size classes that contain only one type of ring, with for 

instance only 10 or 11 nucleoprotein protomers per ring, they can be crystallised and their atomic 

structure solved. It is expected that the structure of the nucleoprotein in such N-RNA rings is the same 
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as in the helical nucleocapsid present in the virion. However, due to the constraints of the rings, they 

do not have the flexibility necessary for biological activity.  

Figure 1. Four structures of negative strand RNA virus nucleoproteins. Ribbon diagrams 

(Top) and electrostatic surfaces (bottom) of the structures of: A: the rabies virus 

nucleoprotein with bound RNA (PDB code 2GTT). For clarity 11 ribonucleotides are 

shown, although each protomer only binds nine nucleotides. The ribbon diagram shows a 

C-terminal top domain and an N-terminal bottom domain. The N-terminal exchange 

domain is shown in blue and the C-terminal domain involved in binding to P is shown in 

red. For the electrostatic surface potential shown in the bottom row, the RNA was 

removed. The potential of this and the other structures goes from -5kT/e (red) to +5kT/e 

(blue). B: the RSV nucleoprotein with bound RNA (PDB code 2wj8). For clarity, nine 

nucleotides are shown although each protomer only binds seven nucleotides. The 

orientation and colour coding is the same as for A. For the electrostatic surface potential 

the RNA was removed as in A. C: the BDV nucleoprotein that was crystallised without 

RNA (PDB code 1N93). Same orientation and colour coding as for A and B although the 

functions of the N- and C-terminal domains have not yet been established in the context of 

the N-RNA complex. D: the influenza virus nucleoprotein (PDB code 2QO6). This 

nucleoprotein does not have C- or N-terminal domains. The β-hairpin involved in domain 

exchange is indicated in green. 

 
 

Figure 1A shows the structure of a single protomer of rabies virus nucleoprotein in contact with 

nine nucleotides of cellular RNA. The rabies virus N-RNA rings that were crystallised contained 11 

protomers of N plus 11 times nine nucleotides [2]. The VSV N-RNA rings contained 10 protomers 

plus 10 times nine nucleotides but the structure of the protein and the mode of RNA binding are 
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identical to those of rabies virus N-RNA [3]. Figure 1B shows the structure of RSV N in contact with 

seven nucleotides. The RSV N-RNA rings contained 10 N protomers plus 10 times seven nucleotides 

[1]. Figure 1C and D show the structures of the Borna disease virus (BDV) nucleoprotein that was 

crystallised without RNA [4] and that of the influenza virus nucleoprotein (NP) also without RNA [5]. 

BDV is also part of the Mononegavirales order but influenza virus is a segmented negative strand 

RNA virus. The nucleoproteins of rabies virus, RSV and BDV have a conserved helical C-terminal 

domain (top domain in the structures in Figure 1A-C) and a more variable N-terminal domain. For the 

rabies virus, VSV, and RSV structures, the RNA is bound in a basic groove between the C- and N-

terminal domains (bottom row in Figure 1). For BDV it was recently shown that mutation of basic 

residues lining this groove abolishes RNA binding [6], suggesting a conserved mode of RNA binding. 

The structure of the influenza virus nucleoprotein differs substantially from that of the other three; 

there are no C- or N-terminal domains as the chain crosses several times from top to bottom and back. 

There is no narrow RNA binding groove on influenza virus NP but a large positively charged surface 

that has been shown by mutational analysis to be involved in RNA binding [7]. This surface is much 

larger than the grooves of the other proteins because influenza virus NP can fix 24 nucleotides [8], 

many more than the other proteins (nine for rabies virus and VSV, seven for RSV; the number is not 

known for BDV). The mode of RNA binding by rabies virus N (identical also for VSV) is remarkably 

similar to that of RSV N (Figure 2): In the middle of the protein three stacked nucleotide bases bind in 

a cavity formed on the protein surface (green bases in Figure 2). For RSV, these three nucleotides are 

consecutive (nucleotides 4-6) whereas for rabies virus a single nucleotide base (5, red) is looped out, 

leaving the remaining three stacked (4, 6 and 7). The rest of the nucleotides (yellow) bind with their 

sugar phosphate side to the protein and the bases pointing away. For rabies virus, nucleotide base one 

stacks onto base nine of the neighbouring N protomer making a stack of five bases (yellow and grey) 

crossing the N-N interface. For RSV, nucleotide base one stacks onto base seven of the next protomer, 

forming a stack of four bases (yellow and grey) crossing the N-N interface. The major difference 

between the rabies virus N-RNA rings and those of RSV is that the RNA is inside the rabies virus 

rings but outside the RSV rings. It is not known whether this is a significant biological or structural 

difference or whether this may be due to steric constraints of the rings. 

The rabies virus and RSV nucleoproteins have extended N-terminal strands (in blue in Figures 1A and 

B) that bind onto or insert into the neighbouring N protomer forming an important protein-protein 

contact in the N-RNA structure. Because the BDV N-RNA structure is not known, we do not know if 

the “blue” strand of N performs the same function in the N-RNA complex. For influenza virus NP, it is 

not an N-terminal strand but a β-hairpin towards the C-terminal end of the molecule that inserts into 

the neighbouring protomer (in green in Figure 1D). Rabies virus, RSV and BDV nucleoproteins also 

have C-terminal extensions (in red in Figures 1A-C). For RSV, this extension consists of a part of 

random coil, a poorly organised helix whereas the last 12 to 20 amino acids are disordered (Figure 

1B). For rabies, it consists of a part of random coil, a helix, a disordered part that is invisible in the 

structure (dotted in Figure 1A) and it ends with a helical part that comes back to and binds onto the 

main body of the C-terminal domain. For measles and Sendai virus, two paramyxoviruses that belong 

to another genus of the Paramyxoviridae, the nucleoprotein has an even longer and natively disordered 

C-terminal tail, called NTAIL [9]. A sequence in the middle of NTAIL forms an -helical molecular 

recognition element that consists of a dynamic and interchanging population of overlapping helices 
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[10]. The viral RNA-dependent RNA polymerase complex binds to the N-RNA with the help of P. For 

measles and Sendai virus, the C-terminal end of P forms a very small and dynamic three-helical bundle 

that stabilises when it binds to the helical recognition element in NTAIL [10-12]. Therefore, it is 

possible that the poorly formed helix in the C-terminal domain of RSV N constitutes the binding site 

of RSV P. The C-terminal domain of rabies virus (and VSV) P that binds to N is much larger and more 

structured than those of measles and Sendai virus P [13,14]. The rabies virus P domain binds to the top 

of the C-terminal domain of N. The "red" loops of the same N protomer plus that of the neighbouring 

N fold onto and enclose the C-terminal domain of P on two sides [15,16]. Therefore, despite the fact 

that the structures of the C-terminal domains of rabies virus and VSV P look very different from those 

of measles and Sendai virus, and despite the fact that the C-terminal domains of N they bind to are not 

conserved, the binding mode of P to an unfolded domain of N, which then folds upon binding, is very 

similar. Influenza virus does not have a phosphoprotein polymerase co-factor and does not have a 

domain equivalent to the “red” domains in the rabies virus and RSV structures. 

Figure 2. Binding of RNA to the rabies virus and RSV nucleoproteins. The green 

nucleotide bases bind in a pocket on the protein surface whereas the yellow bases point 

away from the protein. The red base of the RNA bound to the rabies virus N also points 

away from the protein so that the three remaining green bases can stack. The grey 

nucleotides are on the neighbouring N protomers. For comparison, the nucleotides are 

numbered from 5’ to 3’ whereas Tawar et al. had numbered these from 3’ to 5’ [1]. 

 
 

Apart from opening up the possibility of developing new drugs against RSV, the structure of the 

nucleocapsid-like RSV complex also clearly shows what is conserved in the nucleoproteins of the 
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negative strand RNA viruses and what is not. Because the conservation of structure and RNA binding 

is now so clearly shown, it becomes even more obvious how different the influenza virus NP is. 

Finally, all those who have been working on the structure and function of Sendai and measles virus 

transcription and replication know that the nucleoproteins of these viruses bind six nucleotides [17-19] 

and that some biological activities depend on the exact position in which a specific nucleotide is bound 

to the nucleoprotein [20]. Although a “rule of six” has never been shown for the RSV nucleocapsid, 

most of us expected that the RSV protein would also bind six nucleotides. So now we know that it 

does not, showing that one should not assume things but measure them. 
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