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Abstract: The cell response to virus infection and virus perturbation of that response

is dynamic and is reflected by changes in cell susceptibility to infection. In this study,

we evaluated the response of human epithelial cells to sequential infections with human

respiratory syncytial virus strains A2 and B to determine if a primary infection with one

strain will impact the ability of cells to be infected with the second as a function of virus

strain and time elapsed between the two exposures. Infected cells were visualized with

fluorescent markers, and location of all cells in the tissue culture well were identified using

imaging software. We employed tools from spatial statistics to investigate the likelihood

of a cell being infected given its proximity to a cell infected with either the homologous

or heterologous virus. We used point processes, K-functions, and simulation procedures

designed to account for specific features of our data when assessing spatial associations.

Our results suggest that intrinsic cell properties increase susceptibility of cells to infection,

more so for RSV-B than for RSV-A. Further, we provide evidence that the primary

infection can decrease susceptibility of cells to the heterologous challenge virus but only at

the 16 h time point evaluated in this study. Our research effort highlights the merits of

integrating empirical and statistical approaches to gain greater insight on in vitro dynamics

of virus-host interactions.
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1. Introduction

Infections of the respiratory tract account for millions of death annually, exacting the highest toll

in infants and small children. Among infections caused by viruses, human respiratory syncytial virus

(RSV) comprises up to 70% of cases of children hospitalized with bronchiolitis [1–3]. Approximately

two-thirds of infants are infected with RSV during the first year of life, and 90% have been infected one

or more times by 2 years of age [4].

RSV is a Paramyxovirus and has been classified into two strains, RSV-A and RSV-B, based on

both antigenic and sequence data. Although both strains circulate, typically only one is responsible

for each seasonal outbreak and may be the dominant strain for several years before being replaced by the

other [5,6]. There is neither protection nor cross protection conferred by infection with these viruses [7];

children can be infected with either strain of RSV twice during seasonal outbreaks [8]. The lack of

apparent adaptive immunity and the strong age predilection for disease observed with RSV infection

indicate that control of viral infection by innate immunity is important. In addition, RSV is unique

among the members of the Paramyxoviridae, because it encodes two genes, NS1 and NS2, that abrogate

the interferon response [9,10]. Thus, RSV has made a substantial evolutionary investment in controlling

the host innate immune response.

In this study, we explored cell responses to RSV using heterologous infections with RSV-B and

RSV-A in an in vitro experimental system. We hypothesized that a primary infection with one strain

would elicit an innate response over time that would render surrounding cells refractory to a challenge

infection with the other strain. The innate response could be elicited by direct contact of cells with

infected cells or by diffusion of soluble mediators through the culture media. The experiments were

designed to allow a single cycle of infection; infection by the challenge virus occurred prior to release of

infectious particles by the primary virus. Briefly, the experimental set up is as follows: Wells plated with

a human epithelial cell line are exposed to a primary infection with one strain of the virus and, after a

time lag, are challenged with the second strain of the virus. Fluorescent stains allow us to visualize cell

nuclei along with RSV-B and RSV-A infected cells in each well. Image analysis software is then used to

produce aggregate counts and two dimensional spatial coordinates for nuclei and infection “marks”.

Aggregate counts can be used to glean some features of infections and co-infections. However,

richer information can be obtained analyzing the spatial structure of infections within each well. A

spatial analysis allows us to characterize the infection status of cells as a function of their location and

proximity to one another. In turn, this allows us to explore how susceptibility may be affected by local

conditions interacting with cell properties or producing innate immune responses. In particular, we are

interested in detecting spatial association in the form of attraction or repulsion among cells infected with

the same or different strains of the virus (roughly speaking, the number of infected cells surrounding any

given infected cell on average). Attraction and repulsion capture the tendency of cells surrounding an

infected cell to have higher or lower susceptibility to infection; a significant attraction suggests intrinsic
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cell properties or innate responses lead to increased susceptibility. Conversely, a significant repulsion

suggests changes leading to decreased susceptibility.

In Section 2, we introduce the main ingredients in such an analysis. We discuss the concept and

basic definitions of spatial point processes. In addition, we introduce K-functions, which capture spatial

association within one or between two spatial point processes on a range of scales, along with standard

methodology to estimate such functions. While aggregate counts of infection marks are satisfactory

proxies for the number of infected cells in a well, features of our experimental system (including the

nature of the fluorescent dyes used to visualize nuclei and infections) and limits in the image analysis

software render the two dimensional mark coordinates at our disposal imperfect proxies for the locations

of cells and infected cells. In Section 2, we also describe simulation procedures that we designed to

detect significant spatial association while accounting for these issues. Detecting such an association

provides evidence for local effects of susceptibility to infection.

2. Statistical Framework

In the imaging of the cell cultures, the location and infection status of cells are visualized through

different types of staining techniques. Cell nuclei are rendered through DAPI stains. RSV-A infected

cells are rendered through cytoplasmic stains (GFP-RSVA2 is detected by expression of GFP in cell

cytoplasm), and RSV-B infected cells are rendered through membrane stains (using Alexa fluor 568

labeled antibody to viral F protein). For illustration, the inset on the right of Figure 1 shows stains in a

selected region of one well image.

A natural statistical framework for these data are spatial point processes in the plane; in particular,

the two dimensional coordinates of the centers of the stains detected by the imaging software of nuclei,

A marks, and B marks in any given well can be thought of as realizations of three such processes. A

spatial point process models a random collection of discrete points in the plane. A common example is

the Poisson random field, which we will use as a baseline for comparison. In a Poisson random field,

X, the number of points in any reasonable subset of the plane has a Poisson distribution with mean

equal to a constant, λ, times the area of the subset. The constant λ is called the intensity and represents

the expected number of points per unit area. Another defining property of the Poisson random field is

that the number of points in any two non-overlapping subsets is independent. This implies that a point

pattern generated by a Poisson random field, say x = (x1, ..., xnx), where nx is the number of points in

the pattern, is uniformly distributed across the observation area with no attraction or repulsion among

the points. Each point is “ignorant” of the other points in the data.

For a Poisson random field, as well as a generic spatial point process, assuming that the mean number

of points in any subset is proportional to the area and does not depend on the particular location of

the subset is referred to as homogeneity. In some applications, one may need to relax this assumption

and use an inhomogeneous processes to model the data. For such processes, intensity is a non-constant

function in the plane, which could be written as λ(x), and the average number of points in a subset A

would be
∫
A
λ(x)dx. For the work presented here, we checked for homogeneity with statistical tests

and determined that we do not need to resort to inhomogeneous processes to model our nuclei and

infection marks. This is important, because the latter can be more complicated to analyze (see Section 5).

Inhomogeneous point processes will be mentioned again when discussing related work in Section 4.
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Figure 1. An example well image presenting visual evidence of “clumping” among infected cells.

Blue stains represent cell nuclei, red stains are located on the membrane of cells infected with RSV-B,

and green stains are located in the cytoplasm of cells infected with GFP-RSV-A. The inset in the

bottom right corner enlarges a region of the well, showing the stains in detail. In the small circled

region, we observe how several B stains can lay in close proximity to one another and to more than one

nucleus. This proximity could indicate neighboring cells infected with RSV-B or multiple staining on

the membrane of the same infected cell. In the large circled region we observe how A stains “fill” the

volume of cells, sometimes blurring into one another. We also note very close B and A stains, which

could indicate two neighboring cells infected with the two strains or which may be due to a double

infection of the same cell (again large circle in the inset).

An important descriptor of a spatial point process X is Ripley’s K-function, which measures the

tendency of points generated by the process to attract or repel one another at various ranges. For a

homogeneous process, the K-function is defined as [11]

K(r) =
1

|A|E
[ ∑
x∈X∩A

1

λ

∑
x̃∈X,x̃ �=x

1{d(x,x̃)≤r}
λ

]

=
1

|A|λ2
E

[ ∑
x∈X∩A

∑
x̃∈X,x̃ �=x

1{d(x,x̃)≤r}

]

where A is any subset, E [·] is an expected value, 1{·} is an indicator function of an event, d(·, ·) is a

distance between two points, and r is a radius. Intuitively, K(r) captures the spatial accumulation of

points in neighborhoods of increasing radius. More precisely, λK(r) is the expected number of points

in a circle of radius r around a “typical” point of the process. For a homogeneous Poisson random field,

the value of K(r) is πr2 [11]. Thus, when there is no attraction or repulsion, the expected number of
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points around a “typical” point increases proportionally to the square of the radius, i.e., proportionally

to the area of the circle under consideration. Note that this descriptor is well-defined only if the spatial

point process is stationary [11]. It is also important to note that the terms ”attraction” and ”repulsion”

as they are used here adhere to their typical use in the spatial point processes literature. The term

“attraction” refers to an increased propensity to accumulate points near a typical point, and “repulsion”

to the opposite. This does not mean that infected cells physically attract or repel one another in space,

but rather that cells tend to share (attraction) or oppose (repulsion) the infection status of neighboring

cells in the culture.

A similar descriptor can be formulated when considering two point processes, say X and Y, to

measure the tendency of points generated by one process to repel or attract points generated by the

other. This is called the the cross K-function; for two homogeneous processes, it is given by [11]

KX,Y(r) =
1

|A|E
[ ∑
x∈X∩A

1

λX

∑
y∈Y

1{d(x,y)≤r}
λY

]

=
1

|A|λXλY

E

[ ∑
x∈X∩A

∑
y∈Y

1{d(x,y)≤r}

]
.

Note that the cross K-function is symmetric relative to the two processes, i.e., KX,Y(r) = KY,X(r).

Moreover, if the two processes are independent, we have that KX,Y(r) = πr2, regardless of whether

they are Poisson random fields. For the cross K-function, quadratic growth is indicative of lack of

attraction or repulsion between the points of the two processes [11].

Next, we briefly describe how K-functions can be estimated. Suppose we have a point pattern

x = (x1, ..., xnx) generated by a process X, which we assume is homogeneous on an observation

window W . Estimating its K-function requires: (i) estimating the (constant) intensity, (ii) selecting an

appropriate region WR within W to perform the calculation, and (iii) counting the number of observed

points within a radius r from each observed point in WR. Under homogeneity, an unbiased estimate of

the intensity is λ̂ = nx

|W | , where |W | denotes the area of W . This is also the maximum likelihood estimate

in the case of a Poisson field [11]. Since we lack knowledge about the process outside W , we necessarily

underestimate the number of neighbors when considering points close to the boundary of W . This bias is

often referred to as an “edge effect”. If the data at our disposal is fairly large, we may remedy this issue

by discarding some of the data and restricting attention to points within a smaller region WR removed

from the boundary of W . Assuming we want to estimate the K-function on a range of radii from 0 to

R, we define WR by eliminating a “buffer” of width R inward from the boundary. In this fashion, we

will be able to observe and count all neighbors about each observed point xi ∈ WR for any r ≤ R. Our

formula for the estimation of the K-function is

K̂(r) =
1

|WR|λ̂2

∑
i:xi∈WR

∑
j �=i

1{d(xi,xj)≤r}.

In order to develop some intuition on the estimation of the K-function, it is useful to focus on Figure 2.

Looking at the estimation formula we notice that the inner summation counts how many points are within

a circle of radius r from a given point xi. For illustrative purposes, consider the three circles shown in

Figure 2 and assume that the point in the center of these three circles is the point xi.
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Figure 2. A point pattern generated by a homogeneous Poisson random field (λ = 10−5) on a

circular observation window of radius 1350. The blue, green and red circles illustrate neighborhoods

of increasing radius (r = 100, 250, 500) around a given point in the pattern. Counts of points within

such neighborhoods (here 0, 3, 19 excluding the center point itself) form the basis for estimation of

the K-function.
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For the blue circle with radius r of 100, this count is zero, since we do not have any other points within

its boundaries. If we repeat this counting for each point (i.e., the outer summation in the estimation

formula) and then divide by |WR|λ̂2, we produce an estimate of the K-function for r equal to 100. Next,

the green circle represents a circle with a radius r equal to 250. There are 3 different points within the

green circle’s boundaries (inner sum). If we place a green circle around each of the points in the point

pattern, count the number of different points (inner sum), add those contributions (outer sum), and then

divide again by |WR|λ̂2, we produce the estimated K-function for r = 250. Next is the red circle, which

has a radius r of 500, and we see that there are a greater number of points within its boundaries; however,

the estimation procedure will be the same.

Now, suppose we have two point patterns, x = {x1, ...., xnx} and y = {y1, ...., yny}, on the same

observation window W . In order to estimate the cross K-function between the processes, we can proceed

in the same fashion. We estimate the two intensities using the overall number of points in each pattern,

λ̂X = nx

|W | and λ̂Y = ny

|W | . We then restrict ourselves to WR and count neighbors between the two patterns:

K̂X,Y(r) =
1

|WR|λ̂Xλ̂Y

∑
i:xi∈WR

ny∑
j=1

1{d(xi,yj)≤r}

Once a simple or cross K-function is estimated, how do we assess whether its behavior indicates

a significant spatial association, i.e., a significant attraction/repulsion? In an ideal setting, we would

assess whether the estimated K deviates significantly from quadratic growth, which is the baseline for

lack of association. To detect significant deviations, we could construct “null” bands about πr2 by

simulating data from Poisson random fields with intensities estimated from the data. For K-functions

estimated on our infection marks, deviations from quadratic growth may not signify association but may

indicate departures of the data from a Poisson model due to specific features of our experimental system

and limits of the image analysis software. To interpret significant evidence for attraction/repulsion in

terms of increased/decreased susceptibility attributable to changes in cell intrinsic properties or innate
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responses, we need to create statistical benchmarks that account for experimental features and limits

in imaging.

Figure 1 illustrates how the underlying shape and size of the cells, which are not directly visualized,

as well as the different types of stains can affect mark locations. Stains of type B, which are small

and sharp, appear on membranes; therefore, marks of type B can be close to one another signifying

neighboring B-infected cells. In some rare case, close B marks can also represent multiple staining on

the membrane of the same B-infected cell. Stains of type A, which are larger and fuzzier, occupy the

majority of a cell’s cytoplasm and some time blur into one another. It follows that cell volume exclusion

constrains the minimum distance between A marks. Finally, B marks can be close to A marks signifying

neighboring cells infected with the two virus strains or, much more rarely, single cells infected with

both strains.

One could devise data pre-processing rules to deal with these ambiguities. Specifically, we could try

to associate each A mark and each B mark to the location of a particular cell nucleus. The resulting

data would be consistent with a so-called marked point process, i.e., a set of random points in the plane

(corresponding to cell locations) with random labels attached to each (the infection status). However,

such rules would necessarily contain a number of arbitrary steps and would not be guaranteed to reflect

the mechanisms that affect mark locations in our experimental system. Instead of pre-processing to

render our data closer to ideal and then creating benchmarks based on simulations from Poisson random

fields, our approach is to simulate data reproducing the mechanisms that affect mark locations, but under

null scenarios that serve as benchmarks for assessing repulsion or attraction. Each of our well images

consists of a circular observation window with radius 1350 in pixels (1 pixel corresponding to 6.45

microns length). Within such a window, we take nuclei, A marks, and B marks (centers of distinct

stains) as observed point patterns for three processes. To assess attraction or repulsion among A marks,

among B marks, and between A marks and B marks, we contrast the observed patterns with patterns

representing no association simulated with the procedures described below.

Simulating a cell support: We start with the observed nuclei marks in the well. For each mark, we

independently draw a random radius from a uniform distribution between 1.5 and 2.25 pixels and create

a disc centered at the mark. This results in a collection of spherical cells with diameters uniformly

distributed between 19.35 and 29.025 microns (consistent with observed cell sizes). However, the more

densely populated the well, the more these cells may overlap. When a newly generated cell (disc) induces

one or more overlaps with existing cells (discs), we shift its center as to eliminate the overlap. The shifts

do not affect the overall picture in any detectable way. Centers of simulated cells and observed nuclei

marks have practically indistinguishable spatial configurations in the well. The simulated cell support

we obtain with this procedure is consistent with the nuclei data and supplements it by providing spherical

cell membranes and mimicking cell volume exclusion.

Simulating A marks: Once we have the simulated cell support, we go through the cells one by one and

“infect” each independently with probability nA

nN
, where nN and nA are the number of observed nuclei

and A marks, respectively. We then create simulated A marks by selecting a random location within

each infected cell. This procedure is repeated to generate a total of 99 simulated A marks patterns, each
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with an expected number of marks equal to the observed number of A marks. These simulations lack

any systematic spatial structure except for that implicitly imposed by the cell support.

Simulating B marks: Again using the simulated cell support, we go through the cells one by one

and “infect” each independently with probability nB

nN
, where nB is the number of observed B marks.

Infections with B are performed independently of infections with A (above). We then create simulated

B marks by selecting a random location on the circumference of each infected cell. This procedure is

repeated to generate a total of 99 simulated B marks patterns, each with an expected number of marks

equal to the observed number of B marks. These simulations lack any systematic spatial structure except

for that implicitly imposed by the cell support and carry no association with the simulated A marks

patterns except through the underlying support.

Note that these procedures do not allow for more than one B mark on the perimeter of the same

B-infected simulated cell and do allow for a simulated cell to be infected with both A and B—although

with small probability. We experimented with variants in which more than one B mark could be placed

on the perimeter of the same cell and/or cells were prevented from being infected with both A and B.

These variants were abandoned, since they were not appreciably different in terms of benchmarking

K-functions estimation of the data.

3. Results

As discussed in Section 1, we plate wells with epithelial cells and expose them to one strain of the

virus (primary) for 1 hour. We then wash the culture and allow the infection to proceed for 3 or 16 hours

(time lag). The cells are then exposed to a second strain of the virus (challenge) for 1 hour, washed, and

the wells are imaged after 24 h. The experimental settings we consider here are indicated as 1A2B-3h,

1A2B-16h when the primary strain is RSV-A, the challenge is RSV-B, and the lag is 3 or 16 hours and are

indicated as 1B2A-3h, 1B2A-16h when the strains used for primary and challenge infection are reversed.

We also consider control settings, in which wells are exposed to the challenge after allowing an elapsed

time of 3 or 16 hours from the beginning of the experiment but no primary exposure occurs. These

settings are indicated as 2B-3h, 2B-16h, 2A-3h, 2A-16h. Each setting is independently replicated 3 times

using separate wells. A schematic of the experimental design is provided in Figure 3, and more detail on

the experimental protocols can be found in Section 5.

Spatial association among challenge infections I: localized increase in cell susceptibility to challenge
infection. We start with an assessment of spatial association among marks for the challenge infection.

For settings in which RSV-A is the challenge, this association is described by K̂1B2A−3h
A , K̂1B2A−16h

A ,

K̂2A−3h
A and K̂2A−16h

A , which are constructed by pooling the K-function estimates from the three replicate

wells in each setting (see Section 5 for details). The same calculations are performed for settings in

which RSV-B is the challenge, producing K̂1A2B−3h
B , K̂1A2B−16h

B , K̂2B−3h
B , and K̂2B−16h

B . Pooling is also

implemented for K-functions estimated on simulated A and B marks patterns, as to obtain “null” bands

for the estimated K-functions (see again Section 5). Results are shown in Figures 4 and 5. In order

to facilitate the visualization of departures from a quadratic growth, we subtract πr2 from the estimates
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K̂ being plotted in each panel of these figures and from its null bands. Recall that the K-function of a

Poisson random field is πr2.

In all settings considered, we detect a significant and sizable attraction (K̂ above the bands) beyond

the ranges at which cell volume exclusion may create a repulsion. Although hardly visible on the vertical

scale of the figures, small negative dips do occur in the estimated K-functions at small r ranges, but

they are mimicked by the simulations and hence within our bands. Thus, there is a localized increase

of susceptibility of cells to the challenge virus; if one cell in a region becomes infected, there is an

increased probability that cells in its proximity will also be infected. Because this occurs synchronously

at the time of challenge and appears to be independent of exposure to a primary infection, we interpret it

as an intrinsic cell effect as opposed to an innate response.

Figure 3. Schematic of the experimental design. Wells plated with epithelial cells are exposed to a

primary infection (1), and then to a challenge (2) after a time lag of 3 hours (short arrows) or 16 hours

(long arrows). On the left of the schematic, the primary infection is RSV-A and the challenge RSV-B.

On the right of the schematic, the roles of the two strains are reversed. Each of these four settings

has a corresponding control in which the cell culture is not exposed to the primary infection, but the

challenge infection (2) is still introduced after an elapsed time of 3 or 16 hours. We therefore have a

total of eight experimental settings, each of which is independently replicated three times.

1 Primary 2 Challenge

1A2B-3h

2B-3h 
control

1A2B-16h

2B-16h
control

1B2A-3h

2A-3h
control

1B2A-16h

2A-16h
control

1 Primary 2 Challenge

Spatial association among challenge infections II: the role of virus strain and time lag from primary
infection. We compare estimated K-functions across settings to determine if the susceptible phenotype

varies for the two virus strains and with the time lag between primary infection and challenge. First,

we consider the differences K̂1B2A−3h
A − K̂1A2B−3h

B , K̂1B2A−16h
A − K̂1A2B−16h

B , K̂2A−3h
A − K̂2B−3h

B , and

K̂2A−16h
A − K̂2B−16h

B , which represent comparisons between the two virus strains. We build null bands

for them based on our simulations (see Section 5 for details on how bands for differences are derived).
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As shown in Figure 6, these are all sizable and significantly negative (below the bands) for a range of

radii. Thus, the attraction among challenge infections is stronger for an RSV-B challenge than for an

RSV-A challenge. This is true at both short and long lags and regardless of whether or not there was

exposure to a primary infection, suggesting that intrinsic cell properties increase susceptibility to RSV-B

more than they increase susceptibility to RSV-A infections.

Figure 4. K̂A with corresponding null bands in the experimental settings 1B2A-3h, 1B2A-16h,

2A-3h and 2A-16h. Cells surrounding a cell infected by the RSV-A challenge have an increased

susceptibility to the challenge itself. This is true at short and long time lags and regardless of whether

the challenge was preceded by a primary infection with RSV-B. The radius r on the horizontal axes

is measured in pixels; 1 pixel corresponds to 6.45 microns.
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Second, we consider the differences K̂1B2A−16h
A − K̂1B2A−3h

A , K̂1A2B−16h
B − K̂1A2B−3h

B , K̂2A−16h
A −

K̂2A−3h
A , and K̂2B−16h

B − K̂2B−3h
B , which represent comparisons between time lags, with the

corresponding null bands. As shown in Figure 7, these differences are sizably and significantly negative

(below the bands, left panels) in the presence of a primary infection. In contrast, the differences are

generally non-significant (within or hardly outside the bands, right panels) when comparing time lags

without a primary infection. Thus, time does not modulate attraction among challenge infections for

either RSV-A or RSV-B in the absence of a primary infection. However, there is a stronger attraction
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among cells infected by the challenge virus following a primary infection at short time lags than at long

time lags. Because this decline with time manifests itself only in the presence of a primary exposure, it

provides indirect evidence of an innate immune response acting to limit susceptibility conferred by cell

intrinsic factors.

Figure 5. K̂B with corresponding null bands in the experimental settings 1A2B-3h, 1A2B-16h,

2B-3h, 2B-16h. Cells surrounding a cell infected by the RSV-B challenge have an increased

susceptibility to the challenge itself. This is true at short and long time lags and regardless of whether

the challenge was preceded by a primary infection with RSV-A. The radius r on the horizontal axes

is measured in pixels; 1 pixel corresponds to 6.45 microns.
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Spatial association among challenge infections: summary. An analysis of spatial association among

challenge infections suggests that intrinsic properties render cells in close proximity to be more

susceptible to infection within the time span allowed for the challenge. This intrinsic cell effect is

detectable regardless of what virus strain is used in the challenge, the length of the time lag, and the

presence of a primary infection (Figure 4 and Figure 5). Comparing our experimental settings, we

observe stronger attraction among infected cells for RSV-B than for RSV-A, which suggests that the two

strains may have different infection requirements in BEAS-2B cells (Figure 6). Moreover, the attraction

tapers off with increasing time lag when the cells experience a primary infection, which suggests a
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possible dynamic interplay of cells responding to innate immune signals to the primary exposure and

intrinsic cell properties at the time of challenge (Figure 7).

Figure 6. Differences of estimated K-functions between challenge strains with corresponding

null bands. The increase in susceptibility to the challenge infection around cells infected with the

challenge itself is stronger when the challenge strain is RSV-B than when it is RSV-A. This is true

at short and long time lags and regardless of whether the challenge was preceded by a primary

infection with the other virus strain. The radius r on the horizontal axes is measured in pixels; 1

pixel corresponds to 6.45 microns.

K̂1B2A−3h
A − K̂1A2B−3h

B K̂1B2A−16h
A − K̂1A2B−16h

B

0 10 20 30 40 50

−4
00

−2
00

0
20
0

40
0

0 10 20 30 40 50

−4
00

−2
00

0
20
0

40
0

K̂2A−3h
A − K̂2B−3h

B K̂2A−16h
A − K̂2B−16h

B

0 10 20 30 40 50

−4
00

−2
00

0
20
0

40
0

0 10 20 30 40 50

−4
00

−2
00

0
20
0

40
0

r r

Spatial association between primary and challenge infections I: innate response to primary infection
does not overcome localized increase in cell susceptibility to challenge infection . Next, we seek direct

evidence of an innate response effect by assessing the spatial association between cells infected with

the primary virus and cells infected with the challenge virus. This association is described by the

estimated cross K-functions K̂1B2A−3h
A,B , K̂1B2A−16h

A,B , K̂1A2B−3h
A,B , and K̂1B2A−16h

A,B . Note that we again

perform pooling across replicates. Recall the cross K-functions are symmetric in terms of the order

of the processes, and cross K-functions cannot be computed in control settings because those comprise

only one infection. Results are shown in Figure 8; we again subtract πr2 from the pooled K̂ being plotted

in each panel and its null bands.
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Figure 7. Differences of estimated K-functions between lags with corresponding null bands.

The increase in susceptibility to the challenge infection around cells infected with the challenge

itself is stronger at short than at long time lags when the challenge is preceded by a primary

infection. However, the difference between short and long time lags is mostly non-significant when

the challenge is not preceded by a primary infection. This is true for either order of the two strains.

The radius r on the horizontal axes is measured in pixels; 1 pixel corresponds to 6.45 microns.
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In three out of four settings where we have considered varying lag and order of the virus strains,

we detect a significant but modest attraction (K̂ above the bands) beyond the ranges at which double

infections of the same cell may create an attraction. Small positive spikes do occur in the estimated cross

K-functions at small r ranges, but they are mimicked by the simulations and are within our bands. In

the fourth setting (1A2B-16h), K̂ is within the bands. Thus, cells surrounding a cell infected with the

primary virus have a somewhat increased susceptibility to infection with the challenge virus. By and

large, the effect detected here is much smaller than the intrinsic cell effect discussed above. We interpret

this as evidence that cells do not mount innate responses strong enough to render them measurably less

susceptible to a challenge infection over the time scales of our study. However, the modest increase

in susceptibility to the challenge for cells near a primary infected cell may indeed be due to an innate
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immune mediated damping of the intrinsic cell phenotype, which increases local susceptibility of cells

to infection.

Figure 8. K̂A,B with corresponding null bands in the experimental settings 1B2A-3h, 1B2A-16h,

1A2B-3h, and 1A2B-16h. Cells surrounding a cell affected by the primary infection have a somewhat

increased susceptibility to the challenge infection, but the effect is much weaker than the one detected

among the challenge infections themselves (see Figures 4 and 5). The radius r on the horizontal axes

is measured in pixels; 1 pixel corresponds to 6.45 microns.
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Spatial association between primary and challenge infections II: the role of virus order and time
lag from primary infection. Comparing estimated cross K-functions across settings in Figure 9, we

find that the order of the virus strains, represented by the differences K̂1B2A−3h
A,B − K̂1A2B−3h

A,B and

K̂1B2A−16h
A,B −K̂1A2B−16h

A,B , is non-significant at either 3 or 16 hour time lag (curves within or hardly outside

the bands). However, there is an effect of time lag based on the differences K̂1B2A−16h
A,B − K̂1B2A−3h

A,B

and K̂1A2B−16h
A,B − K̂1A2B−3h

A,B , which are significantly, though modestly negative. Thus, the association

between cells infected with the primary and challenge strains is somewhat stronger at short than at long

time lags, regardless of the order of the virus strains. This observation is consistent with the generation

of an innate immune response to the primary infection, which develops over the 16 hour time course and

counteracts the increased susceptibility conferred by cell intrinsic factors.
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Figure 9. Differences of estimated cross K-functions between virus strain orders and between lags

with corresponding null bands. The increase in susceptibility to the challenge infection around cells

infected with the primary infection does not differ significantly depending on the order of the virus

strains. In other words, it does not matter which is used as primary infection and which is used as

challenge. However, the effect is somewhat stronger at short than at long time lags. The radius r on

the horizontal axes is measured in pixels; 1 pixel corresponds to 6.45 microns.
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Spatial association between primary and challenge infections: summary. An analysis of spatial

association between infections with primary and challenge viruses suggests that cells do not mount

innate responses strong enough to measurably decrease their susceptibility (cause a repulsion in our

analysis) to a challenge infection over the time scales of our study. However, cells do appear to initiate

an innate response that tends to decrease neighboring cell susceptibility over time. This effect is partially

masked by the intrinsic cell factors that enhance local cell susceptibility to infection.

4. Conclusions

In this article, we used methods from spatial statistics to explore how a primary RSV infection alters

the susceptibility or resistance of cells to a challenge with a heterologous RSV strain. Using these

methods allowed us to characterize infections in terms of their locations and proximity to one another
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and to study their spatial association in the cultures (attraction or repulsion; i.e., a tendency for infected

cells to be closer or more distant than expected by chance) under different experimental settings. In

turn, this allowed us to investigate how susceptibility to infection is affected by local conditions such as

intrinsic cell properties associated with cell cycle or maturation state or by signaling among nearby cells

responding to viral infection through the innate immune system.

Spatial associations detected among challenge infections provided a clear finding: intrinsic cell

properties appear to render cells neighboring an infected cell substantially more susceptible to infection.

This leads to an attraction among cells infected by the challenge virus independent of the presence of a

primary infection. Of interest, this effect appears more marked for RSV-B than for RSV-A infections,

suggesting a possible difference between the two strains in the infection dynamics.

Over the experimental time frame of our study, the innate immune response is harder to characterize

because its effects are partially masked by the effects of intrinsic cell features. Spatial associations

detected between primary and challenge infections do not indicate a decrease in susceptibility at either

of the time lags we considered. When the culture is exposed to a challenge after a short lag, the cells have

not had enough time to mount strong innate responses. Consequently, the increased susceptibility due to

the intrinsic cell effect acts with little opposing forces around primary infections and the net result is an

overall increased susceptibility of cells to the challenge virus. However, when the culture is exposed to a

challenge after a longer time lag, innate responses are better developed. With the intrinsic cell effect now

somewhat counteracted by innate immune responses, the net result is a still evident but milder increase in

susceptibility of cells to the challenge. Our experimental system was designed to prevent the possibility

of cell-to-cell viral spread. The time line we used captures a single cycle of infection, with susceptibility

of cells to the challenge assessed prior to the release of infectious virus by the primary infected cells

(see Methods). Moreover, susceptibility to the challenge is determined by exposing cells to a second

inoculum and can be discriminated from the primary infection based on staining characteristics.

Research on virus interactions with cell innate factors typically does not exploit the important

information available from the spatial arrangement of infected cells. As single cell-based assays and

primary cultures become more widely used to study short term responses of cells to viral infections,

spatial statistics methods such as those used in this study will be valuable to unravel local variation in

these responses. In our case, we found that susceptibility to infection was variable even though cells

should be synchronized based on plating and passage history. This difference in cell susceptibility to

RSV infection could be associated with receptors or intracellular factors needed in the viral life cycle

that are differentially expressed in actively replicating cells and those that are resting. The underlying

mechanism may be important because it enhances susceptibility to RSV-B infection compared to RSV-A.

From a technical point of view, our analysis revolved around spatial point processes, K-functions,

standard methodology to estimate such functions, and simulation procedures we designed to detect

significant spatial association accounting for complicating issues specific to our data. These include

features of our experimental cultures, the nature of the stains used to visualize nuclei and infections,

and limits in the image analysis software which render the two dimensional mark coordinates at out

disposal imperfect proxies for the locations of cells and their infection status. Importantly, our estimation

of the K-functions and significance assessment of spatial associations were greatly simplified by the

assumption that nuclei and infections marks are realizations of homogeneous point processes. However,
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this is not an obvious assumption. Depending on plating protocols and other factors, tissue cultures can

and often do present inhomogeneous cell distributions. Following experience accrued in previous runs

of the same experimental system we were able to improve our protocols as to obtain wells with fairly

homogeneous cell distributions. Because the cell support is homogeneous and the MOIs are high, we

also obtain fairly homogeneous distributions for the infections (see Section 5). However, when cells,

and consequently infections, present strong patterns in their spatial distributions, marks may need to

be modeled as inhomogeneous point processes, and K-function estimation and significance assessment

become more complex [11–14]. Preliminary data was collected using different MOIs with lower values

for the primary infections and higher values for the challenge infections. This preliminary data was

consistent with the results shown in the paper; however lower MOIs resulted in sparser point patterns

making the data less reliable for statistical analysis.

The results from this article and [15] suggest that further progress in understanding infections and

co-infections through in vitro studies will rely crucially on developing appropriate spatio-temporal

models for the data they produce. In [15], the authors construct a dynamic model for the susceptibility

of cells in the same experimental setup as presented here. Spatial structure in not explicitly considered

in [15], and the diffusion of the virus through the culture is modeled “in bulk” with specific biological

mechanisms that predict the aggregate infection counts within a culture. Conversely, our study models

spatial structure but not temporal dynamics. We are currently engaged in an effort to combine these

approaches through models that can include explicit mechanisms for cell susceptibility through time and

space. It should be noted that developing spatio-temporal models for the type of experimental setup used

here and in [15] poses a significant challenge. In particular, if we cannot observe a single cell culture at

multiple time points, our observations will be independent through time limiting the range of methods at

our disposal.

5. Methods

Experimental protocols: The human bronchial epithelial cell line (BEAS-2B) was purchased from

American Type Culture Collection (ATCC, Manassas, VA) and was maintained in serum-free growth

medium (LHC-8; Invitrogen, Carlsbad, CA). All experiments were conducted with cells in their sixth

passage in order to minimize heterogeneity that can arise with different culture history. HEp-2 cells

were maintained in OptiMEM (Invitrogen, Carlsbad, CA) supplemented with 2% fetal calf serum (FCS;

HyClone Laboratories, Salt Lake City, UT), 100 IU/mL penicillin and 100ug/mL streptomycin and

β- mercaptoethanol. Human respiratory syncytial virus B (ATCC) and recombinant RSVA2eGFP (a

gift from Dr. M. Teng) were propagated in HEp-2 cells as described in (Gias et al., 2008; Mbiguino

and Menezes, 1991). HEp-2 supernatants containing infectious RSV were collected and the virus

was precipitated using a final concentration of 10% polyethylene glycol (Sigma, St. Louis, MO). The

precipitate was dissolved in NT (50 mM Tris-HCl, 150 mM NaCl, pH 7.5) buffer, and overlaid on a

discontinuous 60%, 45% and 30% sucrose gradient made up in NT buffer. After centrifugation for 100

min at 112,000 g in a SW28 rotor, the virus was collected from the 30–45 % interface. The virus was

stored in small aliquots at −80◦C until use.

BEAS-2B cells were seeded in 1× 105 cells per well in 24-well plate and incubated for 20 hourse at

37◦C, then exposed to RSVB (0.5MOI) for 1 hour. Cells were washed to remove unattached virus and
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media was replaced. At 3 and 16 hours post-infection, BEAS-2B cells were secondarily challenged with

RSVA2eGFP at an MOI of 0.5 for 1 hour and washed. The experiment was also performed reversing the

order of infection. Twenty four hours post secondary RSV infection, BEAS-2B cells were washed with

phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde. Then, cells were permeabilized

and blocked in PBS containing 1% BSA and 0.3% Triton X-100 for 1h at room temperature. For RSVB

staining, cells were incubated with anti-RSVB monoclonal antibody (MAB8582, Chemicon, Billerrica,

MA) followed by incubation with Alexa fluor 568 goat anti-mouse (Invitrogen, Carlsbad, CA) and

stained with 300nM of DAPI. Green, red and blue images were captured by fluorescence microscope

and analyzed using Image Pro Plus software version 6.3 [16].

Image analysis: The image analysis software package [16] was used to produce stain sizes and 2D

spatial coordinates for nuclei, RSV-A, and RSV-B marks. Nuclei were handled by setting the intensity

range selection to 0, 80, 255. For RSV-A stains, we used the following software options: intensity

range selection 0, 37, 255 followed by auto-split and watershed-split options. For RSV-B stains

we used the following software options: contrast enhancement of 44, 50, 1.9, followed by sharpen

filter 3×3 1 Pass, followed by median filter 3×3 1 Pass, and intensity range selection of 0, 42, 255.

To ensure consistency and data reliability, we created scripts that automated the same procedures and

software options/parameter settings for analysis of all well images.

Pooled estimates of K-functions: The results in Section 3 were presented using estimates of K-functions

and cross K-functions pooled across the three replicates available for each experimental setting. Here

we provide details on the pooling procedure. Let � = 1, 2, 3 index replicates for the same experimental

setting. Each replicate produces a point pattern x(�) = {x(�)1, . . . , x(�)n(�)} on an observation window

W (�) of the same shape and size (a circle with radius 1350 pixels), and in all three cases, the buffered

subregion W
(�)
R ⊂ W (�) has the same shape and size (a circle with radius 1300 pixels). We obtain three

estimates of the K-function using the formula introduced in Section 2

K̂(�)(r) =
1

|W (�)
R |λ̂2

(�)

∑
i:x(�)i∈W (�)

R

∑
j �=i

1{d(x(�)i,x(�)j)≤r}

for � = 1, 2, 3, and we form a pooled estimate taking a weighted average of the three

K̂(r) =
3∑

�=1

|W (�)
R |

|W (1)
R |+ |W (2)

R |+ |W (3)
R |

K̂(�)(r)

=
3∑

�=1

|W (�)
R |

|W (1)
R |+ |W (2)

R |+ |W (3)
R |

⎡
⎢⎣ 1

|W (�)
R |λ̂2

(�)

∑
i:x(�)i∈W (�)

R

∑
j �=i

1{d(x(�)i,x(�)j)≤r}

⎤
⎥⎦

in which each of the estimates, K̂(�), contributes in proportion to the size of its W
(�)
R and λ̂(�) =

n(�)

|W |(�) ,

� = 1, 2, 3 [11]. Note though that since the three subregions have the same size in our data, the above

corresponds to taking a simple averaging of the three estimates, K̂(�). The same procedure is used to

produce pooled estimates of cross K-functions. Other approaches to pooling for K-function estimation

exist, such as using weights based on the cardinality of each point pattern [17–19]. However, these result



Viruses 2010, 2 2800

in similar estimates from our data, because the number of points, n(�), are similar across replicates of the

same experimental setting.

Null bands for pooled estimates of K-functions: To produce the null band for a pooled estimate, K̂,

(Figures 4, 5 and 8) we also perform pooling across the 99 simulated point patterns generated for each

of the three replicates. When we estimate a K-function, we do so on a discrete grid of 500 r values evenly

spaced in the interval (0, 50). The resulting numbers, which are obtained from the point pattern observed

in a replicate and the 99 point patterns simulated for that replicate, are arranged in an array M
(�)
500×100.

The three arrays (one for each replicate) are then averaged to produce M500×100 = 1
3

[∑3
�=1 M

(�)
500×100

]
.

For each row of the array M500×100, we compute the minimum, the mean, and the maximum of the 99

columns corresponding to simulations (i.e., columns 2 through 100). The probability that the pooled

estimate of the K-function is below (above) the minimum (maximum) under the null hypothesis of no

spatial association is

P

(
K̂(r) < min

j=2,..,100
M500×100[r, j]

)
= P

(
K̂(r) > max

j=2,..,100
M500×100[r, j]

)
≤ 1

99 + 1

[11]. For every r in our grid, the minimum and the maximum provide 1%-lower and 99%-upper limits.

The null band is constructed from 500 such lower and upper limits. It should be stressed that since we are

essentially performing 500 hypothesis tests based on the same simulated data, such a null band does not

control the overall level at 2%. The same procedure is used to produce null bands for pooled estimates

of cross K-functions.

Null bands for differences between pooled estimates of K-functions: Here we describe how

the null band is constructed when considering the difference between two pooled estimates of

K-functions (Figures 6, 7 and 9). We start with the arrays M
(�,s)
500×100 produced for each of the

three replicates � = 1, 2, 3 of two experimental settings s = 1, 2. We then form difference arrays

D
(�)
500×100 = M

(�,2)
500×100 − M

(�,1)
500×100, � = 1, 2, 3, and we average them to obtain

D500×100 = 1
3

∑3
�=1 D

(�)
500×100. For each row of D500×100, we compute the minimum, the mean,

and the maximum of the 99 columns corresponding to simulations (i.e., columns 2 through 100). The

minimum and maximum across each of the 500 rows provide lower and upper limits under the null

hypothesis of no spatial association for the difference in the estimates K̂ at a given r. The null band

for the differences is constructed from these 500 lower and upper limits but does not control the overall

level at 2%.

Tests for homogeneity: To verify that our data meets the homogeneity assumption, we started by

inspecting the A marks and B marks in our well images. We estimated inhomogeneous intensities, which

showed no systematic placement of the A marks and B marks in particular regions of the wells. With

this preliminary evidence, we further assumed that if the nuclei are homogeneous then there is no reason

to expect the A marks and B marks to present strong inhomogeneity. We proceeded to test for nuclei

homogeneity in each well. In order to do so, we benchmarked the observed nuclei point patterns against

a homogeneous Poisson random field. Note that we know that the nuclei cannot be modeled by a Poisson

field due to the natural cell exclusion mechanism of the cells. However, the testing procedure we employ

divides the observation window into a grid of squares Qi, i = 1, ..., k with sides of 159 pixels. Note also
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that only full sized squares inside the window are used. The departures from a Poisson field are at small

scales compared to the size of these squares. Our null hypothesis is that Ho : The nuclei point pattern
within a well is a realization of a homogeneous point process, and the alternative is that Ha : The nuclei
point pattern within a well is not a realization of a homogeneous point process. Due to the properties

of the homogeneous Poisson random field, we know that, under the null hypothesis, (i) the number of

points in each of the squares N(Qi) is distributed as a Poisson random variable with mean λ× |Qi| and

(ii) the number of points in each of the squares is independent from the number of points in the other

squares. Thus we can consider the test statistic χ2 =
∑k

i=1

(
N(Qi)−λ̂×|Qi|√

λ̂×|Qi|

)2

which, under the null, is

approximately distributed as a chi-squared distribution with k − 1 degrees of freedom. We performed

24 such tests, one for each well under consideration, and failed to reject the null at level 5% for 17 out

of 24 cases. Using graphical diagnostic devices we were also able to verify that, in all cases, the counts

of nuclei within squares (N(Qi)) were by and large consistent with a Poisson distribution except for

a few extreme values—i.e., some very low and very high counts. The tests were thus performed after

“trimming” out the 5% bottom and top counts in each well. Notably, overall visual consistency with

Poisson counts holds even in the 7 wells where a nominally significant departure from homogeneity was

detected by the testing procedure. In all, we consider this enough evidence to rely on homogeneity in

our formulation and estimation of K-functions. [20–22]
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