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Abstract: Cell-to-cell spread of HIV-1 between CD4+ T cells takes place at multimolecular 

structures called virological synapses. A defining feature of the virological synapse is 

polarization of viral assembly and budding at sites of T cell-T cell contact. Recent work is 

beginning to address how viral proteins are targeted to the virological synapse and the 

molecular mechanisms that regulate HIV-1 egress by cell-to-cell spread. This review 

discusses our current understanding of these processes and considers how T cell polarization 

during other forms of intercellular communication may provide insight into HIV-1 assembly 

and dissemination. 
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1. Introduction 

Direct cell-to-cell spread is a mechanism of viral transmission that is utilized by many viruses in 

order to promote rapid and efficient dissemination between target cells [1] and the Human 

Immunodeficiency Virus type-1 (HIV-1) is no exception. The idea that HIV-1 can disseminate by 

direct cell-to-cell spread, in addition to cell-free infection has been known for many years [2]. Early in 

vitro studies on HIV-1 infected peripheral blood mononuclear cells observed polarization of HIV-1 

budding towards engaged target cells [3] and the localization of viral proteins, adhesion molecules and 

cytoskeletal elements at the leading edge of infected cells and at sites of cell-cell contact [2-7]. In vivo, 

foci of infected T cells and macrophages have been observed in lymphoid tissue [8,9] indicative of 

cell-cell spread. As the major site of early HIV-1 replication, the gut-associated lymphoid tissue 
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(GALT) supports robust HIV-1 infection and therefore could represent an environment in which the 

close association of susceptible cells would favor cell-to-cell transmission [10-14] although the 

relative contribution of cell-cell and cell-free infection in vivo in the GALT remains to be 

demonstrated. Collectively, this work has led to the hypothesis that HIV-1 may exploit intercellular 

contacts to promote dissemination between permissive cells; however, it was not until relatively 

recently that the molecular mechanisms that regulate cell-to-cell spread were interrogated, leading to 

the first publication of a retrovirus-induced virological synapse (VS), that formed by HTLV [15].  

HIV-1 induced VS have also been described between infected and uninfected CD4+ T cells [16,17], 

between dendritic cells and CD4+ T cells [18], between macrophages and CD4+ T cells [19,20] and 

between monocytes and epithelial cells [21]. Thus, direct cell-cell spread at VS appears to be a 

generalized feature of retroviral dissemination between immune cells.  

In vivo, HIV-1 predominantly replicates in CD4+ T lymphocytes. Productive infection of T cells is 

mediated by binding of the HIV-1 envelope glycoprotein (Env) subunit gp120 to CD4 and coreceptor 

(either CXCR4 or CCR5) on the surface of target cells (reviewed in [22]). Receptor binding triggers a 

conformational change in Env that exposes the gp41 fusion peptide and brings the viral and cellular 

membranes into close apposition, culminating in fusion, translocation of the viral core containing the 

HIV-1 genome into the cytoplasm and eventual integration of the viral DNA into the host genome. 

HIV-1 replicates in activated CD4+ T cells and the production of nascent virions leads to dissemination 

either by cell-free means or by direct cell-to-cell spread. Current work is beginning to elucidate the 

spatio-temporal recruitment of viral and cellular proteins to sites of cell-cell contact and to probe 

cellular mechanisms that orchestrate polarized HIV-1 egress from T cells. In this review, I will discuss 

on how the process of polarization within the HIV-1 infected T cell during T cell-T cell contact may 

contribute to orchestrating viral assembly and transmission at the VS. Readers are directed to the 

review by Vasiliver-Shamis et al. in this volume for insight into VS formation in the target T cell. In 

addition, cell-to-cell spread other retroviruses will only be considered where it provides insight into 

the HIV-1 T cell VS. 

2. Polarization at the HIV-1 virological synapse 

In its simplest definition, the VS is as a multimolecular structure that forms following physical 

contact between a retrovirus-infected cell and an uninfected target cell to facilitate virus transmission 

[23] (Figure 1). For HIV-1 infected T cells, this is characterized by the following features: 

 Formation of a stable intercellular junction between an infected cell and an uninfected target 

cell [17,24-26].  

 Recruitment of HIV-1 Env and the core protein (Gag) on the infected T cell, and CD4 and  

co-receptor (CXCR4 or CCR5) on the target T cell to sites of cell-cell contact [9,17,24,26-28]. 

 Co-enrichment of the integrins LFA-1, ICAM-1 and ICAM-3 [9,17,29]. 

 Clustering of GM1-rich lipid rafts on the infected T cell at sites of cell-cell contact [9,30]. 

 Remodeling of the cellular actin cytoskeleton (in both the target and the infected cell) and 

polarization of the microtubule organizing center (MTOC) within the infected T cell to the VS 

[17,28,30-32]. 

 Polarized virus assembly and budding of virions towards the engaged target cell [9,17,26,27]. 
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 Rapid infection of the target cell that is estimated to be one or more orders of magnitude more 

efficient that equivalent cell-free infection [24-26,33]. 

2.1. Polarization of receptors at the virological synapse  

T cells do not usually form stable interactions with other T cells but when homotypic contacts do 

occur, they are usually transient (<10 minutes)[34]. By contrast, when T cells are infected with HIV-1, 

T cell contacts are more long-lived and in vitro imaging experiments have estimated that they persist 

for an average of 60 minutes [17,24,26,27] with some conjugates remaining stable for several hours 

[24]. The driving forces behind stability of HIV-1-induced T cell-T cell contacts and VS formation is 

the binding of HIV-1 Env expressed on the surface of infected T cells to CD4 and coreceptor 

expressed on the target cell [17,24]. Env-receptor interactions are essential to trigger co-polarization of 

viral Env and cellular receptors – the hallmarks of VS formation – and preventing these interactions 

with neutralizing monoclonal antibodies or other antagonists reduces conjugate formation and blocks 

receptor recruitment, as evidenced by reduction of Env, Gag, CD4 and coreceptor clustering 

[17,24,26,35]. In addition, interactions between leukocyte function antigen-1 (LFA-1) and its cognate 

ligands intercellular adhesion molecule-1 and -3 (ICAM-1 and ICAM-3) provide extra stability at the 

VS and may also initiate outside-in signaling to trigger plasma membrane remodeling and receptor 

recruitment [17,29,36]. Similarly therefore, interfering with LFA-1-ICAM binding using blocking 

monoclonal antibodies, inhibitory peptides or T cells expressing mutated conformational forms of 

LFA-1 also alters conjugate stability, VS formation and HIV-1 transmission by cell-cell spread [9,29]. 

Polarization of viral and cellular proteins during intimate physical contact between infected and 

uninfected T cells serves two related purposes. Firstly, receptor binding provides the trigger for VS 

formation, with additional receptor recruitment further stabilizing the interface and contributing to the 

characteristic remodeling at the contact site. Secondly, polarization of viral proteins at cell-cell 

junctions provides a focus for the directed assembly and egress of HIV-1, promoting rapid and 

efficient infection of target cells. The presence of viral assembly platforms at the plasma membrane of 

infected T cells serves to integrate viral proteins, the viral genome and host cellular machinery in a co-

ordinated manner to achieve the efficient production of nascent, infectious virus. In this way, 

polarization of viral and cellular proteins at the VS ensures that the necessary building blocks are 

delivered to the appropriate site on the infected T cell at the right time (Figure 1).  

2.2. Polarization of HIV-1 budding 

HIV-1 assembly takes place in GM-1 rich lipid rafts at the plasma membrane of infected cells  

[37-44]. Concomitant with the enrichment of HIV-1 Env and Gag at the VS, lipid rafts are polarized 

on infected T cells to sites of cell-cell contact. Polarization of Env, Gag and lipid rafts appears to be a 

necessary step in cell-cell spread since disrupting lipid raft integrity by depleting membrane 

cholesterol with methyl--cyclodextran abolishes synapse formation [30]. The molecular mechanisms 

that trigger raft polarization are ill-defined at present and whether capping of rafts at the VS reflects 

the specific recruitment of membrane microdomains to the cell-cell contact site, or whether 

oligomerization of capsid (Gag) at sites of virus assembly at the conjugate interface drives raft 

coalescence, is unclear [43] (Figure 2). As coordinators of signaling platforms, lipid rafts are also 
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recruited to other immune cell contacts such as immunological synapses (IS)[45-49] that form without 

the requirement for retrovirus infection of the T cell. Whether they play a more active role at the VS by 

recruiting down-stream signaling molecules to the contact site is an interesting proposition and further 

work will undoubtedly delineate the role of lipid rafts in this context. 

Figure 1. HIV-1 egress from infected T cells. HIV-1 assembles at and buds from the 

plasma membrane of infected T cells. In the absence of cell-cell contact (A and B) nascent, 

infectious virions could be released either by multidirectional budding from many sites of 

the plasma membrane (A), or by unidirectional budding from clustered viral assembly 

platforms (B). There is no evidence to date to suggest that the MTOC (red) is polarized at 

sites of HIV-1 budding in the absence of cell-cell contact. During cell-cell contact (C) the 

MTOC reorients in the infected T cell to the VS and there is polarization of HIV-1 Env, 

Gag and lipid rafts to the contact site. This directs virus budding towards the engaged 

target cell for efficient dissemination. Theoretically, polarized budding of HIV-1 from T 

cells not engaged in a VS (B) could occur in either of the following ways: if the T cell 

becomes activated and develops a polarized phenotype; or if HIV-1 infection drives 

coalescence of virus assembly domains (e.g. Gag multimerization driving lipid raft 

clustering at the plasma membrane); or if the infected cell is induced to polarize at the VS 

and subsequently separates from the other synaptic cell.  

 



Viruses 2010, 2            

 

 

1265

Figure 2. Possible mechanisms of viral protein recruitment to the VS. Polarization of 

HIV-1 assembly and budding at the VS necessitates the recruitment of viral proteins to the 

contact site. This could occur either by the lateral movement of plasma membrane 

associated viral proteins (green) due to cytoskeletal remodeling, leading to the recruitment 

of lipid rafts, Env and Gag to the VS and/or by Gag multimerization driving raft 

coalescence as suggested in Figure 1. Alternatively, activation of the regulated secretory 

pathway and polarization of trafficking could transport HIV-1 proteins as vesicular cargo 

from intracellular sites to the plasma membrane at the VS. These processes are not 

mutually exclusive and it is possible that at different times both pathways of HIV-1 

recruitment are active.  

 
 

At the plasma membrane, HIV-1 assembly is rapid, in the order of minutes [50], and HIV-1 

assembly at the VS takes place with similar kinetics [27]. Recently, live cell imaging of T cell contacts 

has shed light on the dynamics of polarized virus assembly at the VS and has documented the 

appearance of synaptic accumulations or “buttons” of Gag, indicative of new particle assembly at 

contact sites [27]. Gag+ synaptic buttons appear within minutes, and are formed either by the 

movement of distal membrane-associated Gag towards the contact site or by coalescence of Gag 
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protein (already at the contact site) into pre-existing buttons. The movement of Gag is rapid (averaging 

0.1-0.25 m/s) and directional, reflecting the strong probability that active transport is occurring [27]. 

At the VS, the frequency of contacts showing polarization of viral and cellular proteins and the relative 

amount of viral protein at the interface increases as a function of time [17,24,27]. Adhesion precedes 

polarization at the VS suggesting that viral proteins are actively mobilized towards the contact site 

(Figure 2). Cell-to-cell spread of HIV-1 can be severely impaired by treating cells with 

pharmacological inhibitors of actin remodeling or with microtubule depolymerizing agents [31] and 

immunofluorescence imaging has demonstrated that disrupting the integrity of the cellular 

cytoskeleton abolishes polarization of viral proteins at the VS by a mechanism that may involve 

destabilizing lipid raft-enriched virus assembly platforms [31] and/or by interfering with cytoskeletal 

mediated trafficking of viral proteins to sites of cell-cell contact, although this remains to be formally 

demonstrated. Intriguingly, the related retrovirus Murine Leukemia Virus (MLV) also shows 

preferential (>50-fold) de novo assembly at sites of cell-cell contact [51]. While the latter study was 

performed using epithelial cells (an inherently polarized cell type), collectively these data suggest that 

polarization of viral production at sites of cell-cell contact may be generalized feature of retroviral 

dissemination. 

The molecular mechanisms that direct of polarization of HIV-1 during cell-cell transmission are 

currently the focus of much research. The similarities between directional HIV-1 egress at the VS and 

polarized secretion at the immunological synapse are tantalizing and suggest that HIV-1 may utilize 

pre-existing trafficking pathways that normally operate during immune cell communication to spread 

from one cell to another. Already, much work on the VS indicates that the enrichment of receptors, 

integrins and lipid rafts to T cell junctions is phenotypically reminiscent of T cell polarization at the 

IS, a process that is intimately linked with cytoskeletal remodeling and changes in cell shape. Below, I 

discuss our current understanding of the contribution of the cellular cytoskeleton in infected T cells at 

the VS and compare what we know to the elegant work that has been performed on the IS. We will 

then consider how lessons from T cell secretion at the IS may guide us towards achieving greater 

insight into cell-to-cell spread of HIV-1 at the VS.  

2.3. Cytoskeletal polarization 

Polarization of HIV-1 egress at the VS almost certainly requires the active transport of viral 

proteins to sites of cell-cell contact mediated by the cellular cytoskeleton. A compelling feature of 

polarization at the VS is reorientation of the MTOC within the infected T cell to the site of cell-cell 

contact ([9,15,28,32,36,52,53] (Figure 3). Localization of the MTOC proximal to the VS occurs at a 

frequency greater than would be expected by chance [15,28,32,36] indicating that T cell contacts 

between retrovirus-infected and uninfected cells may be stimulating MTOC reorientation. Put simply, 

MTOC polarization may contribute directly to the delivery of viral proteins to the HIV-1 VS. MTOC 

polarization at immune cell contacts is essential for the secretion of effector proteins at the IS [54,55] 

and follows a series of increasingly well-defined steps. For example, one molecule in particular,  

ZAP-70 is a regulator of T cell activation and IS formation that operates early after T cell receptor 

(TCR) engagement to initiate cytoskeletal remodeling and MTOC polarization and to direct effector 

functions [56]. Notably, T cells defective for ZAP-70 are less able to support T cell-T cell spread of 
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HIV-1 due to impaired VS formation and mislocalization of Gag [28], hinting that MTOC mobilization 

to sites of cell-cell contact may have important consequences for HIV-1 pathogenesis. Moreover, we 

know that treating HIV-1 infected T cells with pharmacological inhibitors of actin [26,31] and 

microtubule [31,33] remodeling reduces cell-to-cell spread at the VS, suggesting that maintaining a 

functional cytoskeleton is crucial for polarization of HIV-1 assembly at the contact site. Whether 

recruitment of the MTOC towards sites of cell-cell contact is itself an essential step in the sequence of 

viral egress at the VS, or whether a functional cytoskeleton is simply required to maintain the integrity 

of viral assembly platforms at the plasma membrane per se remains to be determined.  

Figure 3. Polarization of the microtubule organizing centre at the site of cell-cell 

contact. A 3D reconstructed immunofluorescence image taken of a conjugate formed 

between an uninfected primary T cell pre-stained with a non-blocking CD4 monoclonal 

antibody (green) and an HIV-1 infected primary T cell (asterisk). The MTOC (red) was 

stained with a -tubulin specific antiserum and the polarized MTOC in the infected T cell 

is indicated with an arrow. The corresponding DIC image is also shown.  

 
 

With this in mind, it is useful to consider the description of HIV-1 polysynapses – conjugates that 

form between a single infected T cell and multiple uninfected targets. During polysynapse formation, 

Gag accumulates in the infected T cell at interfaces formed with multiple attached target cells [9]. In 

this case, the MTOC can only be polarized towards a single target at any given time, or remain 

unpolarized. Thus, polysynapses provide us with a paradox that suggests that MTOC polarization may 

be dispensable at the HIV-1 T cell VS. Three possible explanations could reconcile these data. First, if 

Gag accumulation occurs independently of MTOC reorientation in the infected T cell, and polarization 

of viral proteins and the MTOC to the VS are not related and can be functionally uncoupled. Second, if 

MTOC polarization is still functionally linked to directional egress but precedes Gag accumulation. 

Third, that the first contact between an infected and an uninfected target cell leads to reorientation of 

the MTOC and polarization of viral budding, but that infectious virions then remain associated at the 
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cell surface and can move around the plasma membrane to infect other target cells, similar to the 

‘biofilm-like’ structures observed for HTLV [57]. Because the aforementioned studies were all 

performed on fixed cells, the dynamics of MTOC remodeling and Gag delivery could not be 

temporally and spatially evaluated. In addition, it is possible that MTOC dynamics influence the 

outcome of VS formation (similar to the cytotoxic IS) such that the target cell in closest proximity to 

the polarized MTOC at a polysynapse would be more efficiently or preferentially infected compared to 

neighboring cells. 

Future work in this area would ideally be in the form of live-cell imaging of T cells expressing 

fluorescent cytoskeletal proteins to follow the kinetics of actin and microtubule remodeling following 

cell-cell contact. Moreover, at the CD8+ T cell IS MTOC docking is associated with clearance of the 

actin-binding protein IQGAP from the synapse [54] and it would be informative to determine if MTOC 

recruitment to the VS involves remodeling of IQGAP and actin-associated proteins as well. Finally, 

RNAi knockdown of cytoskeletal effectors such as the forming family members FMNL1 (formin-

like 1), Dia1 (diaphanous 1), ADAP and IQGAP block MTOC polarization at the T cell IS [58,59] and 

it would be telling evaluate the effects of protein knockdown on T polarization at the VS, the 

recruitment of HIV-1 Env and Gag to the VS and cell-cell spread. Such experiments are likely to 

provide important insight into whether MTOC polarization following T cell contact is really a 

necessary step in directing HIV-1 protein trafficking and budding at the VS, or whether it is merely 

coincidental. 

2.4. What triggers cytoskeletal polarization at the VS? 

As adhesion molecules, integrins are conductors of cell-cell interactions. Integrins are a common 

thread linking the HIV-1 VS, the HTLV VS and the IS and are therefore good candidates for 

delivering directionality to viral egress at cell-cell contacts. The possibility that integrins have a more 

over-arching function at the VS than merely providing supporting adhesive forces is evidenced by 

several studies that implicate ICAM-1 signaling in MTOC polarization at the HTVL-1 synapse 

[36,52,53]. In that system, expression of the HTLV-1 transactivator protein Tax synergises with 

ICAM-1 signaling, via the Ras-MEK-ERK pathway, to provide directionality for cell-to-cell spread 

[53]. At the T cell IS, polarization is triggered by the strength of the TCR signal [60] with a 

contribution from integrin adhesion; by contrast to the natural killer cell IS where integrin signaling 

controls polarized vesicle trafficking [61-63]. Signaling events initiated by LFA-1-ICAM at the HIV-1 

T cell VS have not been investigated and the triggers for polarization are unknown, but in light of 

experiments performed with other retroviruses and at the immunological synapse, it seems probable 

that integrins will be an important player in providing directionality at the HIV-1 synapse.  

The second, more speculative, possibility is that the HIV-1 Env glycoprotein may itself trigger 

polarization of viral and cellular proteins at the VS. This could theoretically occur either by direct or 

indirect mechanisms. Engagement of Env with CD4 initiates evolution of the VS and numerous studies 

have attested to the importance of cytoplasmic motifs in Env driving Gag localization and directing 

polarized budding from infected cells [64-68]. Polarized assembly of MLV at sites of cell-cell contact 

is dependent on the cytoplasmic tail of Env and deleting the intracellular portion of Env abolishes 

polarization [51]. Whether this is due to direct or indirect effects of Env on the recruitment and 
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sequestration of Gag at the contact interface is unknown. The gp41-cytoplasmic domain of Env is 

well-known to associate with the p17 matrix component of Gag thereby influencing Gag trafficking 

and directing sites of virus budding [67-75]. Certainly, there is no evidence to date that Env contains 

classical signaling motifs within its cytoplasmic domains that may activate Gag trafficking pathways, 

but the concept that Env may indirectly induce Gag accumulation at the HIV-1 virological is an 

interesting idea nonetheless.  

3. Polarized trafficking and secretion from T cells: lesson from the immunological synapse 

The plasma membrane of differentiated cells is divided into a series of microdomains each with 

specific composition of proteins and lipids. In the case of epithelial cells, polarity is inherent in the 

differentiation of membranes into basolateral and apical surfaces that are targeted by different cellular 

proteins; however, CD4+ T cells are not inherently polarized but become so following activation, 

migration and cell-cell contact (reviewed in [76-78]). Motile lymphocytes are functionally 

compartmentalized into the leading edge and the uropod, with the leading edge rich in sensory 

receptors such as chemokine receptors and adhesion molecules accumulating in the uropod. During 

cell-cell contact, T cell polarity is rearranged leading to loss of the uropod structure and reorientation 

of the MTOC towards the contact site at the IS. Because there are clear differences in membrane 

organization in response to polarization induced by migration and cell-cell contact, here we will only 

consider protein trafficking in T polarization during cell-cell contact and how this may be relevant to 

HIV-1. 

One of the best-studied examples of cell-cell contact between immune cells is at the IS. The IS 

evolves following contact between antigen presenting cells (APC) and T cells and is a focal point for 

the directed secretion from T cells of immunomodulatory proteins such as cytokines [79-82], lytic 

proteins such as perforin and granzymes [83] and membrane-associated regulatory proteins including 

CTLA-4 and FasL [84-86] that is coordinated by the regulated secretory pathway. In general, the 

delivery of cellular proteins to the plasma membrane in T cells is controlled either by the constitutive 

secretory pathway that is active in all cells, or the regulated secretory pathway that is activated 

following TCR-engagement (or ionophore treatment) and is a unique property of professional 

secretory cells such as haematopoeitic cells. Numerous parallels exist between the IS and the VS [23], 

not least that polarized assembly and budding of HIV-1 at the T cell synapse is reminiscent of 

polarized exocytosis at the IS. Exocytosis from T cells at the IS has been the focus of much research 

and is likely to provide useful insight into the molecular mechanisms of HIV-1 protein trafficking and 

egress following cell-cell contact. One well characterized example of regulated secretion occurs at the 

cytotoxic CD8+ T cell IS where lytic granules (a form of specialized secretory lysosomes, SL) traffic 

cytolytic proteins to the plasma membrane for target cell killing [83,87]. In general, the IS is a focal 

point for T cell secretion with polarization of the MTOC towards the plasma membrane repositioning 

the Golgi apparatus, recycling compartments and associated organelles proximal to the synapse. In this 

way the IS serves as a “hot spot” for exocytosis and endocytosis during cell-cell contact. Lytic 

granules rapidly polarize towards the MTOC by moving along microtubules in a minus-end direction. 

Once at the MTOC, granules undergo shorter-range or tangential microtubule movement [54,88] to 

dock at the plasma membrane, fuse and release their contents. Studies on CTLs from human patients 
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with genetic defects in regulated secretion and from related mouse models have identified the cellular 

proteins Lyst, AP-3, Rab27a and Munc13-4 as effectors of SL biogenesis, trafficking and secretion 

[89-95].  

CD4+ T cells also contain SL-like compartments that help regulate the local surface expression of 

CTLA-4 at the IS [84,85] and also contribute to target cell killing by a small subset of CD4+ T cells 

with cytolytic function [86,96-101]. Interestingly, HIV-1 Env has been shown to colocalize with 

CTLA-4 in infected CD4+ T cells indicating that the trafficking of these proteins may intersect [102]. 

Regulated secretion by CD4+ T cells is likely to be more complex than secretion by CD8+ T cells and 

is comparatively less well-studied, not least because CD4+ T cells secrete a range of different effectors 

following stimulation by cell-cell contact. At the IS, the major function of CD4+ T cell secretion is the 

release of cytokines and the local upregulation of inhibitory proteins including CTLA-4. Cytokine 

secretion from CD4+ T involves at least two distinct pathways; a unidirectional pathway that focuses 

secretion of cytokines such as IL-2 and interferon- towards the engaged target cell, and a 

multidirectional pathway for the release of proinflammatory proteins like TNF [82]. In an effort to 

identify trafficking proteins implicit in CD4+ cell secretion, Huse et al. generated a panel of GFP-

fusion protein and assessed their localization with cytokines and identified Rab3d and Rab19 (involved 

in synaptic cytokine secretion), syntaxin 6 (multidirectional secretion) and Rab37 and Vti1b 

(intermediate effect) as candidates for CD4+ T cell secretion. Crucially, these Rabs and SNARES are 

not the same effectors implicated in CD8+ T cell secretion. Furthermore, secretion from CD4+ T cells 

has different requirements for microtubule-based movement and actin-effector protein function 

depending on the nature of the secreted cargo and the directionality of secretion [82,103]. Whether 

HIV-1 protein trafficking to the VS intersects pre-existing pathways that target proteins to the IS in  

T cells is not known, but it seems probable that there will be overlap between contact-induced 

assembly of HIV-1 proteins at the VS and regulated secretion from T cells. 

In addition to exocytosis, the IS as an active site of endocytosis that helps regulates the local 

expression of the TCR and to recycle endocytosed proteins back to sites of cell-cell contact [63,104]. 

Endocytosis of HIV-1 proteins at the VS is a potential mechanism by which viral proteins could be 

targeted to secretory compartments (SL and/or recycling endosomes) for delivery back to the plasma 

membrane at the contact site. One might imagine that this could occur either by sorting of viral 

proteins from early endosomes into SL or alternatively by delivery to recycling endosomes that 

polarize at T cell synapses. For example, HIV-1 Env contains both dileucine and tyrosine motifs that 

are recognized by clathrin adapators AP-1 and AP-2 [105,106]. Moreover, potential endocytosis at the 

VS might also provide a necessary stop signal to trigger the dissociation of cell-cell contacts [24] by 

regulating the local levels of surface receptors, but this is purely speculative. 

4. Concluding remarks  

Polarization of HIV-1 assembly and budding at the T cell VS is central to promoting efficient  

HIV-1 dissemination and enhancing viral pathogenesis, as many studies attest. T cells are well placed 

to respond to external stimuli and can rapidly adopt a polarized membrane morphology and align the 

cellular cytoskeleton in response to cell-cell contact, most notably at the immunological synapse. Cell-

cell spread of HIV-1 at the VS is a relatively new and striking example of T cell polarization that takes 
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place at immune cell contacts in the context of retroviral infection. Future work in this area will 

undoubtedly attempt to unravel the pathway of protein trafficking to the VS. Specifically, it is timely 

to explore the molecular regulation of polarization at the VS and to determine to what extent protein 

trafficking to the VS overlaps with the better defined pathway of T cell secretion at the IS. A panel of 

effector proteins required for polarized secretion at the IS have now been described in CD8+ and CD4+ 

T cells and this seems a good starting point. Such studies will not only provide further insight into the 

cell biology of retroviral infection, but may also identifying novel drug targets to inhibit cell-cell 

spread of HIV-1. 
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