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Abstract: Herpesviruses employ a plethora of mechanisms to circumvent clearance by host 

immune responses. A key feature of mammalian immune systems is the employment of 

regulatory pathways that limit immune responsiveness. The primary functions of these 

mechanisms are to control autoimmunity and limit exuberant responses to harmless antigen 

in mucosal surfaces. However, such pathways can be exploited by viral pathogens to 

enable acute infection, persistence and dissemination. Herein, we outline the current 

understanding of inhibitory pathways in modulating antiviral immunity during herpesvirus 

infections in vivo and discuss strategies employed by herpesviruses to exploit these 

pathways to limit host antiviral immunity.  
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1. Introduction 

The mammalian immune system has evolved to encompass activating and inhibitory pathways. 

These counter-regulatory mechanisms enable the immune system to initiate protective coordinated 

responses against invading pathogens that are sufficiently limited in magnitude to avoid overt 

bystander damage to infected tissues. In addition, inhibitory immune pathways limit the development 

of harmful autoimmune reactions and over-exuberant immune responses to harmless antigens that are 

often encountered at mucosal surfaces.  
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Herpesviruses are large DNA viruses that are divided into the -herpesviridae, -herpesviridae and 

-herpesviridae families. Herpesviruses establish life-long infection in their hosts and are ubiquitous 

within the human population. These infections are often asymptomatic in healthy individuals. 

However, herpesvirus infections cause significant disease in immune compromised individuals, and 

the -herpesvirus human cytomegalovirus (HCMV) is the leading infectious cause of congenital 

defects in the Western world. Moreover, the -herpesvirus Epstein Barr virus (EBV) causes infectious 

mononucleosis and, in addition to the -herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), 

is associated with the development of several cancers [1].  

Herpesviruses are thought to have emerged approximately 400 million years ago [2]. During 

co-evolution with mammals, herpesviruses have acquired numerous genes encoding proteins that 

function primarily to evade or manipulate immune pathways, thus enabling the establishment of 

life-long infection within their host. It is becoming increasingly apparent that host immune inhibitory 

pathways critically influence the outcome of herpesvirus infections. In this article, we summarize 

current understanding of the immune inhibitory mechanisms that modulate anti-herpesvirus 

immunity and highlight strategies adopted by herpesviruses to exploit such pathways to antagonize 

antiviral immunity.  

2. Mammalian and Viral Interleukin-10  

The immune-modulatory cytokine interleukin-10 (IL-10) is a member of the same family of 

proteins as type I IFNs and IFNγ [3]. Mammalian IL-10 is produced predominantly by macrophages, 

dendritic cells (DCs), B cells and regulatory T cells (Tregs), although it can be produced by virtually 

all T cell subsets [4]. The IL-10 receptor (IL-10R) is composed of two subunits. The IL-10R1  

(IL-10Rα) is the ligand-binding subunit expressed by hematopoietic cells whereas IL-10R2 (IL-10Rβ) 

is an accessory subunit for signaling constitutively expressed by most hematopoietic and  

non-hematopoietic cells. The interaction between IL-10 and its receptor engages the Jak family 

tyrosine kinases Jak1 and Tyk2, which are constitutively associated with IL-10R1 and IL-10R2 

respectively, leading to tyrosine phosphorylation and activation of STAT (signal transducers and 

activators of transcription) proteins, predominantly STAT3 and to a lesser extent STAT1 and STAT5.  

IL-10 can induce a broad range of biological functions (reviewed in [5,6]). Although IL-10 displays 

certain immune-stimulatory activities, the majority of data to date demonstrates that IL-10 exerts 

suppressive effects on immune cells, particularly APCs and T cells (either directly or via suppression 

of APC function). Consequently, IL-10 profoundly influences a plethora of immune responses in vivo, 

including responses elicited in response to parasitic and bacterial infections [7].  

During acute viral infections, IL-10 has paradoxical functions. For example, IL-10 can limit 

immunopathology induced by respiratory syncytial virus (RSV) [8,9], and influenza [10], suggesting 

the primary function of this pathway is to limit infection-induced immune-mediated tissue damage. 

Following high dose influenza infection however, IL-10-deficient mice exhibit accelerated clearance 

of virus which is associated with the induction of antiviral Th17 cells [11], suggesting that the 

biological outcome of IL-10R signaling during acute infection may vary depending on the virus 

pathogen and the infectious dose. Importantly, during chronic virus infection in vivo, as demonstrated 

in the LCMV model, IL-10 antagonizes antiviral immunity and promotes virus persistence [12,13].  
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2.1. EBV BCRF1 

The importance of IL-10R inhibition of anti-herpesvirus immunity is implied by the evolutionary 

acquisition of functional IL-10 homologues (vIL-10) by herpesviruses [14–18], including the human 

viral pathogens HCMV [19] and EBV [20]. The EBV-encoded protein BCRF1 was the first 

herpesvirus-encoded protein identified to contain sequence homology (90% at amino acid level) with 

mammalian (human) IL-10 [20]. BCRF1 is expressed during lytic infection [21,22]. It inhibits 

monocyte stimulation of T cells [23], and antagonizes expression of MHC class II [23] and 

costimulatory ligands [24] on the surface of macrophages/monocytes, suggesting BCRF1 functions to 

inhibit the activation of virus-specific CD4+ T cells. Further, BCRF1 treatment of B cells inhibits 

expression of the transporter protein TAP1 and the immunoproteosome subunit b1i/LMP2 [25], 

interfering with B cell translocation of antigenic peptides to the endoplasmic reticulum for loading 

onto MHC class I. Thus, during active replication in B cells BCRF1 may contribute to evasion of direct 

recognition by CD8+ T cells. BCRF1 may also exert more broad suppressive effects on the antiviral 

immune response via inhibition of cytokine production by T cells [20,26] and monocytes [23]. 

Like mammalian IL-10, BCRF1 also exhibits immune stimulatory properties in vitro. Specifically, 

BCRF1 promotes B cell immunoglobulin secretion [27], survival [28] and proliferation [29] in a 

comparable manner to mammalian IL-10. Interestingly however, BCRF1 lacks certain properties of 

mammalian IL-10 including the ability to induce mast cell proliferation and expression of MHC class 

II by B cells [29]. The presence of an isoleucine residue at position 87 of hIL-10 is critical for 

immunostimulatory functions of IL-10. Interestingly, this residue is replaced by an alanine in BCRF1 

and an alanine > isoleucine substitution in this position partially reconstitutes the BCRF1 stimulatory 

functions exhibited by mammalian IL-10 [30]. Importantly, BCRF1 demonstrates a 1,000-fold 

reduction in affinity for IL-10R [31]. Although a CD4+ T cell clone displays reduced sensitivity for 

BCRF1-mediated inhibition of IL-2 production as compared to mammalian IL-10 [31], the reduced 

affinity has little influence on other suppressive activities of BCRF1 [20,23–26]. Thus, BCRF1 may 

selectively exploit the immune suppressive functions of the IL-10R pathway for the purpose of 

evading host immunity and establishing persistent/latent infection. Further, the ability to induce B cell 

transformation [32] and B cell expansion/survival [28,29] implies that BCRF1 may promote carriage 

of latent virus in B cells.  

2.2. HCMV UL111A 

The HCMV UL111A gene product shares 27% amino acid sequence identity with mammalian IL-10 

[19]. Despite this relatively low homology, the UL111A-encoded protein binds hIL-10R with higher 

affinity than mammalian IL-10 [33]. In vitro studies demonstrated that UL111A (or cmvIL-10), which 

is expressed during lytic infection [19], displays many of the immunomodulatory functions of 

mammalian IL-10 (reviewed in [34]) including inhibition of macrophage/monocyte activation and  

pro-inflammatory cytokine production [35] and dendritic cell maturation and survival [36,37]. Thus, 

these experiments suggest that UL111A dampens virus-induced innate immune cell activation and 

subsequent priming of adaptive immunity. 
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Intriguingly, UL111A expression is also detected in natural and experimental latent infection [38]. 

Latency-associated UL111A transcript (termed LAcmvIL-10) is differentially spliced, containing only 

the first two introns of UL111A. Subsequently, LAcmvIL-10 lacks certain functional characteristics of 

full-length UL111A including the induction of STAT3 phosphorylation, suppression of DC maturation 

[38] and enhancement of Fc-mediated phagocytosis by monocytes [39]. Paradoxically, LAcmvIL-10 

maintains the ability to suppress monocyte activation [38] suggesting that HCMV may express 

LAcmvIL-10 during latent infection to subvert host immunity during this phase of infection. In support 

of this hypothesis, myeloid progenitor cells infected with AD169 strain HCMV lacking the UL111A 

gene (and subsequently the full-length and truncated transcripts) exhibit heightened MHC class II 

expression, as compared to cells infected with wild type virus, and elicit a superior alloreactive T cell 

response [40]. Thus, UL111A gene products may dampen host immune responsiveness during acute 

and latent CMV infection in vivo.  

2.3. Mammalian IL-10 and Herpesvirus Infections 

As discussed, mammalian IL-10 is an important regulator of immune responses elicited by a 

plethora of virus infections. The role that mammalian IL-10 plays in regulating anti-herpesvirus 

immunity in vivo has been elucidated in murine systems, particularly the murine cytomegalovirus 

(MCMV) model of infection. IL-10 is expressed by numerous hematopoietic cells during acute 

MCMV infection [41,42]. IL-10 deficient mice suffer from more severe MCMV-induced disease than 

wild type mice [43], including increased weight loss driven by an over-exuberant TNF-producing  

T cell response [44]. Interestingly, IL-10 inhibition of natural killer (NK) cell:DC crosstalk is  

critically required to control this pathological T cell response [44]. Furthermore, intracranial MCMV  

infection causes lethal disease in the absence of IL-10; a phenotype associated with heightened 

pro-inflammatory cytokine production rather than ineffective control of virus replication [45]. In the 

situation of uncontrolled virus replication in mice lacking perforin, IL-10 is secreted by (NK) cells and 

suppresses pathogenic CD8+ T cell responses [41]. In this context, IL-10 neutralization increases virus 

load suggesting that IL-10 can limit MCMV replication, although the mechanism(s) by which this 

occurs is unclear [41]. Interestingly, during acute limiting MCMV infection IL-10 promotes the 

accumulation of NK cells by limiting NK cell activation and subsequent activation-induced cell death 

[42]. Taken with data in a murine model of ocular herpesvirus simplex infection where murine IL-10 

dampens infection-induced myeloid and lymphoid inflammation [46], these data are consistent with 

the idea that, via its suppressive properties, mammalian IL-10 functions to protect the host during acute 

herpesvirus infection by limiting over-exuberant and self-destructing immune responses elicited in 

response to virus challenge. 

IL-10R signaling during chronic herpesvirus infection antagonizes protective antiviral immunity. 

Persistent MCMV replication in the salivary glands is associated with the presence of localized CD4+ 

T cells [47] and NK cells [48] capable of expressing IL-10. Therapeutic blockade of IL-10R signaling 

during this persistent phase of infection enhances Th1 cell accumulation within the salivary glands and 

accelerates virus clearance [47]. In addition, IL-10 deficient mice mount heightened CD4+ and CD8+ 

T cell responses during the chronic/latent stage infection and harbor reduced levels of viral DNA load 

in infected mucosal (lungs) and non-mucosal (spleen) organs as compared with wild type mice [49]. 
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Therapeutic blockade of IL-10R during reactivation of latent -herpesvirus-68 infection in immune 

compromised (CD4-depleted) mice also leads to a reduction in virus load [50]. Therefore, although  

IL-10 inhibition of T cell responses primed during acute infection can lead to an increase of virus load 

during MCMV persistence [44], studies to date collectively suggest that mammalian IL-10 can act 

during both the chronic replicating and latent stages of herpesvirus infections to antagonize antiviral 

immunity, thus contributing to carriage of herpesviruses within their mammalian hosts. 

Given the critical role of mammalian IL-10 in the suppression of anti-herpesvirus immunity, why 

have certain herpesviruses acquired and retained IL-10 homologues? Clearly the kinetics and tropism 

of expression of mammalian and viral IL-10 molecules may differ, and structural and functional 

deviations of vIL-10s from their mammalian counterparts may have profound effects in vivo. Thus, 

vIL-10 molecules may exert complimentary and/or differential effects to mammalian IL-10 that are 

evolutionarily advantageous for the virus. Peter Barry and colleagues have shed substantial light on 

this subject in a series of elegant studies using rhesus CMV (rhCMV) which, unlike other experimental 

models of CMV infection, encodes a functional IL-10 homologue (UL111A). Subcutaneous infection 

with a UL111A virus elicited a greater macrophage infiltrate into the site of infection than that 

observed in response to wild type virus, and UL111A-infected macaques displayed heightened 

dendritic cell accumulation in draining lymph nodes. UL111A rhCMV also elicited increased 

virus-specific T cell responses and a larger, more rapid humoral immune response than wild type  

virus [51]. These experiments clearly demonstrate, as predicted by the large number of in vitro and 

in vivo studies using different models of CMV infection, a clear benefit for cytomegalovirus to 

specifically target the IL-10R signaling pathway to dampen antiviral immunity. Although the authors 

reported no obvious effect of UL111A deletion on virus secretion in saliva and urine during acute 

experimental infection [51], the retention of this vIL-10 by rhCMV (and other herpesviruses) suggests 

that these cytokine homologues offer substantial benefit(s) for the virus in promoting their survival 

and/or dissemination. 

3. Programmed Death Receptor (PD-1)  

The Programmed Death Receptor (PD-1) is a member of the CD28 family expressed on CD4+, 

CD8+ and NK T cells, B cells, monocytes and on some dendritic cell subsets upon activation. It is a 

type 1 transmembrane glycoprotein with an IgV-type extracellular domain and a cytoplasmic signaling 

domain containing two tyrosine residues [52]. It is a monomeric receptor which has two ligands,  

PD-L1 (B7-H1, CD274) [53] and PD-L2 (B7-DC, CD273) [54]. PD-L1 expression is detectable on 

resting B, T, myeloid and dendritic cells and can be up-regulated upon activation [55] as well as on 

non-lymphoid tissues such as heart, skeletal muscle, placenta and lung tissues [53]. PD-L2 has 

significant homology to PD-L1 (38% amino acid identity in mice [56]) and is expressed in an 

inducible manner on dendritic cells, macrophages [54] and activated T cells [57].  

The binding of PD-1 to its ligands induces an inhibitory signal within the PD-1-expressing cell 

[56,58] thought to be triggered by immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated 

recruitment of Src homology region 2 domain-containing phosphatase(SHP)-1 and SHP-2. Engagement 

of this receptor with its ligand has an important regulatory role in the prevention of excessive immune 

responses against infections and the maintenance of peripheral tolerance against self-antigens 
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(reviewed in [59,60]). However the biology of PD-1:PD-L1/L2 is perhaps more complex than a  

uni-directional co-inhibitory pathway (summarized in Figure 1). Indeed, signaling through PD-L1 in 

tumor cells enhances resistance to apoptosis [61]. In addition, hyper activated immunity in response to 

influenza [62] and listeria monocytogenes [63] in the absence of PD-L1 mediated signals has been 

reported, with authors suggesting PD-L1 mediates conditioning of APCs and/or the presence of a 

stimulatory PD-L1-induced signal in these models. Interestingly, PD-1 deficient mice are extremely 

sensitive to Mycobacterium tuberculosis infection exhibiting heightened pro-inflammatory responses 

yet, paradoxically, reduced T and B cell responses and uncontrolled bacterial proliferation [64]. Thus, 

the role that PD-1 plays during infections in vivo can be complex.  

Figure 1. PD-1, BTLA and their mammalian and herpesvirus ligands. Left: T cell-expressed 

PD-1 and BTLA induce inhibitory signalling following binding of their respective 

mammalian and viral ligands. BTLA binding to T cell-expressed HVEM elicits 

NFB-induced pro-inflammatory/pro-survival signalling. Middle: Up-regulation of PD-1 

expression by monocytes is observed in HIV infection and PD-1 ligation induces monocyte 

secretion of IL-10. Right: PD-L1 expressed by tumour cells induces anti-apoptotic signalling. 
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In the context of acute viral infections, with the exception of influenza, PD-1/PD-L1 interactions 

inhibit antiviral T cell immunity [65]. Importantly, PD-1 signaling also drives T cell dysfunction and 

virus persistence in chronic LCMV infection [66]. Furthermore, blockade of PD-1:PD-L1 interactions 

improves the function of T cells reactive to human immunodeficiency virus (HIV) [67] and hepatitis B 

virus (HBV) [68]. Interestingly, PD-1 is up-regulated by monocytes during HIV infection, and ligation 

of this inhibitory receptor by PD-L1 induces IL-10 secretion and leads to CD4+ T cell dysfunction [69].  

The PD-1:PD-L1/L2 pathway is a potentially critical regulator of anti-herpesvirus immunity. 

EBV-specific CD8+ T cells up-regulate PD-1 upon activation [67], and a negative correlation between 

intensity of PD-1 expression and absolute numbers of circulating EBV-specific CD8+ T cells in the 

transition from acute infectious mononucleosis to convalescence has been reported [70]. Furthermore, 

PD-1 mediated exhaustion of EBV-specific (but not HCMV-specific) CD8+ T cells is detected in 
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Systemic Lupus Erythematosus [71]. PD-1 ligation also suppresses HCMV-specific CD8+ T cell 

function [72] and has been implicated in driving attrition of CMV-specific CD8+ T cells in acute 

hepatitis B virus-infected individuals [73].  

These data suggest that PD-1 ligation on herpesvirus-specific T cells may antagonize control of 

infection in vivo; a hypothesis tested in murine models of herpesvirus infections. Although 

MCMV-specific CD8+ T cells express PD-1 in a major site of persistence, the salivary glands, PD-L1 

blockade failed to accelerate virus clearance [74]. Importantly, salivary gland-infiltrating antigen-specific 

CD8+ T cells are not exposed to cognate antigen due to a combination of efficient viral interference 

with MHC class I antigen processing in infected glandular epithelial cells and the inability of salivary 

gland APCs to cross-present antigen to CD8+ T cells [75]. Thus, any possible benefit of blockade of 

the PD-L1 pathway in this setting will be masked by impaired stimulation of virus-specific CD8+ T 

cells. Importantly, in a model of chronic murine -herpesvirus-68 (MHV-68) infection in MHC class 

II-deficient mice in which PD-1 expression by virus-specific CD8+ T cells is observed, blockade of the 

PD-1:PD-L1 pathway reduces virus reactivation [76], underlining the potential importance of this 

inhibitory pathway in the suppression of protective anti-herpesvirus immunity.  

The potential suppressive activity of this pathway represents an obvious target for herpesviruses to 

exploit. Although no herpesvirus proteins with homology to PD-1 ligands have been reported, MCMV 

infection of dendritic cells induces surface expression of both PD-L1 and PD-L2 [77,78]. In stark 

contrast to virus-induced down-regulation of stimulatory ligands (CD80, CD86, CD40), adhesion 

molecules (CD11b and CD11c) and MHC Class I and II, prolonged PD-L1 up-regulation is observed 

in infected cells [78]. Strikingly, poor activation of T cells by MCMV-infected DCs is reversed by  

PD-L1 blockade in vitro and in vivo, suggesting MCMV actively manipulates PD-L1 to inhibit T cell 

activation [78]. Interestingly, tumor cells in EBV-associated cancers such as classical Hodgkin’s 

Lymphoma (cHL) and post-transplant lymphoproliferative disorders also express significant levels of 

PD-L1 [79] suggesting possible active manipulation of this pathway by EBV.  

Therefore, current data suggest it is beneficial for herpesviruses to exploit the PD-1:PD-L1/L2 

inhibitory pathway. It is unclear whether these viruses specifically target the inhibition of antiviral T 

cell responses, or whether PD-1 mediated inhibition of other immune effector mechanisms may be 

exploited by these viruses. Furthermore, the potential virus exploitation of anti-apoptotic signaling 

events through PD-L1 in infected cells requires further investigation.  

4. B and T Lymphocyte Attenuator (BTLA) 

Like PD-1, BTLA (or CD272) is a CD28 family member. As with PD-1, BTLA contains an ITIM 

and an immunoreceptor tyrosine-based switch motif (ITSM) in the membrane proximal and distal 

regions of the cytoplasmic domain, respectively. Whereas the negative signal induced by PD-1 ligation 

is predominantly transmitted through ITSM recruitment of SHP-1 and SHP-2 [80], both ITIM and 

ITSM motifs appear critical for BTLA-mediated suppression of T cell activation [81]. In addition, 

BTLA contains a Grb-2 recognition consensus site that may contribute to negative signaling [81].  

BTLA expression was first reported on Th1 cells but is known to be expressed on a broad array of 

hematopoietic cells [82]. Studies of BTLA-deficient mice have highlighted an important regulatory 

role for BTLA in limiting mucosal inflammation and autoimmunity (reviewed in [82,83]) and BTLA 
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limits immune responsiveness to bacterial and parasitic infections [84,85], suggesting a classical 

inhibitory function for this CD28-family member. However, the biology of BTLA is complicated by 

positive signaling delivered through the cellular ligand of BTLA; the tumor necrosis factor receptor 

superfamily member (TNFRSF) herpesvirus entry mediator (HVEM, or TNFRSF14). BTLA:HVEM 

interactions induce bidirectional signaling resulting in HVEM-mediated NF-kappaB activation 

(Figure 1). This signal promotes survival of HVEM-expressing cells, thus demonstrating that BTLA 

can also promote T cell responses [86].  

HCMV, however, has evolved to exploit the inhibitory properties of BTLA. UL144 is a 

virus-encoded truncated TNFR member consisting of two cysteine-rich domains (CRDs) homologous 

to CRD1 and CRD2 of HVEM [87]. Despite sequence hypervariation in the ectodomain of UL144 

variants expressed by clinical HCMV isolates [88], UL144 proteins from all groups bind BTLA and, 

critically, UL144 suppresses proliferation of polyclonally stimulated CD4+ T cells [87]. Furthermore, 

BTLA is highly expressed by HCMV-specific CD8+ T cells following activation and BTLA blockade 

enhances HCMV-specific CD8+ T cell proliferation in vitro [89]. Therefore, through the acquisition 

and retention of UL144, HCMV appears to induce inhibitory signals induced downstream of BTLA to 

suppress antiviral T cell immunity (Figure 1). Given the broad expression pattern of BTLA on 

hematopoietic cells, it is conceivable that HCMV has evolved to target this inhibitory pathway to 

antagonize multiple immune effector mechanisms.  

5. CD200:CD200 Receptor Pathway 

CD200 is a member of the immunoglobulin superfamily (IgSF) expressed on membranes by a 

heterogeneous group of cells, including B cells, activated T cells, endothelial cells, epithelial cells, 

follicular dendritic cells and neurons [90]. The expression of CD200 in humans [91], mice [92]  

and rats [93] is highly conserved. CD200 contains two extracellular IgSF domains, a hydrophobic  

trans-membrane sequence, and a short cytoplasmic domain [94] that does not contain known signaling 

motifs or docking sites for adaptor proteins [91]. Thus, CD200 is thought to deliver a unidirectional 

signal to its cellular receptor, CD200R. 

Expression of CD200R was originally detected on myeloid cells, including macrophages, 

granulocytes and dendritic cells [95], but has subsequently been detected on NK cells and T cells 

[96,97]. CD200R contains two IgSF domains and a cytoplasmic region containing two tyrosine based 

motifs that can be phosphorylated [98]. In myeloid cells the inhibitory signal induced by CD200R is 

facilitated by recruitment of DOK2 and RasGAP [99]. Upon interaction with CD200, CD200R delivers 

an immunosuppressive signal that antagonizes type 1 cytokine production by DCs [100], induces Treg 

development [101] and inhibits macrophage function [92,98]. Moreover, CD200:CD200R limits 

myeloid cell homeostasis in the periphery [92], lung [102] and, to a lesser extent, the intestinal  

mucosa [103]. CD200R is also a critical negative regulator of inflammation. CD200-deficient mice 

demonstrate rapid onset of experimental autoimmune encephalomyelitis [98] and increased 

susceptibility to acute inflammation induced by bacterial (Neisseria meningitidis) [104] and viral 

(influenza) [102] infections. Importantly, therapeutic ligation of CD200 during ocular HSV infection 

also reduced inflammatory lesions [105], demonstrating the anti-inflammatory nature of this pathway 

in an acute herpesvirus infection. 
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Viral CD200 Homologues (vCD200s) 

The critical role for the CD200:CD200R pathway in the control of homeostasis and inflammation 

suggests an important regulatory function for this ligand-receptor pair in mammals. Importantly 

however, virus-encoded homologues of CD200 (vCD200s) have been identified in the genomes of 

several evolutionary diverse viruses, including herpesviruses, poxviruses, and adenoviruses, suggesting 

that exploitation of the mammalian CD200R pathway increases evolutionary fitness of viruses [106]. 

Members of the -herpesviridae (HHV-6a, HHV-6b and HHV7) and -herpesviridae (HHV-8/KSHV 

and Rhesus rhadinovirus) encode vCD200s (Figure 2). Sequence homology of vCD200s with mammalian 

proteins suggests that viruses acquired these genes from host cells [106]. KSHV encodes the  

best-characterized vCD200, K14, which binds to hCD200R with almost identical kinetics as 

mammalian (human) CD200 despite exhibiting only 40% sequence identify to its mammalian 

counterpart [106]. K14 is expressed during the lytic phase of HHV-8 replication [106]. In vitro 

experiments utilizing K14-transfected cells or K14 fusion proteins have indicated that K14 suppresses 

the activation of neutrophils [107], basophils and NK cells [108], T cells [109] and macrophages [106]. 

Paradoxically however, CD200 has been reported to activate myeloid cells under certain experimental 

conditions [110,111]. Whether differences in these results represent the different experimental 

approaches taken (fusion proteins versus cell transfection) or whether the outcome of K14 signaling is 

determined by the “infected” K14-transfected cell, is unclear.  

Figure 2. Determined structures of cellular CD200 and CD200 homologues encoded by 

human and rat herpesviruses. ‘V’ denotes a conserved variable-like Ig domain and ‘C’ 

denotes a conserved constant-like Ig domain. These domains are formed by disulfide binds 

which are denoted by a red broken line. Light blue portions of the intracellular domain of 

CD200R denotes tyrosine residues which can be phosphorylated during intracellular 

signalling. Dashed lines between receptor/ligands represent known interaction as detected 

in biochemical binding assays. Blue = structure known, Green = predicted structure based 

on homology to cellular CD200. Structural data was obtained from [112]. 
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CD200 homologues encoded by HHV-6 [113] and HHV-7 [114] also bind hCD200R [108], 

although the functional consequences of this interaction in hematopoietic cells is unclear. The Rhesus 

rhadinovirus (RRV) R15 ORF exhibits 30% homology to human CD200 and is detected in the 

cytoplasm and on the cell surface during infection. When expressed as a fusion protein, RRV R15 

inhibits pro-inflammatory cytokine expression by myeloid cells consistent with an immune suppressive 

function for vCD200s. Finally, the English isolate of rat cytomegalovirus (RCMV-E) encodes a 

CD200 homologue (e127) [115] which binds rat CD200R [116]. Intriguingly, absence of e127 

expression by RCMV-E does not influence the induction of pro-inflammatory cytokine expression 

in vitro. However, the authors reported a correlation between the absence of e127 and heightened 

myeloid cell activity in vivo [116], suggesting cytomegalovirus may exploit this pathway to suppress 

myeloid cell activation. In support of this hypothesis, CD200R deficient mice exhibit improved control 

of MCMV infection and increased immune cell responsiveness (including myeloid cells) in infected 

organs [117]. Interestingly however, sequencing of multiple MCMV genomes including three 

low-passage strains isolated from wild mice [118] and the commonly used laboratory Smith 

strain [119] has yet to identify a CD200 homologue in MCMV.  

Why do closely related -herpesviruses vary in their exploitation of this pathway? Interestingly, the 

murine CD200R (mCD200R) family contains four additional genes and a pseudogene, although the 

repertoire of these genes varies in different mouse strains [120]. Proteins encoded by these genes, 

termed CD200R-like proteins a–e (CD200Rla–e) have predicted cytoplasmic binding sites for the 

signaling molecule DAP12, suggesting activating properties [97]. Although mCD200 does not interact 

with activating CD200R family members [121], it is conceivable that evolution of activating 

mCD200R family members may have pressurized MCMV to avoid acquisition of a CD200-like gene 

due to potential cross-reactivity with these activating receptors. Although a similar activating CD200R 

gene is encoded within the human genome, it is not expressed on the cell surface [97]. It is unknown 

whether this protein is in the process of being selected into the human population or is being 

eradicated. Thus the possible influence of this human gene on the past acquisition (or lack of) of 

vCD200 by different herpesviruses is currently unclear. Irrespective of the possible presence of 

activating CD200R-like molecules in some mammals, taken with available literature on pox 

viruses [122], the majority of data suggests that multiple herpesviruses have acquired vCD200 

molecules to inhibit virus-induced immune responses. 

6. Mammalian and Viral Immune Inhibitory Molecules: Therapeutic Targets or Necessary Evils? 

Immune inhibitory receptors represent important targets for herpesviruses to dampen antiviral 

immunity. Subsequently, these pathways or the virus-encoded proteins that exploit them represent 

possible targets of therapeutic strategies aiming to promote antiviral immunity.  

The therapeutic success of specifically targeting viral homologues of immune-modulatory proteins 

will be partially determined by the sequence homology to their mammalian counterparts. Relatively 

low amino acid sequence similarity between HCMV UL111A and mammalian IL-10 [19] offers the 

potential of targeting UL111A in vaccine settings, as demonstrated with rhCMV UL111A [123,124]. 

Such an approach however is considerably more problematic for EBV due to the high sequence 

homology between BCRF-1 and mammalian IL-10 [20]. Moreover hypervariation in some viral 
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proteins, for example in UL144 [88], represents further challenges for vaccination strategies targeting 

these molecules.  

Importantly, in vivo data (predominantly from murine models of virus infections) highlight the 

important role of inhibitory pathways in limiting infection-induced pathology, particularly in acute 

infections. Therefore, herpesvirus persistence and dissemination that occurs as a consequence of 

signaling through these receptors is, from an evolutionary perspective, perhaps an acceptable price for 

mammals to pay to ensure effective control of virus-elicited immune-mediated damage. Thus, 

therapeutic treatment with antagonists of mammalian immune-inhibitory proteins during acute 

infections may have harmful consequences. Paradoxically, in certain conditions, ligation of inhibitory 

receptors may improve virus-induced pathology [46,105]. Importantly, to facilitate establishment of 

chronic infection and dissemination from their host, herpesviruses are also dependent upon survival 

and fitness of the mammal they infect. Therefore, an important function of viral proteins that target 

these pathways may be to contribute to the limitation of infection-induced pathology. In vivo infection 

models that utilize herpesviruses encoding such immune evasion proteins [51,116] will be particularly 

powerful tools to assess this possibility.  

Much of the literature summarized herein implies that herpesviruses target immune inhibitory 

pathways to antagonize T cell responses. HCMV, however, induces the generation of a remarkably 

large virus-specific T cell response over time [125] suggesting that the primary function of these 

immune evasion strategies is not to antagonize memory T cell development. Importantly however, 

experiments using the MCMV model have demonstrated that memory T cell inflation is greatly 

increased in the absence of IL-10 [49], implying that inhibitory immune pathways could be exploited 

to further enhance the functional capabilities and/or in vivo survival of herpesvirus-specific memory T 

cells used, for example, in T cell-based therapies to treat herpesvirus-infected individuals.  

It is likely that herpesviruses exploit immune inhibitory pathways to antagonize T cell responses 

primarily during acute infection, and during persistence in mucosal tissues, thus promoting virus 

survival and dissemination. Although targeting these pathways during acute infection may have 

harmful consequences (as discussed above), manipulation of these molecules to enhance virus-specific 

immunity induced by prophylactic vaccination strategies (including, possibly, attenuated 

herpesviruses) may greatly improve anti-herpesvirus immunity. Importantly, the observation that 

re-infection of HCMV-seropositive women with different strains of HCMV can lead to intrauterine 

transmission of the virus [126] suggests that, in the case of this herpesvirus, boosting existing 

HCMV-specific T cell responses, particularly in mucosal surfaces, may be crucial to reduce horizontal 

transmission and resulting congenital infections. Thus, understanding the role that immune inhibitory 

proteins play in regulating anti-herpesvirus immunity in mucosal (and non-mucosal) tissues of 

persistent/chronically infected hosts may inform strategies aiming to enhance heterosubtypic immunity 

afforded by existing herpesvirus-specific T cell responses. In vivo experiments will be crucial for the 

assessment of the efficacy and safety of targeting immune-inhibitory pathways to enhance herpesvirus-

specific protective immunity in all of these settings.  
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