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Abstract: Diseases caused by arthropod-borne viruses (arboviruses), such as Dengue, 

West Nile, and Chikungunya, constitute a major global health burden and are increasing in 

incidence and geographic range. The natural microbiota of insect vectors influences various 

aspects of host biology, such as nutrition, reproduction, metabolism, and immunity, and 

recent studies have highlighted the ability of insect-associated bacteria to reduce vector 

competence for arboviruses and other pathogens. This reduction can occur through 

mechanisms, such as immune response activation, resource competition, or the production 

of anti-viral molecules. Studying the interactions between insect vectors and their 

microbiota is an important step toward developing alternative strategies for arbovirus 

transmission control. 
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1. Introduction 

Over 130 arthropod-borne viruses (arboviruses) in the families Togaviridae, Flaviviridae, 

Bunyaviridae, Reoviridae, and Orthomyxoviridae can cause disease in humans [1]. Among these 
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viruses, Dengue virus (DENV), West Nile virus (WNV), and Chikungunya virus (CHIKV) have 

become major global public health concerns, with increasing incidence in recent decades as a result of 

the expansion of the vectors’ geographic range, global transport, unplanned urbanization, and climate 

change [1–6].  

Arboviruses are maintained in endemic areas by horizontal transmission between vertebrates and 

blood-feeding insect vectors. While arboviruses can cause serious pathology in humans, they have 

minimal impact on insect mortality. The insect immune system can control, but not clear, arbovirus 

infection; for this reason, infected insects can be vectors for life [7].  

The replication cycle of arboviruses in insects has been extensively characterized; for example, 

DENV replication is well characterized in the Aedes aegypti mosquito [7]. After the mosquito ingests 

an infectious blood meal, the virus has to pass through various infection barriers [8]. It has to infect 

and replicate in the midgut epithelium (midgut infection barrier), then escape from the midgut to 

spread throughout the insect body and infect other tissues (midgut escape barrier). In order to transmit 

the disease, the virus then has to infect and replicate in the salivary glands and disseminate into 

mosquito saliva (salivary gland infection and escape barriers) [8]. The extrinsic incubation period 

(EIP), i.e., the time from virus ingestion until its dissemination in mosquito saliva, where it can be 

transmitted to naïve humans, can vary depending on conditions such as mosquito strain, virus strain, 

and temperature, but it generally ranges from 7–14 days [7,9–19].  

Insects constantly acquire microorganisms such as bacteria and fungi from their natural habitats and 

may also vertically acquire some species from their parents [20–22]. These diverse microbial 

communities affect multiple aspects of insect biology, such as nutrition, digestion, metabolism, 

development, and immunity, and, therefore, have great potential to alter vector competence for 

arboviruses [23–27].  

Several studies of the microbiomes of the major mosquito vectors of arboviruses, Ae. aegypti, 

Ae. albopictus, and Culex quinquefasciatus have been performed along with analyses of anopheline 

microbiomes.  

This review will summarize and discuss recent work on the interactions between the insect gut 

microbiota, insect host biology, and arboviruses, and how these studies may lead towards the 

development of alternative methods for arbovirus control.  

2. Insect Microbiomes: Source, Dynamics, and Composition 

Several studies have characterized the microbiomes of field mosquitoes using either culture-

dependent or -independent methods [22,28–32]. The composition of the mosquito microbiome can 

vary depending on factors such as the species, sex, and life-stage of the mosquito, its geographical 

origin and feeding behavior, and the organ surveyed [22,28–32]. The relationship between these microbes 

and insects is complex and can range from pathogenesis to commensalism or mutualism [25,33].  

2.1. The Mosquito Microbiome from Larvae to Adult  

The mosquito life cycle consists of aquatic larval and pupal stages and a terrestrial adult stage. 

Because of these completely different habitats, the mosquito microbiome in different developmental 

stages can be distinct; this is particularly true for the gut. Mosquito gut contents are usually cleared 
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when the insect undergoes metamorphosis and molting during the larvae-to-pupae and pupae-to-adult 

transitions [34], and the midgut microbiome in adult mosquitoes thus has to be repopulated. In the 

Anopheles gambiae mosquito, guts of aquatic stages have been found to be predominantly populated 

by Cyanobacteria, which serve as the larval diet [35–37]. On the contrary, adult An. gambiae guts are 

predominantly populated by Proteobacteria and Bacteroidetes picked up from the environment and 

ingested food after emergence [37]. There is also evidence that the gut microbiota is important for 

larval development. A recent study showed that when gut bacteria were depleted, mosquito larvae 

failed to molt and develop to the next stage [23]. Larval development could be restored by 

supplementing the breeding water with certain bacteria.  

The adult mosquito gut microbiome has been the most extensively studied. While different 

mosquito species from the same geographical area share several core bacterial taxa, the composition of 

individual guts is highly variable [29]. The most common bacteria among different mosquito species 

from Kenya were Gammaproteobacteria (such as Aeromonas), Flavobacteria (such as Chrysobacterium), 

and Alphaproteobacteria (such as Asaia) [29]. A study of Culex quinquefasciatus, a mosquito vector 

for WNV, from India identified Proteobacteria (such as Enterobacter, Pseudomonas, Pantoea, and 

Proteus), Firmicutes (such as Bacillus), and Actinobacteria (such as Acinetobacter) as gut microbiota [38]. 

Studies in other mosquito species, such as Ae. aegypti and Ae. albopictus, insect vectors for DENV, 

CHIKV, and yellow fever virus (YFV), also identified Actinobacteria (such as Streptomyces, 

Microbacterium, and Micrococcus), Firmicutes (such as Bacillus), and Proteobacteria (such as Asaia, 

Chromobacterium, Enterobacter, Pantoea, Pseudomonas, and Serratia) [22,24,31,32,34,39,40]. 

The influence of the mosquito’s diet is reflected in the differences between male and female Aedes 

microbiomes [22,31]. Male mosquitoes acquire soil- and water-associated Actinobacteria through 

nectar feeding [22]. In female mosquitoes, however, bacteria in the phylum Proteobacteria, especially 

the family Enterobacteriaceae, which can tolerate redox stress from blood-meal digestion, are the 

main components of the midgut microbiome [22,37].  

Although many studies have treated insects as holobionts, a few have tried to characterize the 

microbiota associated with individual organs, such as salivary glands, reproductive organs, and 

hemocoel [20,41–44]. Some microbes identified in non-gut tissues include intracellular bacteria such 

as Wolbachia (reproductive organs, salivary glands, head, muscle, and Malpighian tubules) and 

Spiroplasma (hemolymph, hemocytes, thoracic flight muscle, and nerve cells) [20,40,42]. These 

studies provide additional insight into how the microbiome can influence mosquito biology and vector 

competence. For example, Wolbachia in the salivary glands provides Ae. albopictus with resistance to 

DENV infection [45], and bacteria residing in reproductive organs have the potential for vertical 

transmission and will facilitate the administration of these microorganisms in the field [46–48]. 

Spiroplasma, a maternally-inherited endosymbiont extensively studied in Drosophila, has been found 

to cause pathology, influence insect reproduction, and alter the susceptibility of Drosophila to certain 

pathogens [49–51]. Pathogenicity of Spiroplasma in mosquitoes has also been documented [42,52–55]; 

however, the role of Spiroplasma in mosquito vector competence for arboviruses is as yet poorly studied.  
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2.2. Wolbachia and Cytoplasmic Incompatibility (CI)  

Bacteria of the genus Wolbachia are maternally inherited, obligate intracellular symbionts that have 

been estimated to infect 66% of insects [56]. Several arbovirus vectors such as Culex quinquefasciatus 

and Ae. albopictus are naturally infected with Wolbachia, but not Ae. aegypti [43,57–59]. Recent 

research, however, has shown that stable transinfection of Wolbachia from Drosophila and 

Ae. albopictus into Ae. aegypti is possible [41,60,61] and, in fact, has great potential as an arboviral 

control strategy (described below in Section 3).  

Wolbachia spreads quickly through populations because of its ability to alter insect reproduction 

through mechanisms such as feminization, parthenogenesis, and cytoplasmic incompatibility (CI), 

which increase the reproductive success of infected insects [62]. In mosquitoes, CI ensures that 

offspring will be infected by Wolbachia because uninfected eggs fertilized with sperm from infected 

males will not survive [63,64]. This phenomenon, which is maintained in stably trans-infected Ae. aegypti, 

is useful for the dissemination of Wolbachia in field mosquito populations [47].  

2.3. The Insect Eukaryotic Microbiome  

In addition to bacterial microbiota, studies have also isolated eukaryotic microorganisms such as 

fungi and yeast using culture-dependent methods. An early study identified 18 non-pathogenic yeast 

isolates in the genera Candida, Yarrowia, Rhodotorula, and Cryptococcus from larval and adult stages 

of Aedes, Culex, and Anopheles mosquitoes [65]. A later study isolated Candida and Pichia yeast from 

Ae. aegypti midguts [66]. Wickerhamomyces anomalus yeast has also been found in the midgut and 

reproductive organs of various mosquito species, suggesting a complex eukaryotic microbiome in 

various tissues [67,68]. These findings are not limited to mosquitoes. For example, 39 fungi were 

isolated from the cuticle and midgut of five sandfly species, suggesting that eukaryotic microbiota 

might be common among insects [69].  

The eukaryotic microbiota has been much less well-studied than the bacterial microbiota, especially 

with metagenomic sequencing methods, and further work is required in order for us to fully understand 

its impact on insect biology and arbovirus transmission.  

Paratransgenesis, which involves the genetic modification of insect microbiota to inhibit human 

pathogens, is considered a promising novel disease control approach [70,71]. The eukaryotic 

microbiome, especially yeast, have a high potential for paratransgenesis due to their safety, large scale 

production systems, and available genetic manipulation tools [72–74]. Yeasts can be genetically 

modified to inhibit arboviruses through secretion of antiviral anti-microbial peptides (AMP), such as a 

cecropin-like peptide possessing anti-DENV and anti-CHIKV activity [75]. Paratransgenesis can also 

be applied to entomopathogenic fungi, thus maximizing disease control potential through a 

combination of vector killing and reduction of vector competence. This approach has been employed 

with the fungus Metarhizium anisopliae, by engineering it to express the SM1 peptide, which inhibits 

Plasmodium development in Anopheles mosquitoes [76].  
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3. Microbiota-Driven Mechanisms Affecting Vector Competence 

Insect microbiomes have long been co-evolving with their hosts. Early studies of insect symbionts 

suggested beneficial roles in nutrition; for example, the gut microbiota of termites greatly facilitate 

cellulose digestion [77,78]. Recent studies in medically important insect vectors also indicate the 

importance of microbiota for nutrient digestion, metabolism, egg production, development, and 

immune responses [23,25–27,79–82]. In other cases, endosymbionts, such as Wolbachia and 

Spiroplasma, may require nutrients from the host for efficient replication [83,84]. These interactions 

have great potential to influence vector competence for pathogens, since arboviruses require host 

factors and cellular machinery for their replication and are also controlled by insect immune responses. 

In addition to these indirect effects, microbiota may also directly interact with arboviruses, since some 

bacteria species are known to secrete anti-viral compounds [85–88]. A novel Chromobacterium sp. 

(Csp_P) species isolated from field-caught Ae. aegypti can reduce mosquito susceptibility to DENV 

infection when introduced to the mosquito midgut tissue [89]. Certain microbiota can also increase 

vector competence for arbovirus infection [90,91]. 

3.1. Immune System Modulation  

The insect immune system relies mainly on innate immune responses, which recognize pathogen 

associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Pathogen 

recognition activates immune signaling pathways such as the Toll pathway, the immune deficiency 

(IMD) pathway, and the Janus kinase/signal transducers and activators of transcription (JAK-STAT) 

pathway [92–94]. Activation of these immune signaling pathways triggers immune defense mechanisms, 

such as melanization, encapsulation, phagocytosis, apoptosis, and production of AMPs [95–102].  

Each of these immune signaling pathways can be activated by a wide spectrum of microorganisms 

and viruses. The Toll pathway is activated in response to Gram-positive bacteria, fungi, and DENV 

[16,103–109]. The IMD pathway controls immune responses to bacteria, DENV, and the human 

Plasmodium parasite P. falciparum [16,75,110–113]. The JAK-STAT pathway is a cytokine-induced 

signaling pathway that plays important roles in insect anti-viral (DENV and WNV) immunity as well 

as immune responses to bacteria, fungi, and Plasmodium parasites [16,114–119]. Given the 

overlapping and broad-spectrum nature of immune signaling cascades, microbiota can activate insect 

immune responses and indirectly affect insect vector competence for arboviruses [39,109,119].  

The role of the microbiome on mosquito immunity and vector competence was first characterized in 

Anopheles mosquitoes and Plasmodium parasites [120]. Transcriptomic comparison between septic 

and aseptic An. gambiae using microarrays identified a number of immune-related genes up-regulated 

in the presence of midgut microbiota, which subsequently resulted in lower susceptibility to 

Plasmodium infection in septic mosquitoes. This study provided a fundamental basis for subsequent 

studies concerning the effect of the mosquito microbiome on arbovirus infection.  

The effect of the microbiome on insect vector competence for arboviruses has been studied in 

DENV and Ae. aegypti [39,109]. Removal of mosquito gut microbiota by treatment with antibiotics 

results in higher midgut DENV titers [109], and gene expression analysis has revealed that aseptic  

Ae. aegypti have lower levels of AMP gene expression (attacin, cecropin, defensin, and gambicin), 
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suggesting a lower level of immune activation [109]. DENV infection of Ae. aegypti salivary glands 

induces the Toll and IMD pathways and results in the expression of a putative cecropin-like peptide 

with antibacterial, anti-DENV, and anti-CHIKV activity [75]. Subsequently, the bacterium Proteus sp. 

(Prsp_P), derived from the gut of field mosquitoes, has been shown to up-regulate AMP gene 

expression and confer increased resistance to DENV infection of the mosquito gut [39]. These results 

emphasize the overlap between antibacterial and antiviral insect immune responses. 

Wolbachia contributes to Drosophila’s resistance to virus infection, and trans-infection of 

Wolbachia from Drosophila to Ae. aegypti also increases the mosquitoes’ resistance to DENV, 

CHIKV, YFV, and Plasmodium infection [57,61,121–123]. Introducing Wolbachia into a new insect 

host can elicit immune responses, as shown in the trans-infection of wMel and wMelPop from 

Drosophila to Ae. aegypti [124]. It has, however, also been shown that Wolbachia provides protection 

against DENV infection in Drosophila without activating Drosophila’s immune response [124], 

suggesting that Wolbachia provides protection against arbovirus infection through both immunity-

dependent and -independent mechanisms, depending on the combination of Wolbachia strain and 

insect host. Wolbachia strain wAlbB from Ae. albopictus has also been trans-infected into Ae. aegypti 

and shown to contribute to DENV resistance [41,125,126]. Gene expression analysis of Ae. aegypti 

infected with wAlbB has revealed wAlbB-induced production of reactive oxygen species (ROS), 

which in turn induce the activation of the Toll pathway [126]. 

In addition to immune signaling, RNA interference (RNAi) is another major insect anti-viral 

mechanism. In the canonical exogenous small interfering (siRNA) pathway, viral genomes are 

recognized and degraded based on sequence complementarity, through the action of Dicer2 (Dcr2) and 

the RNA-induced silencing complex (RISC) [127–129]. The components of the exogenous siRNA 

pathway are constitutively expressed in the cytoplasm, and there is to date no evidence that this 

mechanism can be activated by microorganisms other than viruses. However, insects also rely on other 

small RNA pathways, such as the Piwi-interacting RNA (piRNA) [130] and microRNA (miRNA) 

pathways [131,132], to restrict arbovirus infection. Recent studies have shown that Wolbachia 

wMelPop-CLA can alter the mosquito's miRNA profile [133], and can also alter mosquito gene 

expression through the induction of host microRNAs (miRNAs) [134,135]. The induction of miRNA 

aae-miR-12 promotes the growth of Wolbachia through a down-regulation of DNA replication 

licensing factor (MCM6) and the monocarboxylate transporter (MCT1) genes; the increased 

Wolbachia growth then reduces vector competence for DENV in a density dependent manner [134]. 

Aae-miR-2940, another miRNA induced by Wolbachia, suppresses Ae. aegypti DNA methyltransferase 

(AaDnmt2) gene expression. The down-regulation of AaDnmt2 again promotes Wolbachia replication 

but reduces DENV titers in mosquito cells [135]. 

The impact of microbiota on immune activity and vector competence in insects has also been 

documented in insects other than arbovirus vectors. The tsetse fly symbiont, Wigglesworthia 

glossinidia, activates the IMD pathway and inhibits trypanosome parasite infection [136]. Studies of 

W. glossinidia in tsetse suggest the importance of the microbiota in the larval stages for immune 

maturation in adult insects. Wild-type flies that lack W. glossinidia during larval development appear 

to have compromised immune responses such as AMP expression, prophenol-oxidase activity, 

melanization, and increased hemocyte number [81,137]. These results emphasize the importance of 
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certain microbiota in particular developmental stages for maturation of the insect immune system in 

adults; however, this phenomenon is yet to be studied in arbovirus vectors. 

In some cases, the insect microbiota does not confer resistance to arbovirus infection but instead 

increases the insects’ susceptibility to arbovirus infection. For example, trans-infection of wAlbB 

Wolbachia to Culex tarsalis increases the susceptibility of the mosquitoes to WNV infection [90]. 

Gene expression analysis has revealed down-regulation of Rel1, a transcription factor responsible for 

activating Toll pathway-dependent effectors, suggesting that Wolbachia can suppress insect immune 

responses [90]. The presence of Serratia odorifera in the Ae. aegypti midgut increases the mosquitoes’ 

susceptibility to DENV infection, possibly through a suppression of immune responses via the binding 

of prohibitin [91]; however, this possibility has yet to be experimentally confirmed. Other than 

arboviruses, recent studies have shown that Wolbachia increases mosquito susceptibility to 

Plasmodium parasite infection [138,139]. One Wolbachia strain can result in either an increase or a 

decrease of Plasmodium infection, for example, wAlbB reduces P. falciparum infection but increases 

infection of An. gambiae with P. berghei [139,140]. Environmental factors such as temperature can 

also affect the outcome of Plasmodium infection when mosquitoes are infected with Wolbachia [141]. 

For example, Wolbachia wAlbB reduces P. yoelii infection at 28 °C, but increase parasite load  

at 20 °C. These observations emphasize that the relationship between insect vector, insect microbiota, 

and human pathogens is far more complex than anticipated, and environmental factor can influence 

these interaction. 

3.2. Resource Competition 

Certain combinations of Wolbachia strain-insect species do not result in the elicitation of insect 

immune responses, as reported in D. simulans and Ae. albopictus [142] or in infections of Drosophila 

with the wAu and wMel strains [143], suggesting that immune activation is not the only mechanism 

affecting vector competence. Both arboviruses and insect microbiota, especially endosymbionts, such 

as Wolbachia and Spiroplasma, require nutrients and host factors for efficient replication. The anti-viral 

effect of Wolbachia in an Ae. albopictus cell line has been shown to be density-dependent [144,145], 

suggesting that high densities of Wolbachia competing for limited resources can affect vector competence. 

Lipids, for example, are required by both the microbiota and arboviruses. Several arboviruses such 

as DENV and WNV use receptor-mediated endocytosis for cell entry in both vertebrate and 

invertebrate hosts, a process that involves remodeling of lipid membranes [146–150]. After cell entry, 

viruses modify intracellular compartments of the host to facilitate protein processing and virus 

replication and assembly [151,152]. DENV influences expression of genes involved in lipid synthesis 

to alter the host’s lipid composition, lipid homeostasis, and intracellular membrane trafficking [153–155]. 

Wolbachia also uses lipids from host cells for replication and therefore competes with and inhibits 

DENV and CHIKV replication [61,156]. 

In the Drosophila and honeybee models, Spiroplasma replication requires lipid and vitamins from 

its insect host [83,84]. Its requirements in mosquitoes have not been studied, but if similar to those of 

Drosophila and honeybees, it is plausible that the bacteria may also be able to influence vector 

competence through Wolbachia-like resource competition mechanisms. 
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3.3. Secondary Metabolite Production  

Actinomycetes, bacteria commonly found in mosquito gut, have long been known to secrete 

secondary metabolites with anti-bacterial, anti-fungal, and anti-viral activity [88,157]. Another 

bacterium commonly found in soil and water, Chromobacterium violaceum, has also been studied for 

its anti-viral activity [86,158]. A recently characterized Chromobacterium sp. (Csp_P) isolated from 

field mosquito guts, has shown a promising potential as vector-borne disease control tool. Csp_P 

blocks infection of An. gambiae and Ae. aegypti with Plasmodium and dengue virus, respectively, and 

exerts entomopathogenic activity against larval and adult stages, likely though the production of 

secondary metabolites [89]. Bacteria isolated from the Ae. albopictus midgut, such as Pseudomonas 

rhodesiae, Enterobacter ludwigii, and Vagococcus salmoninarium, have been shown to directly inhibit 

La Crosse virus independently of the mosquito, suggesting that these bacteria may produce anti-viral 

molecules [159].  

These discoveries suggest that certain species of disease vector’s natural gut microbiome directly 

influences arbovirus infection through natural products. Isolation of these bacteria and anti-pathogen 

molecules may open an interesting avenue for the discovery and development of novel therapeutic drugs. 

4. Field Applications of Insect Microbiota for Arbovirus Transmission Control  

The concept of insect microbiota as an arbovirus control tool has great potential, but it also raises 

numerous practical and safety concerns. In addition to exploring and characterizing anti-viral 

mechanisms, studies to address the applicability of these microorganisms to the field should be 

pursued. For example, the microbial composition of field mosquito guts can be far more complex than 

in those of mosquitoes in laboratory settings, and this complexity may interfere with the proposed 

arbovirus transmission-blocking strategy. This complexity was addressed in a recent study of the effect 

of the mosquito microbiome on the ability of Wolbachia to establish itself in a new insect host [160]. 

Interactions between the microbiota and Wolbachia inhibited transmission of Wolbachia to the next 

generation, and also resulted in mosquito mortality.  

To date, the most advanced field application of insect microbiota for controlling arbovirus 

transmission is the Eliminate Dengue program in Australia, which has released Wolbachia-infected 

Ae. aegypti to control DENV transmission [47,60,161]. In this case, Wolbachia successfully invaded 

the natural mosquito population, and a follow-up study has found that field-caught Wolbachia-infected 

Ae. aegypti still maintain their refractoriness to DENV [162]. This program has since been expanded to 

other countries, including China, Vietnam, Indonesia, Colombia, and Brazil [163]. 

For gut bacteria which, unlike Wolbachia, are unable to drive themselves into a population, 

achieving sustained delivery to mosquitoes in nature remains an important and understudied practical 

issue. Existing measures for mosquito population control such as oviposition traps, spraying of toxins 

or insect pathogens, and artificial nectar bait [164–169] can be adapted as dissemination strategies; 

however, continued release may be required to maintain these microbiota in the mosquito population.  

Paratransgenic approaches, while not explored in the area of arbovirus control, have the potential to 

reduce arbovirus transmission in a number of ways. Microbiota can be engineered to (1) have 

enhanced entomopathogenic activity [170,171], (2) secrete anti-pathogen molecules (extensively 
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studied for arthropod-borne parasites) [70,71]), or (3) secrete molecules that activate insect immune 

responses against the pathogen. Research to identify candidate genes and molecules that increase 

entomopathogenic activity, inhibit arboviruses, and activate insect immune responses is required to 

move the field forward.  

Collectively, research that will pave the way for the use of insect-derived bacteria as an alternative 

arbovirus control strategy is still at an early stage. Extensive studies are required to ensure safety and 

effectiveness prior to a field release of insect microbiota as an arbovirus control strategy.  

5. Conclusion 

The global burden of arboviral diseases has been rapidly increasing in recent decades. Studies of 

insect-associated microbial species suggest that they can alter vector competence by modulating host 

immune responses, competing with arboviruses for resources, and secreting anti-viral factors. 

Understanding the tripartite relationships between the insect, its microbiome, and the arboviral 

pathogens it harbors will allow us to develop alternative strategies to reduce the burden of 

arboviral diseases. 
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