
Viruses 2014, 6, 4666-4682; doi:10.3390/v6114666 

 

viruses 

ISSN 1999-4915 

www.mdpi.com/journal/viruses 

Article 

Euthanasia Assessment in Ebola Virus Infected  

Nonhuman Primates 

Travis K. Warren 1,*, John C. Trefry 1, Shannon T. Marko 1,2, Taylor B. Chance 1,  

Jay B. Wells 1, William D. Pratt 1, Joshua C. Johnson 1,3, Eric M. Mucker 1, Sarah L. Norris 1, 

Mark Chappell 1,4, John M. Dye 1 and Anna N. Honko 1,3 

1 US Army Medical Research Institute for Infectious Diseases, 1425 Porter St., Fort Detrick,  

MD 21702, USA; E-Mails: john.c.trefry.ctr@mail.mil (J.C.T.);  

shannon.t.marko.mil@mail.mil (S.T.M.); taylor.b.chance.mil@mail.mil (T.B.C.); 

jay.b.wells.ctr@mail.mil (J.B.W.); william.d.pratt4.civ@mail.mil (W.D.P.);  

joshua.johnson@nih.gov (J.C.J.); eric.m.mucker.ctr@mail.mil (E.M.M.);  

sarah.l.norris2.civ@mail.mil (S.L.N.); mark.chappell@usuhs.edu (M.C.); 

john.m.dye1.civ@mail.mil (J.M.D.); anna.honko@nih.gov (A.N.H.) 
2 Madigan Army Medical Center, 9040 Jackson Ave., Tacoma, WA 98431, USA 
3 National Institute of Allergy and Infectious Diseases, Integrated Research Facility, 8200 Research 

Plaza, Fort Detrick, MD 21702, USA 
4 Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Building 42, Bethesda, 

MD 20889, USA 

* Author to whom correspondence should be addressed; E-Mail: travis.k.warren.ctr@mail.mil;  

Tel.: +1-301-619-3414; Fax: +1-301-619-0350. 

External Editor: Jens H. Kuhn 

Received: 28 October 2014; in revised form: 17 November 2014 / Accepted: 18 November 2014 /  

Published: 24 November 2014 

 

Abstract: Multiple products are being developed for use against filoviral infections. 

Efficacy for these products will likely be demonstrated in nonhuman primate models of 

filoviral disease to satisfy licensure requirements under the Animal Rule, or to supplement 

human data. Typically, the endpoint for efficacy assessment will be survival following 

challenge; however, there exists no standardized approach for assessing the health or 

euthanasia criteria for filovirus-exposed nonhuman primates. Consideration of objective 

criteria is important to (a) ensure test subjects are euthanized without unnecessary distress; 

(b) enhance the likelihood that animals exhibiting mild or moderate signs of disease are not 
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prematurely euthanized; (c) minimize the occurrence of spontaneous deaths and loss of  

end-stage samples; (d) enhance the reproducibility of experiments between different 

researchers; and (e) provide a defensible rationale for euthanasia decisions that withstands 

regulatory scrutiny. Historic records were compiled for 58 surviving and non-surviving 

monkeys exposed to Ebola virus at the US Army Medical Research Institute of Infectious 

Diseases. Clinical pathology parameters were statistically analyzed and those exhibiting 

predicative value for survival are reported. These findings may be useful for 

standardization of objective euthanasia assessments in rhesus monkeys exposed to Ebola 

virus and may serve as a useful approach for other standardization efforts. 

Keywords: filovirus; nonhuman primate; viral hemorrhagic fever; euthanasia; clinical 

pathology; Ebola virus 

 

1. Introduction 

Filoviruses are highly virulent human pathogens for which no vaccines or therapeutics are currently 

licensed; however, several therapeutic and vaccine candidates have shown promising efficacy in 

nonhuman primate models of filovirus infection [1–10], and are potential candidates for use in humans 

against filovirus infection. Demonstrations of efficacy in nonhuman primate filovirus disease models 

will be central to the continued development and licensure of filovirus therapeutic and vaccine medical 

countermeasures, given the ethical and feasibility constraints of conducting human efficacy trials. 

While various nonhuman primate filovirus infection models have been described, experimental 

infection of rhesus monkeys (Macaca mulatta) with Ebola virus has been widely used to characterize 

the pathophysiology of viral hemorrhagic fever and to evaluate efficacy of filovirus vaccine and 

therapeutic candidates. Rhesus monkeys are susceptible to infection with wild-type Ebola virus derived 

from human clinical isolates, through various routes of exposure, including intramuscular and 

respiratory [11–13]. A target dose of virus of 1000 plaque-forming units (PFU) has been widely used 

for most reported studies involving this model. While the timing of disease progression and 

pathophysiology vary among individual animals, manifestations of disease generally do not differ 

widely between animals exposed via an intramuscular versus respiratory routes. After exposure, initial 

clinical signs of illness typically develop within four to five days and include fever and reduced 

activity [13]. Mild alterations to clinical pathology parameters—including elevations of aspartate 

aminotransferase (AST), alkaline phosphatase (ALP), and/or alanine aminotransferase (ALT); and 

reduced lymphocyte numbers—are often observed in rhesus monkeys beginning five days after Ebola 

virus exposure and occur concomitantly with the incipient detection of circulating virus or viral RNA. 

Systemic virus titers generally increase until the time of death and disease signs often progress rapidly. 

Most untreated animals succumb to disease within seven to 11 days after virus exposure. Any of a 

number of severe alterations to serum chemistry parameters indicative of multiple organ impairment 

may be observed in animals preceding death (occurring either spontaneously or by euthanasia) [13,14]. 

These include severely elevated AST, ALP, ALT, blood urea nitrogen (BUN), creatinine (CRE), total 

bilirubin, and gamma-glutamyltransferase (GGT); and reduced calcium (Ca) [13]. Of the 
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hematological parameters affected by exposure to Ebola virus, the most dramatic alterations are 

characterized by lymphopenia (reduced lymphocyte counts), which may rebound immediately before 

death), and thrombocytopenia (reduced platelets). 

Interventional strategies, such as vaccination regimens or pre- or post-exposure administration 

therapeutic agents, can alter the timing and severity of clinical disease onset as well as the severity of 

alterations to clinical pathology parameters [1,5,7,15,16]. Depending on the effectiveness of  

the interventional strategy, rhesus monkeys infected with Ebola virus may be completely protected 

against infection, exhibiting no clinical signs of illness, detectable viremia, or alterations to clinical 

pathology parameters; or animals may exhibit reduced viremia or pathophysiology along with  

an extension in the time to death relative to experimental control animals. Given the high mortality rate 

occurring in control rhesus monkeys infected with Ebola virus, most efficacy studies utilize survival as 

the primary efficacy endpoint. However, it is unusual in the published literature for investigators to 

describe the criteria that were used to assess or justify euthanasia of an animal and in most instances 

the means of death (spontaneous versus euthanasia) for individual animals are unreported. Currently, 

there exists no standardized approach to assess the health status of a filovirus-infected nonhuman 

primate or to assess euthanasia. 

To establish a standardized approach to assessing euthanasia in filovirus-infected nonhuman 

primates, with an emphasis in identifying objective parameters to the greatest extent possible that  

could be used in the euthanasia assessment, historic clinical pathology data, generated as part of 

therapeutic-efficacy evaluations in rhesus monkey Ebola virus hemorrhagic fever disease models, were 

subjected to a retrospective analysis. The goal for these analyses was to maximize both animal welfare 

and objective data collection in accordance with the Food and Drug Administration’s (FDA) Guide for 

Industry on Animal Models, the Animal Welfare Act, and the Public Health Service (PHS) Policy on 

Humane Care and Use of Laboratory animals [17–20]. Additionally, these specific data were identified 

as a critical need in the 2011 National Research Council Report on Animal Models for Assessing 

Countermeasures [20]. While the results discussed herein are not “the” solution, they can provide a 

statistical, standardized argument for endpoint assessment that will prevent loss of data and remove a 

certain level of subjectivity. Recommendations based on the statistical analyses for criteria to be 

considered for assessing euthanasia of an Ebola virus infected rhesus monkeys are provided. The 

approach provided in this report may be useful to guide similar euthanasia assessment strategies for 

other test systems or viral hemorrhagic fever disease models. 

2. Materials and Methods 

2.1. Animal Experiments 

No animals were subjected to experimental Ebola virus infection specifically to obtain data for  

the analyses described in this report. All presented data were derived from historic experiments 

collected from ten experiments over a period of four years. Rhesus monkeys were participants in 

therapeutic- or vaccine-efficacy evaluations and served either as infection-control subjects or as 

experimental-treatment animals. Animals were exposed to a target dose of 1000 PFU of Ebola virus by 

intramuscular injection or by exposure to aerosolized virus. Blood samples were collected periodically 
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during the course of infection, and in most cases, at the time of euthanasia. In all experiments, 

investigators euthanized animals that were observed to be moribund, as assessed using subjective 

clinical signs recorded at least twice daily, by pentobarbital overdose administered via intravenous 

injection. 

Animals that survived at least 28 days after virus exposure were designated as survivors. All 

surviving animals reported herein were treated with an antisense-based therapeutic combination 

targeting Ebola virus proteins VP24 and VP35. Details of the experimental conditions that conferred 

protection in these animals have been described elsewhere [5]. 

Research was conducted under an Institutional Animal Care and Use Committee (IACUC)-

approved protocol in compliance with the Animal Welfare Act, PHS Policy, and other Federal statutes 

and regulations relating to animals and experiments involving animals. The facility where this research 

was conducted is accredited by the Association for Assessment and Accreditation of Laboratory 

Animal Care, International and adheres to principles stated in the Guide for the Care and Use of 

Laboratory Animals, National Research Council, 2011. 

2.2. Statistical Analysis 

Due to variability in blood collection schedules and the retrospective nature of the evaluation, 

maximum and minimum laboratory values for each animal were used in the analyses. Although daily 

sampling was not available, MAX/MIN values were generally within 48 h of euthanasia. Dependent 

variables were screened for outliers, normality and homogeneity of variance. To satisfy assumptions of 

normality and homogeneity of variance, LOG10 transformations were applied to BUN, Creatinine, 

Gamma-glutamyl transpeptidase (GGT), Mean Corpuscular Hemoglobin Concentration (MCHC), and 

Mean Corpuscular Hemoglobin (MCH) levels. The effects of minimum and maximum laboratory 

values on survival outcome were assessed using a logistic regression model. Confidence intervals 

around odds ratios were calculated using profile-likelihood methods. Logistic regression analyses were 

conducted using SAS Version 9.2 (SAS Institute Inc., SAS OnlineDoc, Version 9, Cary, NC, USA, 

2008). Receiver operating characteristic (ROC) curve analysis was used to determine area under the 

ROC curve and to evaluate sensitivity and specificity of proposed threshold values. The red line 

threshold on each graph was the result of the ROC curve analysis plus 10%. ROC curve analysis was 

conducted using SigmaPlot Version 12.5 (Systat Software Inc., San Jose, CA, USA, 2011). 

3. Results 

3.1. Clinical Signs of Disease 

Experimental infection of nonhuman primates with Ebola virus produces a fulminate disease, 

characterized by a rapid reduction in animal activity and responsiveness, which necessitates that 

subjective assessments serve as a primary tool for assessing euthanasia needs. Five categories of 

clinical scores representing a combination of clinical signs that often accompany Ebola virus infection 

in rhesus monkeys are presented in Table 1 (while clinical categories (CC) were assigned numeric 

values (ranging from 0–4), it is important to note that CC designations are qualitative designations). 

Animals that exhibit clinical signs corresponding to CCs of 0–2 are not recommended for 
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consideration of euthanasia because they either lack disease signs (CC 0) or because disease signs they 

may exhibit are relatively mild to moderate and are poorly predictive of survival outcome. For 

example, an animal administered an interventional treatment may exhibit disease signs associated with 

CC 2 transiently for one to two days before recovering, or these disease signs may progress rapidly to 

CC 3 or CC 4. The clinical signs described for CC 4 can be regarded as end-stage signs of terminal 

cases of Ebola virus hemorrhagic fever and euthanasia is strongly recommended on a humane basis for 

animals exhibiting the severity of disease signs described for CC 4. 

Table 1. Assessment of Euthanasia by Subjective Clinical Signs. 

Clinical 

Category 
Clinical Signs Prognosis 

Euthanasia 

Assessment 

0 

Alert 

Indeterminate 
Euthanasia not 

recommended 
Responsive 

Healthy 

1 

Slightly diminished general activity 

Indeterminate 
Euthanasia not 

recommended 
Alert 

Responsive 

2 

Mildly unresponsive, responsive  

when approached 

Indeterminate 
Euthanasia not 

recommended 
Occasionally lays down 

May exhibit hunched posture 

Markedly Reduced Activity 

3 
Moderately unresponsive (requires prodding) Indeterminate by 

clinical signs 

Evaluate Secondary,  

Objective Parameters Inactive, prostrate but rises when approached 

4 

Severely or completely unresponsive 

Poor 
Euthanasia 

recommended 

Inactive, persistently prostrate  

(may momentarily rise when approached) 

Severely labored breathing 

Animals assigned to CC 3 are animals that are moderately unresponsive to the approach of study 

personnel, or that only respond upon gentle physical prodding. Animals in this category may initially 

present in a prostrate position (i.e., lying down), but may rise to an upright standing or sitting position 

when personnel attempt to interact with the animals from the cage exterior. While disease signs 

consistent with CC 3 will likely be observed for varying lengths of time in nearly all animals that 

ultimately succumb to infection, these signs may be transiently observed, for three or more days in 

certain instances, before resolving (disease resolution is typically associated with treatment with an 

interventional agent. To better assess the disease severity in an animal exhibiting CC 3 clinical signs, 

additional secondary assessments of body temperature and specific clinical pathology parameters may 

be useful in assessing disease severity, and ultimately in assisting with euthanasia decisions. 

Other clinical signs, noted in filovirus-infected animals, including maculopapular rash, hemorrhage 

from bodily orifices, and convulsions, are poorly predictive of outcome (data not shown). 

Maculopapular rashes occur in many filovirus-infected animals, but neither the severity of the rash nor 

the percentage of skin affected appear to be associated with survival outcome. Typically, when bloody 
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exudates from bodily orifices are observed, the volume of blood loss is not sufficient to warrant 

consideration of euthanasia, and substantial blood volume loss from hemorrhage is unusual in 

filovirus-infected nonhuman primates. Likewise, other severe clinical signs, such as convulsion or 

severe photophobia or sound sensitivity, present infrequently. The infrequent occurrence of these 

clinical signs diminishes their contribution toward a generalized approach for euthanasia assessment. 

3.2. Body Temperature 

Body temperature in filovirus-infected nonhuman primate assessments may be measured in 

biosafety level-4 research labs using automated telemetric monitoring of core-body temperature or, in 

sedated animals, by rectal thermometer. When assessed using real-time telemetric monitoring, 

circadian fluctuations of core-body temperature of 1–2 °C are readily apparent in graphical displays. 

During the late-stage of terminal Ebola virus infections in rhesus monkeys, decrease in core body 

temperature results from failure of thermoregulatory mechanisms that are likely secondary to the insult 

on essential physiological processes required to sustain life. 

The rectal body temperature of healthy rhesus monkeys ranges from 37.0–39.5 °C [21]; however, 

single point temperature assessments can provide misleading baseline values given the fluctuations 

that accompany circadian rhythmic cycles. Rectal temperatures of 34 °C or less may be considered 

indicative of terminal-stage collapse of thermoregulatory mechanisms in Ebola virus infected rhesus 

monkeys, especially if animals concomitantly exhibit clinical signs consistent with CC 3 (because of 

the hypothermic effects of sedation, it is critical that any temperature assessment be conducted 

immediately following sedation). In animals that are implanted with telemetric devices to monitor core 

temperature, animals displaying CC 3 clinical signs and which have a temperature less than 4 °C below 

the animal’s baseline are likely undergoing thermoregulatory collapse. Baseline telemetry data were 

acquired for each animal over several days to generate hourly baseline temperatures in order to account 

for each animal’s diurnal rhythm. Animals exhibiting CC 3 clinical signs in combination with a rectal 

temperature <34 °C or a deviation from baseline temperature of ≥4 °C (for telemetrically monitored 

animals) are recommended for euthanasia. 

The authors acknowledge that sedation of an animal exhibiting multiple clinical signs of Ebola virus 

hemorrhagic fever introduces a stressor that may exacerbate the disease and potentially hasten the 

animal’s death, e.g. if the animal fails to adequately recover from sedation or if sedation interferes with 

food and water consumption. However, other less invasive means of temperature acquisition,  

e.g., infrared thermal thermometers, to record surface body temperature may provide inaccurate values 

because measurements must be obtained through stainless steel cage bars. These methods would have 

to be evaluated and validated by other investigators at their research sites. 

3.3. Clinical Pathology 

The proposed euthanasia-threshold temperature values are intended to identify animals that are in an 

irreversible, terminal stage of disease progression and that, without euthanasia intervention, are likely 

to spontaneously succumb within hours. However, in many instances, animals exhibiting CC 3 signs  

will not exhibit reduced body temperatures. To evaluate whether alterations of routine clinical  

pathology parameters may be useful in euthanasia assessments, historic biological data from 58 rhesus 
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monkeys that either survived or succumbed to Ebola-virus infected were compiled and subjected to 

retrospective analysis. 

3.3.1. Dataset Summary 

Animals were infected by either intramuscular injection (n = 52) or exposure to aerosolized virus 

(Table 2). All aerosol-infected animals were infection-control subjects and succumbed or were 

euthanized seven to nine days after virus exposure. Of those animals exposed by the IM route, 13 were 

infection-control subjects and 12 succumbed or were euthanized seven to 11 days after virus exposure, 

although one IM-infected control animal survived until scheduled termination of the study 33 days 

after infection (a description of clinical pathology alterations observed in this atypical surviving 

control animal is described elsewhere [13]). Of the 39 IM-infected animals that were treated with one 

of several therapeutic agents, 12 survivors were reported, all of which were treated with a combination 

of antisense agents (positively charged phosphorodiamidate morpholino oligomers) targeting Ebola 

virus proteins VP24 and VP35. Details of these surviving animals and the treatment conditions that 

facilitated their survival have been described elsewhere [5]. Mean time-to-death for IM-infected 

control animals was 8.8 days (range seven to 11 days). Animals that were treated with a therapeutic 

agent but which ultimately succumbed to infection (euthanized) exhibited a mean time-to-disposition 

of 9.9 days, with a range of seven to 17 days. 

Because of the retrospective nature of this analysis, the available data varied depending on 

individual study designs. To assess whether clinical pathology alterations were related to survival 

outcome, maximal and minimal values of each clinical pathology parameter, obtained from an 

individual animal at any time during the course of infection, regardless of the sampling schedule, were 

subjected to logistic regression analysis. Sixteen parameters exhibited a suggested relatedness to 

survival outcome (Table 3). Additional parameters that did not show a significant correlation to 

survival are listed in Supporting Information. Alterations to seven clinical chemistry parameters (BUN, 

CRE, total bilirubin, total calcium, GGT, amylase, and glucose) and to six hematology parameters 

(platelets, lymphocytes, MCH, MCHC, hemoglobin, and WBC) exhibited significant relatedness to 

survival. 

Analysis of both hematology and clinical chemistry parameters requires acquisition of two blood 

samples. To reduce stress to the animal, it is desirable to minimize the volume of blood collected as 

part of the euthanasia assessment. Serum chemistry assessment may provide data that is more 

indicative of the various physiological disturbances that are likely to be affected in nonhuman primates 

during the course of Ebola virus infection than hematology assessment. Blood chemistry analyses can 

be rapidly conducted with a relatively small sample volume, and most BSL-4 laboratories are equipped 

with modern clinical chemistry analytical instrumentation. Therefore, this remainder of this report 

focuses on clinical chemistry parameters that may be useful when assessing euthanasia. 
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Table 2. Summary of Experimental Conditions and Survival Outcome for Ebola-Virus Infected Rhesus Monkeys. 

Experimental 

Conditions 

Total Number 

of Animals 

Number of 

Survivors 

Number of 

Non-Survivors 

Number 

of Males 

Number of 

Females 

Mean Time to Disposition 

for Non-Survivors (days) 

Range of Time To 

Disposition (days) 

IM Infections 

Infection-control 13 1 12 5 8 8.8 7–11 

Therapeutic treatment 39 12 27 25 14 9.9 7–17 

Aerosol Infections 

Infection-Control 6 0 6 1 5 8.2 7–9 

Therapeutic treatment 0 - - - - - - 

Table 3. Results of logistic regression analysis of maximal or minimal clinical pathology parameters (assessed over the course of Ebola virus 

infection) and survival outcome in 58 rhesus monkeys. Data were compiled from multiple independent experiments. Parameters exhibiting a 

significant relatedness to survival outcome (p-value < 0.10) are presented. 

Variable N (Survivors) N (Non-survivors) Odds Ratio (95%CI) p-value 

MAX BUN (log-transformed) 13 42 43.0 (4.51, 703) 0.0029 

MAX Platelet (log-transformed) 13 45 <0.001 (<0.001, 0.013) 0.0042 

MAX Creatinine (log-transformed) 13 42 64.7 (5.09, >999) 0.0054 

MAX Lymphocytes  13 45 0.896 (0.818, 0.960) 0.0064 

MAX Total bilirubin (log-transformed) 13 42 410 (8.66, >999) 0.0117 

MIN Total calcium  13 42 0.376 (0.149, 0.744) 0.0143 

MAX MCH (log-transformed) 13 45 >999 (>999, >999) 0.0258 

MIN MCH (log-transformed) 13 45 >999 (556, >999) 0.0309 

MAX GGT (log-transformed) 12 37 17.1 (1.33, 377) 0.0438 

MAX MCHC (log-transformed) 13 45 >999 (175, >999) 0.0520 

MIN MCHC (log-transformed) 13 45 >999 (205, >999) 0.0520 

MAX Amylase (log-transformed) 12 37 0.009 (<0.001, 0.898) 0.0590 

MAX Hemoglobin  13 45 1.82 (1.05, 3.85) 0.0685 

MIN Glucose  13 42 0.984 (0.883, 0.996) 0.0733 

MAX WBC (log-transformed) 13 45 0.047 (<0.001, 1.44) 0.0872 

MIN GGT (log-transformed) 12 37 183 (0.493, >999) 0.0952 
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3.3.2. Analysis of Clinical Pathology Parameters 

Azotemia, elevations to BUN and serum CRE, is often observed in filovirus-infected nonhuman 

primates [13]. To assess whether the severity of azotemia is related to survival outcome in Ebola virus 

infected rhesus monkeys, historic results from time-course BUN and CRE serum assessments were 

obtained for 55 animals, of which 13 survived (Figure 1). Maximal serum BUN values ranged from 12 

to >180 mg/dL in animals that succumbed to infection, while in surviving animals, the greatest 

maximal serum BUN observed was 61 mg/dL. Of the 42 non-survivors for which BUN was monitored, 

22 (52%) of these exhibited a maximal BUN value exceeding 61 mg/dL before or at the time they 

succumbed to infection or were euthanized. While serum BUN values < 61 mg/dL were poorly 

predictive of survival outcome, increased serum BUN values were significantly related to an increased 

probability of non-survival (OR = 43.0 (3.62, 511); p < 0.05; Table 3). 

 

Figure 1. Serum BUN responses in rhesus monkeys exposed to Ebola virus. Symbols 

represent the maximal serum BUN value obtained at any time during the course of 

infection for an individual animal (diamonds = survivors, circles = non-survivors). Data 

were compiled from multiple independent historic experiments. The horizontal gray line 

indicates a survival threshold, i.e., the maximal value obtained in any animal that survived 

infection. The red line indicates a proposed euthanasia threshold value based on ROC 

curve suggested values plus 10%. Black lines are the group mean. Normative serum BUN 

reference range for rhesus monkeys (mean +/− 1 SD) is 15–21 mg/dL [21]. 

Maximal CRE values ranged from 0.8 to >12.0 mg/dL in non-surviving animals while in surviving 

animals, no serum CRE value exceeded 2.4 mg/dL (Figure 2). In the 42 non-survivors included in this 

analysis, 52% exhibited a maximal serum CRE exceeding 2.4 mg/dL on at least one sampling event 

during the course of disease. Thus, while serum CRE values < 2.4 mg/dL offer limited predictability of 

survival outcome, greater CRE values are significantly related to a high probability of mortality  

(OR = 64.7 (3.43, 999); p < 0.05; Table 3). 
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Figure 2. Serum CRE responses in rhesus monkeys exposed to Ebola virus. Symbols 

represent the maximal serum CRE value obtained at any time during the course of 

infection for an individual animal (diamonds = survivors, circles = non-survivors). Data 

were compiled from multiple independent historic experiments. The horizontal gray line 

indicates a survival threshold, i.e., the maximal value obtained in any animal that survived 

infection. The red line indicates a proposed euthanasia threshold value based on ROC 

curve suggested values plus 10%. Black lines are the group mean. Normative serum CRE 

reference range for rhesus monkeys (mean +/− 1 SD) is 0.45–0.71 mg/dL [21]. 

Gamma-glutamyl transferase is another blood chemistry parameter that is often elevated in response 

to Ebola virus infection in nonhuman primates. The serum activity of this enzyme was evaluated 

periodically during Ebola-virus infection in 50 animals, comprised of 12 survivors and 38  

non-survivors (Figure 3). In animals that survived infection, individual maximal GGT activities were 

not observed to exceed 354 U/L. Maximal GGT exceeding this level were observed in 10 animals that 

succumbed to infection. Logistic analysis shows that elevations to GGT are significantly related  

a negative survival outcome (OR = 17.1 (1.03, 269); p < 0.05; Table 3). 

In contrast to BUN, CRE, and GGT, total serum calcium levels are often observed to decrease 

relative to baseline values in filovirus-infected nonhuman primates. Data from historic evaluations, in 

which total serum calcium was assessed at various times during Ebola virus infection, were analyzed 

in 55 rhesus monkeys, composed of 13 surviving and 42 non-surviving animals (Figure 4).  

In surviving animals, minimal serum calcium values were not observed to decrease below 7.7 mg/dL, 

whereas in nonsurvivors, minimal serum calcium values of < 7.7 mg/dL were observed in 21 of 42 

(50%) of animals during at least one sampling event. Logistic regression analysis of these results show 

that severe hypocalcemia is significantly related (p < 0.05) to the probability of nonsurvival in  

the Ebola virus rhesus monkey disease model (OR = 0.376 (0.172, 0.823); p < 0.05; Table 3). 
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Figure 3. Serum GGT responses in rhesus monkeys exposed to Ebola virus. Symbols 

represent the maximal serum GGT value obtained at any time during the course of 

infection for an individual animal (diamonds = survivors, circles = non-survivors). Data 

were compiled from multiple independent historic experiments. The horizontal gray line 

indicates a survival threshold, i.e., the maximal value obtained in any animal that survived 

infection. The red line indicates a proposed euthanasia threshold value based on ROC 

curve suggested values plus 10%. Black lines are the group mean. Normative serum GGT 

reference range for rhesus monkeys (mean +/− 1 SD) is 66–97 U/L [21]. 

 

Figure 4. Serum total calcium responses in rhesus monkeys exposed to Ebola virus. 

Symbols represent the minimal serum total calcium value obtained at any time during  

the course of infection for an individual animal (diamonds = survivors, circles =  

non-survivors). Data were compiled from multiple independent historic experiments.  

The horizontal gray line indicates a survival threshold, i.e., the maximal value obtained in 

any animal that survived infection. The red line indicates a proposed euthanasia threshold 

value based on ROC curve suggested values plus 10%. Black lines are the group mean. 

Normative serum total calcium reference range for rhesus monkeys (mean +/− 1 SD) is 

8.6–9.2 mg/dL [21]. 
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4. Discussion 

Results obtained from the logistic regression analysis of time-course clinical pathology parameters 

obtained from historic evaluations suggest that extreme alterations to several commonly monitored 

serum parameters—specifically BUN, CRE, GGT, and total calcium—are related to survival outcome. 

Consideration of extremes in these serum parameters, in context with clinical observations and body 

temperature assessment, may be a useful approach to ensure that animals with a poor survival 

prognosis are identified as early as possible and humanely euthanized. One approach to how these 

parameters could be considered when assessing euthanasia is presented in Figure 5. 

 

Figure 5. Flow diagram depicting a proposed euthanasia decision tree for Ebola virus 

infected rhesus monkeys. 
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The CC designations are the primary evaluation upon which secondary criteria (i.e., body 

temperature and clinical chemistry values) may then be assessed. The 0–4 scoring system was  

the product of distilling multiple euthanasia criteria into their lowest common denominators and 

eliminating some of the potential biases posed by compounding multiple subjective assessments  

(i.e., a point system for observations, such as coat condition, dehydration, appetite, etc.). By 

progressing to these secondary criteria at a designation of CC 3, an investigator can then base decisions 

on objective measurements to accurately gauge the need for humane intervention. Additionally, 

assigning a CC designation prior to evaluating secondary criteria will prevent transient anomalies in 

temperature, such as a drop during anesthesia, from impacting endpoint decisions. If secondary 

euthanasia criteria are assessed, either 1) a temperature ≥4 °C from baseline (telemetry) or ≤34 °C will 

result in euthanasia or 2) at least two of the clinical chemistry parameters are met will result in 

euthanasia. 

Several key factors were considered in developing the proposed euthanasia assessment strategy. 

Because clinical signs may rapidly deteriorate in Ebola virus infected animals, the assessment process 

must be capable of being rapidly executed. Additionally, because blood will typically have been 

collected at multiple time points prior to euthanasia assessment, any criteria that depend on collection 

of a blood specimen should minimize the blood volume collected to avoid exceeding blood-volume 

collection limits. Further, the proposed euthanasia assessment minimizes a reliance on baseline or 

other animal-specific biological data, which may not be immediately accessible to technical staff in  

the BSL-4 laboratory. 

The euthanasia-decision thresholds associated with each clinical pathology parameter were directly 

derived from the survival-threshold values representing the single greatest maximal (BUN, CRE, and 

GGT) or least minimal (total calcium) value obtained from any surviving animal at any time  

during infection. Euthanasia-decision thresholds were established at a value 10% greater than  

the survival-threshold for parameters that are elevated during Ebola virus infection and 10% lower 

than the survival-threshold for parameters that are decreased during infection to reduce the likelihood 

that implementation of these euthanasia criteria does not result in the premature euthanasia of an 

animal which may ultimately recover. At the level of the greatest maximal or least minimal in a 

surviving animal, the positive predictive value (PPV) for the parameters is as follows: BUN (100%); 

CRE (100%); GGT (96%); Ca (94%). With the added buffer of approximately 10%, the PPV for all 

parameters becomes 100%. The analysis of existing and future data from additional surviving animals 

will permit the refinement of survival- and euthanasia-decision thresholds. 

The euthanasia decision tree proposed herein is meant to be a jumping off point for an evolving set 

of criteria adaptable to the circumstances facing each institute and its researchers; in fact, glucose was 

initially included in these criteria but was ultimately dropped. In addition to concerns about anesthesia 

affecting blood glucose concentration, accurate glucose measurements require precise timing when 

blood draws are not performed in a standard fluoride tube; however, limited sample volumes for 

serially drawn NHPs make the use of multiple specialty tubes impractical due to the number of 

downstream assays for which they are compatible. In order to minimize any potential impact posed by 

the time constraints of performing blood analysis across the spectrum of biosafety laboratories at 

USAMRIID, it was decided to drop glucose as a secondary euthanasia parameter. Despite these 

difficulties there is a definite downward trend for glucose values during late stages of filoviral 
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hemorrhagic fever and as a result additional statistical analysis of glucose as a secondary criterion for 

euthanasia is ongoing. 

An expected effect, and potential caveat, of implementing a euthanasia-assessment strategy that 

relies on clinical pathology determinants is that model-specific time-to-disposition may decrease 

relative to historic records. This would result from the euthanasia of animals that present with a clinical 

profile that satisfies euthanasia criteria, but which historically may not have triggered euthanasia based 

solely on clinical signs. Differences in time-to-disposition resulting from the manner in which 

euthanasia is assessed may be a particularly relevant consideration as the performance of new 

therapeutic agents and vaccine candidates are compared with the historic results. Additionally, other 

therapeutic agents may produce different values for the clinical parameters being measured herein. 

However, identifying objective markers that are related to a negative survival outcome will allow 

researchers to minimize pain and distress through euthanasia in animals that are unlikely to survive. 

Standardizing euthanasia criteria will provide greater defensibility of survival results, and will enhance 

the confidence with which survival statistics obtained by different research teams can be compared. 

Additionally, introducing objective criteria into euthanasia decisions reduces the emotional toll on 

scientific personnel required to conduct this ethically challenging process. Overall, the benefits of 

consistency of the model outweigh the possible effect on time to disposition and will maximize  

the utility of the data produced by enhancing the efficient use of a scarce resource. 

The pathophysiologic disturbances responsible for the extreme clinical pathology alterations often 

observed in filovirus-infected nonhuman primates are not well understood. Azotemia, detected as 

increased BUN and/or CRE, may be caused by pre-renal and/or renal conditions [22]. In Ebola virus 

infected nonhuman primates, azotemia may result from pre-renal conditions such as a reduction in  

the glomerular filtration rate due to dehydration and/or hypovolemia, or from renal conditions, such as  

direct renal damage resulting from inflammatory responses to viral infection. Increases of serum GGT, 

a cell-membrane associated protein present on many cell types, may be indicative of cholestasis 

(especially when concomitant ALP elevations are observed) or of damage to renal tubular epithelial  

cell [22]. Cholestasis is the reduction of bile flow or excretion with many intrahepatic and extrahepatic 

causes. In filovirus-infected nonhuman primates, cholestasis is likely secondary to intrahepatic 

obstruction of bile flow from inflammation associated with viral infection of the liver. Findings of 

hypoglycemia may be indicative of end-stage hepatic failure and/or intestinal malabsorption. While 

weight loss and reduced food intake are often observed in filovirus infected NHP, lack of food intake 

is not usually considered a differential for hypoglycemia: fasting and anorexic animals are typically 

able to maintain serum glucose levels within reference limits [23]. Hypocalcemia may be secondary to 

hyopalbuminemia (although serum albumin in Ebola-virus infected animals was not significantly 

related to survival outcome as assessed by logistic regression analysis) and/or renal disease, perhaps 

due to ischemia [22]. 

Although the pathophysiologic disturbances that lead to extreme clinical pathology alterations 

during Ebola virus infections of rhesus monkeys are not completely understood, clinical pathology 

alterations observed in this model are often reported in other nonhuman primate infection models. This 

stands to reason as other filoviruses, e.g., Marburg virus and Sudan virus, produce a fulminate disease 

in various nonhuman primate test systems that is clinically difficult to distinguish from that of Ebola 

virus infection. Though the euthanasia assessment criteria described herein was derived from data 
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generated from Ebola virus infected rhesus monkeys and survivors from one therapeutic platform, 

these criteria and/or the approach of retrospectively analyzing clinical pathology data from historic 

surviving and non-surviving animals has been successfully utilized for other Ebola studies, and may 

prove useful for refining euthanasia-decision criteria for other filovirus-infection test systems or viral 

hemorrhagic fever disease models. 
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