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Abstract: Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat 

HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include 

one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation 

NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral  

therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are 

also increasingly being included in strategies to prevent HIV-1 infection. For example:  

(1) nevirapine is used to prevent mother-to-child transmission; (2) the ASPIRE (MTN 020) 

study will test whether a vaginal ring containing dapivirine can prevent HIV-1 infection in 

women; (3) a microbicide gel formulation containing the urea-PETT derivative MIV-150 is 

in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and 

acceptability; and (4) a long acting rilpivirine formulation is under-development for  

pre-exposure prophylaxis. Given their widespread use, particularly in resource-limited 

settings, as well as their low genetic barriers to resistance, there are concerns about 

overlapping resistance between the different NNRTIs. Consequently, a better understanding 

of the resistance and cross-resistance profiles among the NNRTI class is important for 

predicting response to treatment, and surveillance of transmitted drug-resistance. 
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1. Reverse Transcription 

Reverse transcription of the single-stranded (+) RNA genome into double-stranded DNA is an 

essential step in the HIV-1 replication life-cycle [1]. This process is complex and requires the 

concerted functioning of both the DNA polymerase and ribonuclease H (RNase H) active sites of  

HIV-1 reverse transcriptase (RT). RT initiates (−) strand DNA synthesis at the 3'end of a cellular  

lysyl-tRNA
Lys3

 molecule that is hybridized to the primer binding site (PBS) of the viral RNA genome. 

This nascent DNA strand is elongated by the RNA-dependent DNA polymerase activity (RDDP) of 

RT until the 5' end of the HIV-1 RNA is reached. RT then uses its RNase H activity to hydrolyze the 

RNA strand of the RNA/DNA duplex which allows the DNA to hybridize with a repeat sequence at 

the 3' end of the HIV-1 RNA. Following this strand transfer, the viral DNA strand is elongated by the 

RDDP activity of RT until the entire RNA template has been copied. The RNase H activity of RT also 

hydrolyzes the HIV-1 RNA during synthesis of (−) strand DNA, except for a purine rich sequence, 

termed the polypurine tract (PPT), which serves as a primer for the initiation of (+) strand DNA 

synthesis. The DNA-dependent DNA polymerase (DDDP) activity of RT elongates the PPT primer. 

Removal of the PPT and tRNA primers by RT RNase H activity then allows a second strand transfer to 

take place by interaction of complementary PBS sequences. The HIV-1 RT DDDP activity including 

strand-displacement activity completes the synthesis of the double stranded proviral DNA precursor. 

2. Reverse Transcriptase Inhibitors 

Due to its essential role in HIV-1 replication, RT is a major target for antiviral drug development 

and two classes of inhibitors, (1) the nucleoside and nucleotide RT inhibitors (NRTIs) and (2) the 

nonnucleoside RT inhibitors (NNRTIs), have been approved by the FDA for the treatment of HIV-1 

infection. The NRTIs are analogs of naturally occurring dNTPs that lack a 3'-hydroxyl group on the 

ribose sugar/pseudosugar [2,3]. To exhibit antiviral activity, NRTIs must be metabolically converted 

by host-cell kinases to their corresponding triphosphate forms, which then inhibit viral DNA synthesis 

by acting as chain-terminators of DNA synthesis. Eight NRTIs have been approved for clinical use, 

namely zidovudine, didanosine, zalcitabine, lamivudine, stavudine, abacavir, tenofovir disoproxil 

fumarate, and emtricitabine. Zalcitabine is less now rarely used to treat HIV-1 infection because it has 

inconvenient dosing schedules, and is associated with serious adverse events. Similarly, the World 

Health Organization advocated that stavudine should be phased out of use because of its long-term, 

irreversible side-effects. In contrast, the NNRTIs are a group of amphiphilic compounds that bind to a 

hydrophobic pocket in HIV-1 RT that is proximal to but distinct from the polymerase active site 

(described in more detail below) [2,3]. FDA-approved NNRTIs include nevirapine (NVP), delavirdine, 

efavirenz (EFV), etravirine (ETV) and rilpivirine (RIL) (Figure 1). The efficacy of delavirdine is lower 

than that of the other NNRTIs, especially EFV, and it also has an inconvenient dosing schedule. These 

factors have led the U.S. Department of Health and Human Services (DHHS) Antiretroviral Guidelines 

Panel to recommend that it not be used as part of initial therapy. 
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Figure 1. Chemical structures of nonnucleoside reverse transcriptase inhibitors (NNRTIs) 

used in HIV-1 prevention and treatment strategies. 

 

3. Mechanism of Action of NNRTIs 

NNRTIs interact with HIV-1, but not HIV-2, RT by binding to a single site on the p66 subunit of 

the HIV-1 RT p66/p51 heterodimer termed the NNRTI binding pocket (NNRTI-BP) that is situated 

approximately 10 Å from the RT DNA polymerase active site [4]. Crystallographic analyses of HIV-1 

RT in complex with NNRTI have suggested at least three possible mechanisms that explain NNRTI 

inhibition: (1) Esnouf et al. reported that NNRTI binding distorts the precise geometry of the DNA 

polymerase catalytic site, especially the highly conserved tyrosine-methionine-aspartic acid-aspartic 

acid (YMDD) motif and proposed that this class of drugs inhibits DNA polymerization by locking the 

polymerase active site in an inactive conformation [5]; (2) Hsiou et al. observed that NNRTI binding 

deformed the structural elements that comprise the ―primer grip‖, a region in RT that is involved in the 

precise positioning of the primer DNA strand in the polymerase active site [6]. This change in ―primer 

grip‖ conformation may alter the position and conformation of the template/primer (T/P) substrate 

thereby preventing the establishment of a catalytically competent ternary complex; (3) Kohlstaedt et al. 

proposed that the NNRTI-BP may normally function as a hinge between the palm and thumb domains [4]. 

Since the mobility of the thumb may be important to facilitate T/P translocation, the binding of NNRTIs 

may restrict the mobility of the thumb domain thereby slowing down or preventing T/P translocation 

and/or elongation of nascent viral DNA. The three mechanisms suggested above are not mutually 

exclusive, and NNRTIs may exert multiple inhibitory effects on RT catalyzed DNA synthesis. 

4. Clinical Use of NNRTIs 

NNRTIs are widely used to treat HIV-1-infected individuals (Figure 2). Indeed, most first-line 

antiretroviral therapies (ART) include one NNRTI (typically NVP, EFV or RPV) in combination with 

two NRTIs. In 2008, ETR was approved for the treatment of HIV-infected ART-experienced 

individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included 

in strategies to prevent HIV-1 infection (Figure 2). For example: (1) NVP is used to prevent mother-to-
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child transmission; (2) the ASPIRE (MTN 020) study will test whether a vaginal ring containing  

the diarylpyrimidine analog dapivirine (DAP; Figure 1) can prevent HIV-1 infection in women;  

(3) a microbicide gel formulation containing the urea-PETT derivative MIV-150 (Figure 1) is in a 

phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and acceptability; and (4) a 

long acting RPV formulation is under-development for pre-exposure prophylaxis (PrEP). As described 

above, all NNRTIs bind to the same hydrophobic pocket in HIV-1 RT, and all NNRTI-associated 

resistance mutations are located within, or adjacent to, this pocket. Consequently, there are major 

concerns about overlapping resistance profiles among the different NNRTIs used for the prevention 

and treatment of HIV-1 infection. Below, we discuss each of the NNRTIs described above and their 

resistance profiles. 

Figure 2. Expanding use of NNRTIs in HIV-1 prevention and treatment strategies. 

 

5. Nevirapine 

NVP is a dipyridodiazepinone inhibitor [7], and was the first NNRTI approved by the U.S. FDA.  

At the time it was developed the concept of combination ART had not yet established, and consequently 

NVP was initially assessed in humans as monotherapy or in combination with zidovudine [8,9]. 

Needless to say, HIV-1 virologic suppression was transient and plasma viremia returned to  

pre-treatment levels in a matter of weeks. This rapid loss of activity was associated with the emergence 

of NVP-resistant virus. The most common mutations associated with NVP montherapy included 

K103N, V106A, V108I, Y181C, Y188C/H/L and G190A/S/E [8]. When combined with zidovudine, 

resistance mutations occurred at codons 103, 106 (V106A), 188 and 190, but not at 181 [9]. Subsequent 

virology and biochemical studies revealed that the Y181C mutation antagonized the thymidine analog 

mutations associated with zidovudine resistance [10,11]. Currently, the United States Department of 

Health and Human Services (DHHS) and the International AIDS society (IAS-USA) guidelines 

recommend NVP as an alternative to EFV for an initial NNRTI-containing regimen in patients who 

cannot tolerate EFV, are pregnant, or may become pregnant and have fewer than 250 CD4 cells/µL. 

NVP, in combination with two NRTIs, is also routinely used for fist line therapy in resource limited 

countries. Interestingly, there is evidence that naturally occurring genetic differences in different  

HIV-1 subtypes can impact NVP susceptibility and resistance. For example, the V106M RT substitution 

has been reported to occur more frequently in subtype C viruses than in subtype B [12]. Additionally, 

mutations in the connection domain of HIV-1 RT, specifically N348I, have also been associated with 
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NVP exposure [13,14]. Typically, N348I emerges at the same time, or after, NNRTI resistance 

mutations [13,14], but in the context of polymerase domain mutations reduces susceptibility to NVP by 

8.9–13-fold [14]. Because it is not teratogenic, NVP is also used for the prevention of mother-to-child 

transmission in developing countries. However, administration of a single dose of NVP results in the 

selection of resistance in the treated mothers, which can negatively influence the efficacy of subsequent 

anti-HIV-1 treatment with NNRTIs [15]. Accordingly, the World Health Organization recommended 

that in addition to sdNVP, zidovudine monotherapy should be administered to the mother during late 

gestation, and that short course combination ART ―tails‖—such as zidovudine and lamivudine, 

zidovudine and didanosine or tenofovir and emtrictiabine—be administered to the mother and infant to 

further suppress viral replication and increase the genetic barrier to resistance [15]. 

6. Efavirenz 

EFV, a benzoxazinone inhibitor [16], is the most frequently used NNRTI in treatment naïve  

HIV-infecetd individuals. Its efficacy has been established in numerous clinical trials. For example, 

studies have compared EFV against protease inhibitors, integrase inhibitors, CCR5 inhibitors, other 

NNRTIs and triple NRTI regimens. In addition, EFV has been used as the common ―third agent‖ in 

evaluations of many NRTI combinations. The early randomized, open-label DMP 266-006 study 

showed that EFV was superior to unboosted indinavir when both were administered over 48 weeks 

with an NRTI backbone of zidovudine plus lamivudine [17]. In other studies, EFV was as effective as 

unboosted atazanavir and more effective than unboosted nelfinavir when all were combined with two 

NRTIs [18,19]. In the 2NN study, NVP and EFV were shown to have similar efficacy [20]. The ACTG 

A5095 study revealed that virological failure occurred in almost twice as many of the participants 

treated with the triple NRTI regimen containing zidovudine, lamivudine and abacavir (21%) as compared 

to those treated with EFV plus either two or three NRTIs (11%; p < 0.001) [21]. The randomized, 

double-blind MERIT study compared the efficacy and tolerability of maraviroc with EFV in  

treatment-naive patients infected with R5 HIV-1, with both treatment groups also receiving zidovudine 

and lamivudine [22]. At 48 weeks, maraviroc did not show non-inferiority compared with EFV for the 

primary endpoint of a HIV viral load <50 copies/mL (65.3% vs. 69.3%; lower limit of one-sided 

97.5% CI–10.9%). In addition, more patients discontinued in the maraviroc compared with the EFV 

arm due to lack of efficacy (11.9% vs. 4.2%). The 004 study compared the efficacy and tolerability of 

raltegravir vs. EFV, both combined with tenofovir and lamivudine [23]. At 96 weeks, the raltegravir 

and EFV groups exhibited similar rates of viral suppression, with 83% and 84% of patients, respectively, 

achieving HIV viral load <50 copies/mL by intent-to-treat analysis. In the STARTMRK study, 

raltegravir-based combination therapy was found to be non-inferior to that of EFV through  

156 weeks [24–26], but after 240 weeks raltegravir/tenofovir/emtricitabine seemed to have superior 

efficacy compared with EFV/tenofovir/emtricitabine [27]. Of note, in the SINGLE study which 

evaluated the integrase inhibitor dolutegravir, the proportion of patients having HIV-1 RNA  

<50 copies/mL was significantly higher in the abacavir/lamivudine/dolutegravir group than in the 

tenofovir/emtricitabine/EFV group (88% vs. 81%; p = 0.003) [28]. However, despite high levels of 

treatment success, resistance to EFV develops readily: resistance mutations arise in 6%–8% of patients 

treated with EFV plus two NRTIs for 2–3 years, with K103N being by far the most common single 
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mutation. Other substitutions observed in Phase II trials include V108I, P225H or L100I, K101E, 

K101Q, Y188H, Y188L, G190S, G190A, and G190E. 

7. Etravirine 

ETR is a potent diarylpyrimidine (DAPY) analog which shows in vitro activity against a broad 

range of HIV-1 groups and subtypes, including strains that exhibit resistance to EFV and NVP [29]. 

Compared to EFV and NVP, ETR may also have a higher genetic barrier to resistance because at least 

two mutations are required to confer resistance. Mutations associated with ETR resistance selection  

in vitro include E138K, Y181C/I, V179F, G190E and M230L [29]. ETR efficacy was evaluated in 

adult treatment-experienced HIV-1 infected patients in two large multinational Phase III, 96 week, 

randomized, double-blind, placebo-controlled, clinical trials, DUET-1 and DUET-2 [30,31]. At entry, 

eligible participants must have had prior ART exposure for at least eight weeks with evidence of viral 

replication (plasma viral load of >5000 copies/mL). Furthermore, all participants were infected with 

HIV-1 strains that contained three or more primary protease inhibitor resistance mutations and at least 

one NNRTI resistance mutation. The primary endpoint of the study was the proportion of participants 

reaching an undetectable viral load (<50 copies/mL) at 24 weeks. A significantly larger portion of 

patients receiving optimized background therapy (OBT) plus ETR compared with OBT plus placebo 

reached an undetectable viral load at 24 weeks (56% vs. 39% in DUET-1, p < 0.01 and 62% vs. 44% in 

DUET-2, p < 0.001, respectively). A comprehensive analysis of study-entry resistance data from the 

DUET studies identified 17 ETR resistance-associated mutations, namely: V90I, A98G, L100I, 

K101E/H/P, V106I, E138A, V179D/F/T, Y181C/I/V, G190A/S, and M230L [32]. Importantly, the 

superior and durable virologic response for the OBT/ETR arm of the DUET trials was also observed at 

weeks 48 and 96, respectively. At week 96, virologic failure occurred in 93 (15.5%) of ETR-treated 

participants (compared with 170 (28.1%) placebo-treated participants) [33]. In the 93 failures, the most 

commonly emerging RT mutations were: V179F (16.1%), V179I (14.0%), Y181C (10.8%), V108I 

(8.6%) and K103N (7.5%). L74V, L100I, K101E, and M184V (6.5%), and E138G, E138Q, Y181I, 

V189I, E297K, and N348I (5.4%) also emerged. Of the emerging mutations, only five (L100I, K101E, 

V179F, Y181C, and Y181I) were previously identified as ETR resistance associated mutations. Based 

on 48-week data from the DUET-1 and DUET-2 trails, ETR was approved by the FDA for use in 

treatment-experienced adults who are experiencing virologic failure with HIV-1 strains resistant to an 

NNRTI and other antiretroviral agents. Of note, Ruxrungtham et al. reported that in a protease  

inhibitor-naïve population, with baseline NRTI and NNRTI resistance and NRTI recycling, TMC125 

was not as effective as first use of a protease inhibitor due to baseline NRTI and NNRTI resistance [34]. 

8. Rilpivirine 

Like ETR, RPV is a DAPY analog that shows potent activity against wild-type HIV-1 group M 

isolates (0.07 to 1.01 nM) and group O isolates (EC50 values range from 0.07 to 8.45 nM) [35].  

In in vitro experiments, RPV shows a resistance profile and a genetic barrier to the development of 

resistance comparable to those of ETR [35]. NNRTI resistance associated mutations that emerged in 

HIV-1 under selective pressure from RPV included combinations of V90I, L100I, K101E, V106A/I, 

V108I, E138G/K/Q/R, V179F/I, Y181C/I, V189I, G190E, H221Y, F227C, and M230I/L. In humans, 
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RPV efficacy was established in the THRIVE (TMC278 against HIV, in a once daily RegImen vs 

Efavirenz) and ECHO (Early Capture HIV Cohort Study) studies [36,37]. These two Phase III, 

multinational, double-blinded, randomized, placebo-controlled, non-inferiority studies compared the 

efficacy of RPV vs. EFV in combination with two NRTIs. In both studies, RPV was found to be  

non-inferior to EFV in treatment-naïve participants. However in both trails, RPV-treated participants 

had higher rates of virologic failure than EFV-treated participants (10% vs. 6%), particularly in 

individuals with pre-treatment HIV-1 viral loads >100,000 copies/mL (17% virologic failure  

in the RPV arm vs. 7% in the EFV arm). Resistance analyses demonstrated that the most common  

NNRTI-resistant mutation that emerged when participants failed RPV was E138K, typically in 

combination with M184I or M184V/I mixtures. Viral fitness studies have suggested that E138K may 

compensate for the fitness deficits of both M184I and M184V and restore the replicative capacity of 

viruses containing M184I/V [38,39]. However, other work suggests that viruses containing both the 

E138K and M184I mutations do not have high replicative fitness [40]. Other mutations detected in 

patients with demonstrable resistance in the pooled ECHO and THRIVE clinical trials included 

K101E, H221Y, V90I, Y181C, V189I, L100I, V179I, E138Q and F227C. Collectively, at least 17 

single substitutions in HIV-1 RT (L100I, K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, Y188L, 

H221Y, F227C, and M230I/L) have been associated with a decreased virologic response to RPV. 

Interestingly, we recently found that the E138A substitution occurs more frequently in subtype C 

(range: 5.9%–7.5%) than B (range: 0%–2.3%) sequences from both treatment-naïve and -experienced 

individuals (p < 0.01) in four independent genotype databases [41]. Importantly, there is a documented 

case report of an HIV-1-infected individual who did not respond to RPV/tenofovir/emtricitabine, 

apparently due to the presence of a baseline E138A mutation [42]. As such, E138A could impact 

treatment strategies that include RPV in geographic areas where subtype C infection is prevalent. 

9. Long Acting Rilpivirine 

A parentral, long-acting form of RPV (RPV-LA) has been developed with the goal of improving 

treatment adherence and for potential use as a PrEP agent [43]. A RPV-LA pre-clinical proof-of-concept 

study was conducted in mice and dogs, which showed sustained concentrations of the drug for over 

three weeks and three months, respectively [44]. These encouraging results led to at least two phase I 

clinical pharmacokinetic studies in which RPV-LA was generally well tolerated, and was shown to 

achieve sustained concentrations of the drug in the plasma and genital tract tissues [45,46]. These 

finding support its potential efficacy for use in PrEP. Additionally, RPV-LA in combination with the 

integrase inhibitor GSK1265744 is being assessed in an ongoing phase IIb study to determine whether 

they can maintain virologic suppression in HIV-infected individuals (ClinicalTrials.gov Identifier: 

NCT01641809). 

10. Dapivirine 

DAP is also a DAPY analog that demonstrates potent, dose-dependent inhibitory effects against a 

broad panel of HIV-1 isolates from different clades [47]. DAP was licensed to the International 

Partnership for Microbicides (IPM) for development as a topical microbicide. While DPV has been 

formulated as a gel and an intra-vaginal ring (IVR), the DAP IVR has moved ahead into late stage 
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clinical evaluation. The IVR releases DAP over a 28 days period. After this time, the woman removes 

the ring and inserts a new one. The DAP IVR is currently in Phase III clinical testing in two separate 

trials. The first trial, called ASPIRE, is being conducted in several sub-Saharan countries, with 

completion expected in early 2015. The second trial, called the Ring Study (IPM-027) is a similar 

study is also expected to end in early 2015. DAP has also been co-formulated with the CCR5-blocker 

maraviroc in an IVR. This product is being evaluated in a Phase I safety, PK study (MTN-013).  

In vitro, DAP resistance correlates with the following mutations: V90I, L100I, K101E, V106I, V108I, 

E138K, E138G, Y181C, and Y188L [48]. 

11. MIV-150 

MIV-150 is a PETT-urea analog with potent antiviral activity (EC50 of <1 nM). MIV-150 has been 

extensively evaluated in challenge models of HIV and the herpes simplex virus (HSV) when combined 

with carrageenan (the Carraguard product was found to be ineffective as a microbicide when  

administered alone), and zinc acetate [49,50]. Despite a lack in efficacy in preventing HIV-1 

transmission, Carraguard was found to possibly prevent transmission of HPV Zinc salts have been 

found to possess activity against HSV-2 and HIV-1. The Population Council is developing several 

potential products combining MIV-150, carrageenan, and zinc acetate including a gel and IVR. A 

phase 1, double-blind, parallel, placebo-controlled, randomized study to evaluate the safety, 

pharmacokinetics, pharmacodynamics, and acceptability of MIV-150 containing microbicide gel 

formulation in HIV-seronegative women is currently ongoing (NCT02033109). In SHIV-RT infected 

rhesus macaques, MIV-150 resistance was associated with the K101E, V108I, E138A/K, K103N, 

V179A/I/L, Y181C/I and Y188H mutations [51]. 

12. Potential for Cross-Resistance between NNRTIs Used for Prevention and Treatment of  

HIV-1 Infection 

In general, there is a high level of cross-resistance within the NNRTI class as a result of  

two mechanisms:  

(i) Nearly all of the NNRTI resistance mutations are within or adjacent to the NNRTI-binding 

pocket. Indeed there is no evidence that any one mutation only confers resistance to a single 

agent: most NNRTI-resistance mutations reduce susceptibility to two or more NNRTIs (Table 1). 

(ii) The genetic barrier to NNRTI resistance is low. Typically, EFV, NVP and RPV require  

only a single mutation to reduce clinical efficacy. ETR requires two mutations, but in certain  

circumstances (i.e., Y181I/V) a single mutation may be sufficient. 

In light of the high cross-resistance among the NNRTI class, there is a high likelihood that  

if an NNRTI-resistant variant is selected in an individual who became infected while using an  

NNRTI-containing PrEP or microbicide formulation, the efficacy of future 1st-line and salvage  

antiretroviral therapies may be highly compromised. Most concerning is the use of the structurally related 

DAPY analogs (DAP, RPV and ETR) which share over-lapping resistance pathways. Consequently, a 

better understanding of the resistance and cross-resistance profiles among the NNRTI class is important 

for predicting response to treatment, and surveillance of transmitted drug-resistance. 
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Table 1. Mutations associated with the NNRTIs discussed in this review. 

NNRTI 
V 

90 

L 

100 

K 

101 

K 

103 

V  

106 

V 

108 

E  

138 

V  

179 

Y 

181 

Y  

188 

G 

190 

H 

221 

P 

225 

F 

227 

M 

230 

NVP I I EP N A/I/M I  D/E/L C/I/V L/C/H A/S/E  H L/C L 

EFV I I EP N A/I/M I  D/E/L C/I/V L/C/H A/S/E  H L/C L 

ETR I I EP  I  A/G/K/Q D/E/F/I/T/L C/I/V L A/S/E   C L 

RPV I I EP  I  A/G/K/Q D/E/F/I/T/L C/I/V L A/S/E Y  C L 

DAP I I E   I K  C L      

MIV-150   E N I I A/K A/I/L C/I H      
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