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Abstract: Recent advances in molecular biology have led to the development of new antiviral drugs
that target specific steps of the Hepatitis C Virus (HCV) lifecycle. These drugs, collectively termed
direct-acting antivirals (DAAs), include non-structural (NS) HCV protein inhibitors, NS3/4A
protease inhibitors, NS5B RNA-dependent RNA polymerase inhibitors (nucleotide analogues and
non-nucleoside inhibitors), and NS5A inhibitors. Due to the high genetic variability of HCV, the
outcome of DA A-based therapies may be altered by the selection of amino-acid substitutions located
within the targeted proteins, which affect viral susceptibility to the administered compounds. At the
drug developmental stage, preclinical and clinical characterization of HCV resistance to new drugs
in development is mandatory. In the clinical setting, accurate diagnostic tools have become available
to monitor drug resistance in patients who receive treatment with DA As. In this review, we describe
tools available to investigate drug resistance in preclinical studies, clinical trials and clinical practice.

Keywords: HCV; RAVs; resistance; tools; direct-acting antivirals

1. Introduction

Hepatitis C virus (HCV) is a positive-polarity, single-stranded RNA virus belonging to the
Flaviviridae family, genus Hepacivirus. Over 150 million individuals are persistently infected by HCV
worldwide, and at risk of developing advanced liver disease and hepatocellular carcinoma [1,2].

Over the past decade, the development of novel molecules that target specific steps of the
HCV lifecycle has significantly expanded the “pool” of antiviral drugs available for chronic hepatitis
C treatment. The advent of interferon-free combination regimens with “direct-acting antiviral”
(DAA) drugs comes with high expectations for very highly sustained virological response (SVR)
rates and ultimate control of the epidemics [3,4]. Currently available HCV DAAs are classified
into four categories on the basis of their molecular target and mechanism of action: NS3/4A
protease inhibitors, NS5A inhibitors, nucleotide analogue inhibitors of NS5B RNA-dependent RNA
polymerase (RdRp), and non-nucleoside inhibitors of RdRp. Although SVR rates are very high (over
90%) with the new interferon-free regimens, clinicians will be faced in the future with the potential
for treatment failures due to selection of DA A-resistant viruses.

HCV is prone to develop resistance to DAAs, as a result of the lack of proof-reading activity of
the viral RARp coupled with the highly replicative nature of HCV. This leads to the daily generation
of large numbers of genetically distinct viral variants within each infected individual [5,6]. The
different isolates generated daily form, as a result of natural selection, a unique “quasispecies”. Some
quasispecies variants bear polymorphisms in drug-targeted genes, some of which confer reduced
susceptibility to DAAs [7]. The prevalence of intrinsically resistant variants within a patient’s
quasispecies is in part determined by their replicative fitness and the selective advantages they bear
compared with the other viral populations. Typically, a dominant variant is detectable within the
viral quasispecies along with less fit variants present at lower frequencies. The presence of minor
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populations of resistance-associated variants (RAVs) at the start of treatment may affect the outcome
of antiviral therapy, because they can become dominant in the context of the selective pressure
exerted by the drugs, subsequently leading to a virological breakthrough during treatment or, more
frequently with interferon-free regimens, a relapse after treatment cessation [8]. In addition, some
RAVs (in particular those conferring resistance to NS5A inhibitors) are very fit and thus persist as the
dominant species for months to years after treatment cessation.

Understanding drug resistance is important in the clinical setting in order to optimize treatment
regimens, increase success rates and minimize the impact of treatment failure. In this review, we
describe tools available to investigate HCV DAA resistance in preclinical and clinical research as well
as in clinical practice.

2. Virologic Tools Used at the Preclinical Developmental Stage

Candidate antiviral drugs require preclinical assessment of their potential for selecting resistant
viruses. Although resistance data generated in vitro are not necessarily predictive of subsequent
in vivo resistance when the compounds are administered to patients, in vitro resistance selection
experiments are mandatory to assess the barrier to resistance of the investigational drug and of other
compounds from the same class. These characteristics can be tested in replicon systems in hepatoma
cell lines, in in vitro cell-free biochemical assays, and/or by means of structural studies.

2.1. HCV Cell Culture Systems Investigating Phenotypic Resistance

In vitro culture of HCV has been elusive for many years because of the lack of a robust infectable
cellular system. The development of bicistronic sub-genomic HCV RNA replicons has been a major
step towards the establishment of a robust cell-based system that enables the performance of reliable
phenotypic testing to assess drug resistance [9,10].

2.1.1. Phenotypic Assays in Replicon Systems

In replicon systems, modified forms of the HCV genome replicate at high levels in human
hepatoma cells. Stably transfected replicons are capable of autonomous replication, but they are
unable to support the production of infectious HCV particles [11,12]. The replicon system usually
uses the HCV internal ribosome entry site (IRES) and a picornavirus IRES to direct translation
from the first and second cistron, respectively. The first cistron encodes the selectable neomycin
phosphotransferase gene (neor), in order to select G418-resistant cells, while the second cistron
translates the HCV non-structural proteins required for viral replication (NS2 to NS5B or NS3 to
NS5B). For efficient replication, two major characteristics are required: the selection of adaptive
mutations in the viral genome that enhance replication [11,12], and the selection of particular human
hepatoma cells that are highly permissive for replicon replication. The most widely used cells are the
modified hepatoma cell lines Huh?7.5 and Huh?7-Lunet [13]. Additional modifications can facilitate
the use of replicons for phenotypic resistance testing. For example, replacement of the neo gene
with a reporter gene such as luciferase, or the addition of this gene, allows for short-term assays
in which detection of RNA replication in transiently transfected cells can be performed 48-72 h
post-transfection [11,12,14].

HCV resistance pathways differ between different viral genotypes and subtypes, which display
different genetic barriers to selection of resistant variants according to the drug class [15,16].
An example is the frequent selection of the R155K substitution in the NS3 protease sequence under
the pressure of NS3/4A inhibitors in genotype 1a versus its unusual selection in genotype 1b, because
of the requirement for a single-nucleotide change in genotype 1a as opposed to a 2-nucleotide change
in genotype 1b. Therefore, accurate determination of phenotypic resistance must be performed with
replicons of different genotypes and subtypes encountered in the clinical setting. Replicon systems
were originally developed with a genotype 1b sequence [9]. Replicons of other HCV isolates, covering
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genotypes la and 2a, were subsequently obtained using the same approach. [17-19]. More recently,
replicons from genotypes 3a, 4a [20], 5a [21] and 6a [22] have been successfully developed.

2.1.2. Phenotypic Assays with Cell-Culture-Derived HCV Particles (HCVcc)

A major advance in HCV research was made when a HCV isolate from a Japanese patient
replicated efficiently in cell culture [19,23]; this HCV strain, called Japanese fulminant hepatitis
1 (JFH-1), belongs to genotype 2a; it can replicate inside a human hepatoma cell line (Huh-7)
and produce viruses that can infect new cells [24]. Improvement of the JFH-1 replicative system
was obtained with cell-culture adaptation of the JFH1 strain [25] and by the generation of virus
chimeras expanding HCV infectious culture systems to other HCV genotypes. A panel of JFH1-based
intergenotypic chimeras containing core-NS2 from different genotypes [26,27] and NS5A chimeras
(genotypes 1 to 7) were developed [28]. They can be used to test effectiveness of and resistance to
NS5A inhibitors [29]. JFH-1 derived virus genomes with insertions of reporter genes can also be
used [24,30].

Although the HCVcc system presents the advantage of covering the complete viral replication
cycle compared to the replicon system, HCV replicons cover a broader range of isolates and are far
more flexible for genetic manipulation. The construction of replicon chimeras in which NS3 or NS5B
derive from a patient’s isolate has been effective and utilized for phenotypic resistance assays [31-33],
while replacement of NS3 or NS5B in the JFH-1 isolate by the corresponding gene from other HCV
isolates drastically altered viral replication [34].

2.1.3. Assessment of Cross-Resistance

An antiviral drug may select amino acid substitutions in the target protein that confers
reduced susceptibility to other antivirals from the same class. This phenomenon, referred to as
cross-resistance, can be assessed by phenotypic assays. Cross-resistance can be partial, affecting a
subgroup of a class (example: the V36M substitution in the NS3 protease confers resistance to linear
ketoamid NS3/4A protease inhibitors, e.g., boceprevir, telaprevir) or complete (example: A156T is a
major class-specific mutation that affects all NS3/4A protease inhibitors) [8].

2.2. Assessment of the Replication Capacity

Assessing viral replication capacity in cell culture systems is important at the preclinical stage of
development and during clinical development. In general, substitutions at critical residues near the
highly conserved active site of a target enzyme (i.e., NS3 catalytic site or the nucleotide incorporation
site of RdRp) [35] will impair enzyme function, resulting in diminished replication capacity and
decreased viral fitness. In contrast, drugs that target allosteric sites, such as non-nucleoside inhibitors
of RdRp or NS5A inhibitors, have little impact on viral fitness [36]. Secondary substitutions may be
selected together with those conferring primary resistance because their presence on the same strain
improves the viral fitness of the resistant variants, in vitro and/or in vivo. Replication capacity is
calculated as the ratio of the reporter gene signal at four days post-transfection to the signal at 4 h
post-transfection. The relative replication capacity of a RAV can be expressed as the percentage of
the normalized reporter gene signal of the variant replicon compared with a wild-type replicon (set
at 100%). In clinical practice, the impact of resistance-associated substitutions on the viral replication
capacity helps predict whether these variants will be selected during treatment, whether secondary
adaptive mutations will be selected, and of the likelihood of their loss after drug withdrawal [37].

2.3. In which Contexts Should phenOtypic Assays be Performed

Replicons and cell-culture derived HCV particles can be used to:
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o Identify substitutions that confer resistance to a newly tested compound in vitro. Wild-type
(WT) replicons (or HCVcc systems) are cultured in human hepatoma cells in the presence of
increasing concentrations of the investigational compound until small colonies are formed [38,
39]. These colonies are then expanded and characterized by sequence analysis to identify amino
acid changes relative to the WT replicon. Cell culture selection of variants resistant to the
investigational drug provides insights into the genetic barrier to resistance of the compound [36].
A drug with a low genetic barrier rapidly selects fit resistant variants bearing only one or two
substitutions in the targeted viral protein. In contrast, a compound with a high genetic barrier
requires multiple substitutions to select for resistance and/or a longer period of time before
resistant variants acquire fitness and outgrow. Selection experiments should be repeated under
high and low selective pressures, in order to determine if the same or different patterns of
resistance mutations develop under these two conditions and to assess the relationship of the
drug concentration with the genetic barrier to resistance.

e  Phenotypically characterize the effect of substitutions identified in vitro or in vivo by means
of genotypic testing. Individual or multiple candidate resistance-associated substitutions are
engineered into an HCV replicon by site-directed mutagenesis. The effect of the introduced
substitution(s) on drug resistance is then assessed by calculating the 50% and 90% effective
concentrations (EC50 and EC90) of the mutant, compared to a wild-type control in each assay.
EC50 and EC90 values are calculated either manually or by means of specific software (e.g.,
GraphPad Prism, (GraphPad software, San Diego, CA, USA) using the mean assay signals
from multiplicate samples tested in different experiments. Drug susceptibility of a given
mutant is calculated by dividing the mutant’s EC50 by the wild-type EC50; it is expressed as
a “fold-change”. Assay variability may be problematic. Intra-assay variability is tested by
estimating the similarity of individual EC50 and EC90 measurements performed in multiple
wells of a single assay run. The standard deviation of the fold-change should be low (less than
0.3) for adequate interpretation of the assay results [40]. Inter-assay variability is assessed by
performing multiple independent assay runs. The standard deviation of the mean must be
three-fold or less [40]. The results must be interpreted cautiously, in the light of the clinical
context. Indeed, viral variants that show low-level resistance in vitro may sometimes be more
clinically relevant in vivo than variants with higher-level resistance in vitro.

Review articles summarizing HCV resistance profiles with different DAAs have been recently
published [41,42].

2.4. Cell-Free in Vitro Assays Investigating Drug Resistance

Cell-free enzyme assays have been developed to assess susceptibility of HCV enzymes to DA As.
They have been used to test the effects of individual substitutions or complex substitution patterns
on the HCV enzyme activity in the presence of the drug. In NS3/4A enzyme assays, a purified NS3
protease can be used in vitro with the Fluorescence Resonance Energy Transfer (FRET) technology
that reveals the enzymatic reaction [43,44]. Briefly, the NS3/4A (or NS3 N-terminal) fragment is
cloned into an Escherichia coli expression plasmid for protein synthesis [45]. After purification, in vitro
protease activity is measured in the presence of different concentrations of the drug. Resistance
is measured as the fold-increase in the 50% and 90% inhibitory concentrations (IC50 and IC90,
respectively), which correspond to the drug concentrations that inhibit the protease function by 50%
and 90%, respectively. Enzyme assays are laborious and time-consuming. A new, more accessible
assay has been developed, based on a coupled in vitro transcription/translation system, with a total
turnaround time of less than 10 h [46].

The RdRp shares a common right hand structure with other RdRps, with three main domains:
fingers, palm and thumb. The enzyme catalyzes the synthesis of both positive- and negative-strand
RNAs [47]. A number of biochemical tools has been developed to study HCV replication [48]. They
can be used to evaluate the impact of a candidate amino-acid substitution on viral enzyme efficiency
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and resistance to an RdRp inhibitor. The enzyme activity of a purified RdRp can be measured,
for example, by detecting the incorporation of tritiated UTP into RNA transcripts. To assess drug
resistance, the inhibitor is incubated with increasing amounts of wild-type or mutated enzyme,
followed by the addition of nucleoside triphosphates (NTPs) and tritiated UTP. The percentage of
inhibition is calculated from the initial rates of inhibited reactions relative to that of the uninhibited
control reaction. Similar to NS3/4A assays, the mean IC50 and IC90 and the standard error of the
mean are calculated by nonlinear regression.

NS5A has no known enzyme activity but plays a critical role in the viral lifecycle through
several molecular processes involving regulation of RdRp activity, as well as interactions with HCV
proteins and numerous cellular factors [49]. NS5A inhibitors directly interact with NS5A. In vitro
binding assays have been developed to unravel the mechanisms of resistance to NS5A inhibitors.
They showed that major resistance mutations significantly reduce the affinity of NS5A for the
inhibitors [50].

2.5. Structural Studies Investigating Drug Resistance

Structural studies are repeatedly needed to help understand viral protein functions and elucidate
the mechanisms by which chemically diverse inhibitors differentially bind the wild-type and
drug-resistant target proteins. Methods currently used to determine the structure of a protein and
its interaction with inhibitors include X-ray crystallography, nucleic magnetic resonance (NMR)
spectroscopy, and computational methods.

X-ray crystallography studies the conformational flexibility and interaction of the drug with
conserved or mutated residues [51-56]. The analysis of X-ray crystallography results requires
expertise and careful interpretation. If the residues involved in drug resistance are in close vicinity to
the drug-binding site, it is plausible that substitutions will directly interfere with compound binding.
Crystallography can be used to understand cross-resistance between drugs targeting the same viral
protein and to measure the genetic barrier to resistance. For instance, structural analyses of the
NS3/4A protease domain revealed that with the first-wave, first-generation protease inhibitors, only
a small number of tight binding interactions with the enzyme existed, because single substitutions
resulted in a significant loss of inhibition and in cross-resistance [57]. Crystal structures of ternary
complexes of HCV RdRd with RNA templates, nucleotides and catalytic metal ions elucidated key
molecular interactions with sofosbuvir within the active site of the enzyme. They identified the
possible in vitro selection of the S282T substitution [53]. The crystallization process is however
difficult, time-consuming and has limitations related to the type and length of the proteins analyzed.
Structures are thus sometimes limited to a portion of the protein of interest (for example, domain I of
the NS5A protein) [55,56].

In NMR spectroscopy, the protein is purified, placed in a strong magnetic field, and then probed
with radio waves. A major advantage of NMR spectroscopy is that it provides information on
proteins in solution, as opposed to those locked in a crystal, permitting structural as well as functional
studies. This method is particularly well suited to the study of unstable disordered proteins such as
NS5A [58,59].

Structural Bioinformatics Modeling can alternatively be used to investigate the
three-dimensional structural features of the drug binding site and the impact of the different
amino acid substitutions. Structural modeling analyses can be generated by software, such as
PyMol [44] and/or Polyphen2 [60], which model the X-ray crystal structures of mutated NS3 or
NS5B proteins using wild-type structures recovered from Protein Data Bank.

3. Virologic Tools Used in Clinical Research and in the Clinical Setting

In clinical research and in the clinical setting, the above-presented tools are useful to help
understand the in vivo selection of drug-resistant viruses. However, HCV circulates within a given
host in the form of mixed populations with remarkable sequence variation, referred to as viral
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quasispecies [5]. In such contexts, minor populations intrinsically resistant to a given drug rapidly
adapt to the dynamic environmental changes created by drug administration. Viral population
remodeling associated with DA A-containing treatment regimen failures has been extensively studied.
Mutational pathways associated with viral resistance to different classes of DAAs with various
extents of cross-resistance have been unraveled.

3.1. Phenotypic Resistance Testing in Clinical Research

Phenotypic characterization of candidate resistance substitutions selected in treated patients
must be performed either by means of site-directed mutagenesis or by introducing longer sequences
derived from the clinical isolates into a chimeric replicon backbone [33,61,62]. Whenever possible,
viral gene insertion should be performed in a replicon backbone with the same genotype as the
original isolate. To take into account the quasispecies distribution of HCV populations and the fact
that resistant substitutions are present in mixtures of viral variant populations, phenotypic assays
are best performed on a mixture of isolated clones [31]. Inability to explain virologic failure, or
suspicion of nontarget region changes, may require analysis of additional regions in a subset of
virologic failure samples.

3.2. Sequencing Tools Evaluating Resistance in Clinical Research and in the Clinical Setting
(Genotypic Analysis)

Genotypic tools are available to determine the individual substitution pattern of a patient’s
quasispecies at a given time point. These methods include population sequencing (also called direct
sequencing) [63,64], clonal sequencing [45,65], and next-generation sequencing (NGS), currently
based on deep sequencing methods [66]. The relevance of one method or the other depends on the
context and aim of research. Population sequencing has limited analytical sensitivity for the detection
of minor variants, i.e., variants present at low frequencies (<20%). Thus, the in-depth study of the
dynamics of viral variants over therapy and thereafter requires more sensitive approaches. The recent
development of next-generation sequencing technologies has superseded clonal sequencing and
facilitated better understanding of the genetic composition and natural evolution of viral quasispecies
in the presence of antiviral drugs [66].

3.2.1. Population Sequencing

The current standard method for routine genotypic analysis of HCV drug resistance is
population sequencing by means of the Sanger method. Population sequencing can be easily
performed on clinical samples to generate a consensus sequence, which shows with appropriate
sensitivity which dominant HCV variants are present in the sample’s quasispecies. However, because
of the high level of divergence between viral genotypes and subtypes, genotype-specific PCR primers
must be used to ensure successful amplification of the target gene(s) (NS3, NS5A or NS5B).

3.2.2. Clonal Sequencing

For many years, the study of viral quasispecies was based on the separation of individual
variants by means of genetic cloning or by end-point limiting dilution (EPLD), followed by Sanger
sequencing. Sequencing was then conducted on individual clones isolated from a clinical sample
after the viral quasispecies has been inserted into a plasmid vector and transformed into a bacterial
host. Each clonal sequence represents a unique variant population present in the mixture. However,
the number of clones that can be analyzed is limited and the method is expensive and laborious.
Cloning-sequencing is now being replaced by next-generation sequencing methods.

3.2.3. “Next-Generation” Sequencing (NGS)

NGS refers to high-throughput sequencing technologies, which have demonstrated enormous
potential in many fields of virology, including the analysis of HCV drug resistance. The currently
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available NGS platforms differ by their sequencing biochemistries, sequence length capacities, and
throughput capabilities. The most recent techniques, such as the widely used Illumina technology,
generate hundreds of millions of sequences (called “reads”) in a single run. NGS techniques are
increasingly used in virology laboratories in various diagnostic applications [66—73].

NGS studies of HCV can use two strategies: whole-genome sequencing or quasispecies analysis
targeting a specific gene. When focusing on short regions, NGS provides high sensitivity for the
detection of minor viral populations. The “reads” are usually mapped to a genotype-specific reference
sequence, such as for instance H77 in genotype 1a. The choice of the detection threshold depends on
the assay variability at very low levels. Variants that represent less than 0.5% of the viral quasispecies
are usually excluded, because of the risk of false-positives associated with the amplification and
sequencing steps. Expertise in bioinformatics analysis of the enormous amount of reads generated
with adequate computing resources is required.

3.3. Drug Resistance Assessment in Clinical Trials

In clinical trials, samples should be regularly collected for phenotypic and genotypic analyses,
including at baseline (pre-treatment), at the time of virologic failure in case of virological
breakthrough or relapse, and after treatment cessation (off-drug period follow-up). When available,
the patient’s pretreatment viral sequence should serve as the reference to identify relevant changes
over time. Alternatively, a standard reference sequence (such as conl, H77) can be used.

Pretreatment (baseline) assessment. Baseline samples are analyzed to detect known or unknown
polymorphisms and provide a comparator for on- and post-treatment changes. Such studies showed
the pre-existence, in various proportions, of RAVs conferring resistance to the known classes of DA As.
For example, the baseline frequency of RAVs conferring resistance to first-wave, first-generation
NS3/4A protease inhibitors (telaprevir or boceprevir) is low (approximately 3%) when assessed
by population sequencing [63,74,75]. Their presence may be predictive of treatment failure. In the
telaprevir-based PROVE1/2 studies [63], patients with an R155K substitution at baseline had lower
SVR rates. Pre-existing resistant variants have also been described in the NS5A and NS5B region. The
presence of preexisting NS5A RAVs may have an impact on the rate of virologic response to NS5A
inhibitors-containing regimen, depending on the genotype/subtype, drugs used in combination with
the NS5A inhibitor and treatment duration. For example, in patients infected with genotype 3
treated with sofosbuvir and daclatasvir, post-treatment relapse was more frequent in patients with
cirrhosis who harbored NS5A Y93H RAVs at baseline [76]. Similarly, in patients infected with subtype
la treated with grazoprevir and elbavir, pre-existing NS5A RAVs conferring more than five-fold
resistance in vitro significantly reduced the rates of virologic success [77]. The presence of variants
conferring resistance to nucleotide or non-nucleoside NS5B inhibitors at baseline has not been shown
to have any impact on virologic responses thus far. Resistant variants are more frequently detected
with NGS because of its greater sensitivity for the detection of minor viral populations [78-80].

Assessment at virological failure. Samples collected at the time of virological breakthrough or
relapse are analyzed to identify amino acid changes relative to baseline that confer resistance to the
administered drugs. Longitudinal dynamic analysis is best performed by NGS or clonal sequencing
to describe quasispecies changes. Phenotypic analysis and replication kinetics experiments can be
subsequently performed to assess the level of reduced susceptibility conferred by the substitutions
and evaluate their viral fitness cost.

Post-treatment assessment. Post-treatment persistence or loss of RAVs depends on the impact
of the substitution on the fitness of the corresponding variant compared to the “wild-type” strain.
A negative impact implies progressive decay of resistant variants in the absence of selective drug
pressure. However, the wild-type virus may have been cured by therapy, so that only resistant viruses
are present at relapse. In that case, RAV loss depends on the occurrence of a reversion of the resistant
variant to wild type by mutation. Population sequencing is relevant if the resistant variant is present
as a dominant viral population, but more sensitive techniques (i.e., clonal sequencing or NGS) are
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required to fully characterize the dynamics of RAV decay after treatment cessation. The nucleotide
inhibitor sofosbuvir has a high barrier to resistance. Resistant variants are exceptionally selected and
present as dominant populations at the time of relapse, because of their low in vivo fitness. Thus,
they rapidly disappear after treatment cessation. Therefore, retreatment with a sofosbuvir-containing
regimen is recommended [16]. In contrast, patients failing on regimens containing an NS3/4A
protease inhibitor, a non-nucleoside RdRp inhibitor, or an NS5A inhibitor select resistant viruses that
can persist for months after treatment (example: NS3/4A protease inhibitors), for years (example:
non-nucleoside RdRp inhibitors), possibly for life (example: NS5A inhibitors) [81-84]. Post-treatment
persistence of RAVs is also influenced by the viral genotype/subtype [81].

Reemergence of RAVs in case of a second exposure to the same drug or drug class may
have clinical consequences [16,72,84]. Analyzing viral quasispecies during the off-drug period
preceding retreatment is challenging. If reemergence of resistance appears with an identical genomic
background, it suggests that it arises from persisting low-level RAVs selected during the first course
of treatment. A different genetic background suggests de novo generation of resistant variants.

3.4. Drug Resistance Testing in Clinical Practice

HCV resistance monitoring during drug development is fundamental to understanding the
clinical impact of drug resistance. In contrast, the usefulness of systematically performing HCV
resistance testing in the clinical setting remains debated. In contrast to HIV infection, during
which infected cells harboring resistant variants are archived for prolonged periods [85], HCV can
be cured in the vast majority of cases with currently available antiviral therapies. Furthermore,
depending on the drugs and amino acid substitutions, resistant variants may not have long-term
clinical consequences.

HCYV resistance testing prior to first-line therapy currently is not recommended [16]. Indeed, the
SVR rates are very high both in patients without and with detectable amounts of pre-existing RAVs;
therefore, the detection of RAVs will not influence the treatment decision. The only exception is the
Q80K substitution in the protease region of HCV genotype 1a, which confers simeprevir resistance.
International guidelines recommend testing for the presence of Q80K DAA-naive patients infected
with HCV subtype 1a who are being considered for treatment with simeprevir, PEG-IFN and RBV or
sofosbuvir plus simeprevir in cirrhotic patients [86].

Resistance testing may be useful in patients experiencing virological breakthrough or
post-treatment relapse [16], particularly when their treatment comprises NS5A inhibitors. Indeed,
NS5A RAVs can remain detectable several years after treatment withdrawal [83,87]. The
AASLD/IDSA guidelines recommend testing for RAVs that confer decreased susceptibility to NS3
protease and to NS5A inhibitors, for retreatment of cirrhotic patients or other patients who require
retreatment urgently when these patients have history of failure to NS5A inhibitor-containing
regimen [88]. In clinical practice, monitoring resistance for the persistence of RAVs will lead to better
management of second-line therapy. In addition, resistance patterns derived from clinical samples
are more representative of “real-life” and could differ in complexity from those observed in clinical
trials, therefore reinforcing the need to perform resistance testing in the context of virological failure
in the clinical setting.
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