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Abstract: Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic
Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers
(nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells,
the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify
cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to
provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome
system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome
inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment
strategies against the EBV-associated cancers.

Keywords: Epstein-Barr virus; proteasome inhibitor; apoptosis; cell cycle; lytic reactivation;
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1. Introduction

Epstein-Barr virus (EBV) is a gamma-herpesvirus which infects more than 90% of the world’s
population. It is closely associated with several lymphomas (endemic Burkitt lymphoma (BL), Hodgkin
lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma (NPC)
and gastric carcinoma). Since proteasome is crucial for cellular homeostasis, disruption of its function
is found to be present in numerous cancers, including virus-associated cancers [1,2]. It has been
shown that manipulation of the function of ubiquitin-proteasome system by EBV (and another
gamma-herpesvirus, Kaposi’s sarcoma-associated herpesvirus (KSHV)) is indispensable for the
survival and replication of the viruses in the infected cells. The viruses can express both lytic and
latent proteins to either inhibit the proteasomal degradation of important viral proteins or promote
the degradation of unwanted cellular proteins in the virus-associated cancers [3–5]. For instance,
the disruption of PML (promyelocytic leukaemia) nuclear bodies and subsequent inhibition of
ubiquitin-proteasome degradation system by EBV genes (BZLF1, BRLF1, BDLF1, BLLF2, BFLF2, BPLF1,
BNRF1, latent membrane protein (LMP)-1, EBV nuclear antigen (EBNA)-1 and EBNA-3B), KSHV genes
(replication and transcription activator (RTA), viral interferon regulatory factor (vIRF)-3, open reading
frame (ORF)-64 and ORF-75) and mouse hepatitis virus (MHV)-68 genes (ORF-64 and ORF-75C) are
demonstrated to be essential for evading the innate immune response during early infection stage [6].
Such immune evasion mechanisms during early viral infection are comprehensively reviewed by
Full et al. in 2017 [6]. In this review, we focus on how EBV proteins utilize the ubiquitin-proteasome
system to promote degradation of cellular proteins for their survival and the potential usage of
proteasome inhibitors in the treatment of EBV-associated malignancies. Specifically, the functions
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of the key viral proteins (BDLF3, EBNA-1, LMP-1 and EBNA-3C) involved in the manipulation of
ubiquitin-proteasome system for inhibition of cell cycle checkpoint, apoptosis and immune surveillance
in the EBV-associated malignancies are summarized. The efficacy of proteasome inhibitors on the
treatment of EBV-associated malignancies and potential novel viral-targeted treatment strategies using
proteasome inhibitors against EBV-associated cancers are discussed.

2. The Ubiquitin-Proteasome System

2.1. Structure and Function of Proteasome

The 26S proteasome is composed of 19S regulatory particle (RP) and 20S core particle (CP),
resulting in 26 Svedberg units in sucrose gradient sedimentation. α- and β-subunits constitute the
barrel-shaped 20S CP. Two sets of seven α-subunits at both ends form the end rings, whereas two
sets of seven β-subunits in the middle form the central rings of 20S CP (Figure 1). The N-termini
of β1, β2 and β5 are the active sites responsible for the proteolysis of substrates. β1, β2 and β5
are responsible for proteolytic cleavage of post-glutamylpeptidyl-hydrolyzing (PGPH), trypsin-like
and chymotrypsin-like substrates, respectively. Virtually all peptide bonds can be hydrolyzed by
these three proteolytic subunits. [7,8]. On the other hand, 19S RP is a proteasome activator (PA)
which facilitates the recognition of targeted substrates with polyubiquitin modification and insertion
of substrates into the central cavity of 20S CP through adenosine triphosphate (ATP)-dependent
mechanism. The ubiquitin molecules are subsequently recycled from the modified proteins by
deubiquitinating enzymes (DUBs) [9].

2.2. Proteasomal Degradation Mediated by Ubiquitination

Most of the protein degradations catalyzed by proteasome are initiated by polyubiquitination
of the targeted proteins. This process is a covalent attachment of ubiquitin, which consists of 76
amino acids, to the substrates and assembles a chain with at least four ubiquitin molecules. First,
ubiquitin (Ub) is activated by one of the two ubiquitin-activating enzymes, known as E1, through
ATP-dependent mechanism, forming a thioester bond (S) between the cysteine residue at E1 and the
carboxyl terminus of ubiquitin. The activated ubiquitin in this Ub-S-E1 intermediate is then transferred
by one of the 38 ubiquitin conjugating enzymes, known as E2, forming another intermediate, Ub-S-E2,
which serves to bring ubiquitin to the targeted substrate and the ubiquitin-protein ligase, E3 [10].
Multiple ubiquitin molecules are added on the targeted protein to form an ubiquitin chain which is
recognized by 19S RP to activate proteolysis [11–13]. There is also an E4 ubiquitination factor which is
responsible for elongation of the ubiquitin chain in some cases [14].

3. Interaction of EBV with Ubiquitin-Proteasome System in Host Cells

As mentioned above, manipulation of the normal function of ubiquitin-proteasome system by
EBV (and KSHV) is indispensable for the replication of the viruses and survival of the virus-infected
cells. It has been shown that some viral proteins of EBV share similar functions with those of KSHV
in the manipulation of ubiquitin-proteasome system. Therefore, understanding the mechanism of
the interaction between the viral proteins of KSHV and the proteasome may further provide insight
into EBV-proteasome interaction. In this section, the functions of the key viral proteins involved in
the manipulation of ubiquitin-proteasome system for inhibition of immune surveillance, cell cycle
checkpoint and apoptosis in the EBV- and KSHV-associated malignancies are summarized (refer to
Figure 1 & Table 1).
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3.1. Immunological Evasion

Ubiquitin-proteasome system is important for generation of antigenic peptides of viral proteins
for presentation to cytotoxic T cell (CTL) in the context of major histocompatibility complex (MHC)
class I [15]. However, EBV develops strategies to evade immune detection and elimination through
inhibition of ubiquitin-proteasome system. In latently infected B cells, the glycine-alanine repeat (GAr)
domain of EBNA-1 was shown to be the key element in the inhibition of proteasomal processing
of EBNA-1 into antigenic peptides and hence prevented MHC class I presentation to CTL and
subsequent clearance of the infected cells [16]. This type of immunological evasion is also observed in
KSHV-infected cells. The latency-associated nuclear antigen (LANA) of KSHV, which is functionally
similar to EBNA-1 though without any sequence homology, prevented the generation of antigenic
peptides for MHC class I presentation by inhibiting proteasome [17].

It was also confirmed that BDLF3, a late lytic protein, triggered the internalization and proteasomal
degradation of both MHC class I and II molecules on the surface of infected cells, resulting in
impairment of immune recognition of the EBV-infected cells by antigen-specific CD8+ and CD4+

cells [18]. Interestingly, K3 and K5 proteins encoded by KSHV also served similar function as
stimulating polyubiquitination and endocytosis of MHC class I molecules from the surface of
infected cells. However, unlike BDLF3, the MHC proteins were degraded by lysosome rather than
proteasome [19].

In addition, BNRF2, EBNA1 and BZLF1 proteins of EBV could also disrupt the PML-nuclear bodies
and subsequently evade the intrinsic antiviral response via proteasome-dependent and independent
mechanisms [6]. On the other hand, RNA transcriptional activator (RTA) of KSHV could act as a viral
E3-ubiquitin ligase and stabilize the RTA-associated ubiquitin ligase (RAUL) of the host cells. As a
result, RTA could facilitate the proteasomal degradation of Interferon regulatory factors (IRF3 and
IRF7), hence evading the innate immunity [20,21].

3.2. Modulation of Cell Cycle Checkpoints

The major EBV protein that overrides cell cycle regulation is Epstein-Barr nuclear antigen-3C
(EBNA-3C) which is expressed in Type III latency. EBNA-3C is known to be crucial for transformation,
proliferation and survival of infected B cells. It was found to epigenetically repress the transcription of
p16INK4A, which is a cyclin-dependent kinase (CDK) inhibitor, hence stabilizing the cyclin D1/CDK6
complex, which increases the phosphorylation and ubiquitin-dependent proteasomal degradation of
pRb and allows the cells to enter G1 phase [22]. In addition, the ubiquitin-proteasome degradation
of pRb is also enhanced by recruitment of the SKP1-Cul1-F-box protein (SCFSkp2) E3-ubiquitin ligase
when EBNA-3C stably associates with pRb [4,23]. The transcription factors of E2F family are released
from pRb and activate transcription of cyclin/CDK complexes such as cyclin D1/CDK4/6 and cyclins
A and E/CDK2, promoting cell cycle progression from G0 to G1 and from G1 to S phase [23].

EBNA-3C also stabilizes proto-oncogene serine/threonine-protein kinase (Pim-1) by physical
interaction and enhances its phosphorylation activity on CDK inhibitor p21WAF1, leading to
proteasomal degradation of p21WAF1 and escape of G1-S phase cell cycle arrest [24]. In addition,
EBNA-3C activates Skp2, which is one of the two integral proteins of SCFSkp2 E3-ubiquitin ligase,
leading to phosphorylation and subsequent ubiquitin-dependent proteasomal degradation of another
CDK inhibitor p27KIP1. This releases the inhibitory effect of p27KIP1 to cyclin A/CDK2 complex,
stimulating the entry into S phase [25]. Moreover, EBNA-3C specifically interacts with and activates
ubiquitination and proteasomal degradation of Bcl-6. As a result, the normal suppression of cyclin
D1 by Bcl-6 is abrogated, promoting G1-S phase transition [26]. Since cyclin A is also essential for the
initiation of mitosis, the stabilization of cyclin A by EBNA-3C might also assist EBV-infected cells to
progress to M phase [27,28].

Of note, p27KIP1 is also directed to proteasomal degradation in primary effusion lymphoma (PEL)
by KSHV viral proteins, K-cyclin and V-cyclin, which are homologs of human cyclin D2 and form a
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complex with CDK4/6. The Thr48 residue of p27KIP1 is phosphorylated by K/V-cyclin-CDK6 complex,
resulting in polyubiquitination and proteasomal degradation of p27KIP1 [29,30].

3.3. Inhibition of Apoptosis

Several tumor viruses such as EBV, KSHV, hepatitis B virus (HBV) and human papillomaviruses
(HPV) were found to promote oncogenesis through prevention of apoptosis coupled with deregulation
of the cell cycle. Numerous pro-apoptotic tumor suppressors are suppressed by oncogenic proteins
or degraded by proteasome [31]. EBV depends on proteasomal processing of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) precursor p100 into p52 to activate the
non-canonical NF-κB pathway, which in turn promotes the expression of inhibitor of apoptosis proteins
(IAP), including XIAP, cIAP-1 and c-IAP-2 for cell survival through the action of LMP-1 [32]. EBNA-1
stably associates with herpesvirus associated ubiquitin-proteasome system (HAUSP), also known
as ubiquitin-specific protease 7 (USP7), by binding to the same pocket that p53 binds. Thus,
the deubiquitination of p53 by USP7 is blocked, leading to its degradation [33]. EBNA-3C protects
MDM2 from ubiquitination and proteasomal degradation through physical interaction between its
N-terminal 130–190 amino acid residues and the central acidic domain of MDM2, further suppressing
p53 [34]. On the other hand, EBNA-3C stimulates proteasomal degradation of Bcl-6, releasing the
anti-apoptotic protein, Bcl-2 from suppression by Bcl-6 [26]. Some viral proteins encoded by KSHV
can also inhibit apoptosis, for instance, vIRF4 which inhibits the phosphorylation of Ser 15 in p53
by ataxia-telangiectasia mutated (ATM) kinase, leading to destabilization as well as proteasomal
degradation of p53 [35]. vIRF4 also stabilizes MDM2 E3-ubiquitin ligase, promoting proteasomal
degradation of p53 [36].

4. Rationale of Using Proteasome Inhibitor to Treat EBV-Associated Cancers

4.1. Overview of Proteasome Inhibitors

Proteasome inhibitors are primarily designed to target on β5 of the 26S proteasome [37,38].
The proteasome inhibitors exert inhibition via either non-covalent (reversible) or covalent (irreversible)
binding to the active sites of 20S core particle. There are 8 major structural classes of proteasome
inhibitors which include aldehydes, boronates, epoxyketones, α-ketoaldehydes, β-lactones, vinyl
sulfones, syrbactins and bacteria specific oxatiazol-2-ones. Some of the proteasome inhibitors, including
those in the classes of boronates, epoxyketones and β-lactones, are currently the Food and Drug
Administration (FDA)-approved for treatment of various types of cancers or are tested in clinical trials
(Table 2). Bortezomib was the first proteasome inhibitor approved by FDA in 2003 for the treatment
of multiple myeloma and mantle cell lymphoma [39]. Proteasome inhibitors were demonstrated to
inhibit cell growth and promote cell death in a variety of cancers such as multiple myeloma, anaplastic
thyroid cancer, colon cancer, pancreatic cancer [38,40,41]. Several possible mechanisms were suggested
to explain the anti-cancer effects mediated by proteasome inhibitors. Inhibition of NF-κB signaling
pathway was believed to be one of the key anti-cancer mechanisms. Proteasome inhibitors such as
bortezomib could significantly suppress the expression of NF-κB and its downstream signaling in
various types of cancer cell lines. Another possible cell death mechanism induced by proteasome
inhibitors involved phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), a pro-apoptotic
player of Bcl-2 family. Upon suppression or activation of such signaling pathways, both intrinsic
mitochondrial and extrinsic (death receptor) apoptotic pathways were induced. Various cell cycle
regulatory proteins such as p21WAF1 and p27KIP1 and pro-apoptotic proteins such as Bax and Bid were
affected by proteasome inhibitors.
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4.2. Effect of Proteasome Inhibitors on Cell Cycle of EBV-Associated Malignancies

EBV expresses different latency patterns in different EBV-associated malignancies [42]. During
primary infection of B cells, EBV expresses the full panel of transforming proteins which drive
the continuous proliferation of B cells via modulation of cell cycle checkpoints. EBNA-3 proteins,
in particular -3A and -3C, are known to play a role in the manipulation of the cell cycle in EBV-infected
B cells. In 1994, Allday et al. first discovered the cell cycle regulatory property of EBNA-3C by showing
that expression of wild-type EBNA-3C was able to rescue the G1 arrest in EBNA-3C mutated cells [43].
EBNA-3C was later found to promote G1-S transition by enhancing pRb degradation [4], stabilizing
cyclin D1 [44] and facilitating p27KIP1 degradation [4]. Besides, EBNA-3C could co-operate with
EBNA-3A to epigenetically repress the INK4 family of the CDK inhibitors (e.g., p14 and p16INK4A) to
support the continuous proliferation of lymphoblastoid cell lines (LCLs) [45–49]. EBNA-3A and -3C
could also abrogate the G2/M checkpoint for the survival of EBV-transformed B cells in response to
various cytotoxic stresses [50–54].

Proteasome inhibitors were shown to induce G2/M arrest through generation of reactive oxygen
species (ROS) and up-regulation of cell cycle regulators such as p21WAF1 and p27KIP1 in certain cancer
types [55–57]. In our previous study, we observed that bortezomib could induce G2/M arrest in P3HR1
Wp-restricted BL cells [58]. However, the percentage of cells in G2/M phase was much lower in LCLs
which expressed higher level of EBNA-3 proteins [58]. Similarly, EBNA-3 proteins were reported to
disrupt G2/M arrest induced by azelaic bishydroxamine in LCLs [50]. We postulated that EBNA-3C
would be the major protein involved in the disruption of G2/M arrest because of its ability to modulate
the expression of various cell cycle regulatory proteins. [42,45–48] For instance, EBNA-3C was shown
to stabilize cyclin A and assist the EBV-infected cells to progress to M phase [27,28]. Interestingly,
bortezomib could also induce the expression of pRb and p21WAF1 which were downregulated by
ubiquitin-dependent proteasomal degradation [4,22–25].

4.3. Effect of Proteasome Inhibitors on Apoptosis of EBV-Associated Malignancies

EBV latent proteins, including LMP-1, EBNA-3A and EBNA-3C, were shown to be oncogenic and
might contribute to the resistance of EBV-associated cancers to apoptotic inducers. LMP-1 is a well
characterized viral protein which possesses strong oncogenic activity through activation of NF-κB
pathway in both BL and NPC [59,60]. We had shown that bortezomib, which is known to inhibit the
NF-κB pathway, could induce apoptosis in BL, gastric carcinoma and NPC [58,61]. Another study
showed that bortezomib could inhibit the proteasome-mediated activation of p52 and thus suppress the
anti-apoptotic function initiated by the non-canonical NF-κB pathway in EBV-transformed LCLs [62].
EBV-positive BL cells of type III latency were found to be more resistant to killing by nocodazole or
taxol when compared with EBV-negative or latency I BL cells [63]. Wp-restricted BL cells were also
more resistant to the treatment with ionomycin or anti-IgM when compared with latency I BL cells [64].
Further studies showed that EBV offered essential anti-apoptotic effects to both Wp-restricted BL and
post-transplant lymphoproliferative diseases (PTLD) cells but not to latency I BL cells which do not
rely on EBV for their survival [65]. Interestingly, we found that bortezomib could induce more potent
apoptosis in LCLs when compared with BL cells, suggesting a potential specific effect of bortezomib in
disrupting the survival function conferred by EBV in the LCLs [58]. The mechanisms of induction of
apoptosis would be related to the disruption of downstream survival signaling of EBNA-3C through
its effects on p53, MDM2 and Bcl-6 (as discussed in Section 3.3) [34,66,67].

4.4. Reactivation of Viral Lytic Cycle by Proteasome Inhibitors

Bortezomib was reported to reactivate the lytic cycle of EBV in EBV-associated BL cells [62,68].
The EBV lytic reactivation was shown to be related to the induction of CCAAT/enhancer-binding
proteinβ (C/EBPβ) and unfolded protein response [68]. Induction of EBV lytic cycle by bortezomib
could activate the radioisotope [125I]2′-fluoro-2′-deoxy-β-D-5-iodouracil-arabinofuranoside to
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selectively suppress the growth of Burkitt lymphoma xenografts in severe combined immunodeficiency
(SCID) mice [69]. Similarly, induction of KSHV lytic cycle in xenograft model of primary effusion
lymphoma (PEL) had also been reported [70]. Recently, a study found that bortezomib could reactivate
the lytic cycle of both EBV and KSHV from latency in several PEL and BL cell lines through activation
of c-Jun N-terminal kinase (JNK), endoplasmic reticulum (ER) stress and autophagy [71]. However,
such viral lytic cycle reactivation by bortezomib had not been observed in a panel of EBV-associated
tumor cell lines we tested. In contrast, our results showed that bortezomib suppressed the lytic cycle
reactivation by histone deacetylase (HDAC) inhibitors in EBV-associated cancer cell lines [61,72].
Lymphoid cells were more refractory to the induction of EBV lytic cycle than epithelial cells. Indeed,
we found that HDAC inhibitors and some novel compounds, which could reactivate EBV lytic cycle in
nasopharyngeal carcinoma and gastric carcinoma cells, could only induce low expression level of EBV
lytic proteins in one out of six lymphoid cell lines [58,73–76].

4.5. Effect of Proteasome Inhibitors on Immune Evasion

EBV proteins such as BZLF1, BNRF2, BDLF3 and EBNA-1 utilize the proteasomal system to
facilitate the virus to escape from human immune surveillance [6]. However, the effect of proteasome
inhibitors on immune evasion of EBV-associated malignancies remains largely unknown. Recently,
a study showed that proteasome inhibitors could increase the expression of lymphocyte stimulatory
cytokine such as interleukines IL-2, IL-12 and IL-15 and activate the p38 and Akt pathways in
tumor-infiltrating CD8+ T cells [77]. Interestingly, another recent study showed that bortezomib
could inhibit the downstream signaling of indoleamine 2,3-dioxygenase, a major inducer of immune
tolerance during tumor development, through suppression of signal transducer and activator of
transcription 1 (STAT1) in NPC cells [78]. More investigations on the effect of proteasome inhibitors on
immune evasion mechanisms of EBV are needed to further develop proteasome inhibitors as a new
class of therapeutic agents against EBV-associated cancers.

5. Potential Novel Viral-Targeted Strategies against EBV-Associated Cancers by Combination of
Proteasome and Histone Deacetylase (HDAC) Inhibitors

Proteasome inhibitors were reported to have synergistic effects when co-administered with
other types of anti-tumor compounds [38]. The most well recognized combination would be the
combination of bortezomib and a HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA). Combined
bortezomib and SAHA was shown to be effective in the treatment of hematologic malignancies
such as multiple myeloma [79], mantle cell lymphoma [80], cutaneous T-cell lymphoma [81] and
leukemia [82,83]. The drug combination induced cancer cell death through caspase activation [80,82–84],
generation of reactive oxygen species (ROS) [79–82,85], enhanced histone acetylation [86,87], aggresome
disruption [88], NF-κB inactivation [79,80,82,83,85], p53 activation, p21WAF1 up-regulation [79,81,82,84],
c-Jun NH2-terminal kinase (JNK) activation [79,83] and mitochondrial membrane dysfunction [79,82–84].
The anti-tumor effects of combination of proteasome and HDAC inhibitors on EBV-associated epithelial
and lymphoid malignancies will be discussed in this section.

5.1. Combination of Proteasome and HDAC Inhibitors on EBV-Associated Epithelial Malignancies

The signaling pathways affected by combination of proteasome and HDAC inhibitors such as
the NF-κB, p53, p21WAF1 and JNK pathways are important for the pathogenesis of EBV-associated
epithelial malignancies including NPC and gastric carcinoma. Our group reported that combination of
bortezomib and SAHA could synergistically induce apoptosis of NPC cells through a ROS-dependent
mechanism [61]. We also found that combination of bortezomib and SAHA could induce an enhanced
acetylation of histone through a caspase-8-dependent mechanism [61]. Such caspase-8-dependent
histone acetylation by combination of proteasome and HDAC inhibitors was also reported in leukemic
cells [87]. However, we did not observe any up-regulation of Rb or p53 in the NPC cells in contrast to
the strong up-regulation of Rb and p53 reported in other cancers upon histone hyperacetylation [89].



Viruses 2017, 9, 352 7 of 16

In addition, NF-κB inactivation was also found to be not important in the apoptosis induced by
combination of bortezomib and SAHA in NPC cells [61]. The non-mitochondrial production of ROS
via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex and endoplasmic
reticulum system might be involved in the induction of apoptosis by combination of bortezomib
and SAHA [90]. We further found that combination of bortezomib and several class I HDAC
inhibitors (which inhibit HDAC-1, -2, -3 and -8 isoforms)), including MS-275, apicidin and romidepsin,
also potently induced apoptosis of NPC cells [91]. The cell death mechanism was dependent on
ROS and endoplasmic reticulum stress but independent of inhibition of HDAC6, suggesting the
aggresome disruption mechanism was not involved in the cell death of EBV-positive NPC cells [91–94].
Combination of proteasome and HDAC inhibitors could also induce the up-regulation of p21WAF1 and
down-regulation of c-myc in the EBV-positive NPC cells and other cancer cell types [79,81,82,84,95].

Combination of bortezomib and romidepsin could induce synergistic killing of gastric carcinoma
cells via a summative effect of caspase-dependent apoptosis and caspase-independent autophagy [72].
Our laboratory and others had shown that the autophagic cell death induced by combination of
bortezomib and romidepsin was mediated through a strong production of ROS followed by disruption
of lysosomes in cancer cells [72,96–99]. Notably, combination of proteasome and HDAC inhibitors
induced the generation of ROS, which was demonstrated to induce the expression of LMP1 and EBV
lytic cycle reactivation, in both NPC and gastric carcinoma cells [100,101]. On the other hand, EBNA1
was also shown to induce the generation of ROS in NPC cells [102]. Thus, it would be interesting to
investigate the potential interaction of between the EBV viral proteins and ROS during the killing of
EBV-positive epithelial malignancies by combination of proteasome and HDAC inhibitors.

5.2. Combination of Proteasome and HDAC Inhibitors on EBV-Associated Lymphoid Cells

In EBV-positive lymphoid cells, EBNA-3C could downregulate the expression of tumor suppressor
genes such as Bim, p53, p16INK4A and p21WAF1 through epigenetic modification of the host cell
genomes [22,45,47,49,103–106], either through interaction with C-terminal binding protein or direct
recruitment of HDAC enzymes [54,107–109]. Because EBNA-3C could manipulate both proteasomal
degradation (discussed in Sections 3.2 and 3.3) and histone deacetylation pathways to maintain the
survival of lymphoid cells, we postulated that combination of proteasome and HDAC inhibitors
could act synergistically to kill the cells by counteracting EBNA-3C’s function. We showed that
combination of bortezomib and SAHA induced synergistic killing of BL cells or LCLs which express
EBNA-3 proteins [58]. The mechanism of killing was probably related to the up-regulation of p21WAF1,
generation of ROS, induction of DNA damage response (DDR) and diminished G2/M arrest in the
EBNA-3 expressing cells [58]. Indeed, it had been reported that induction of DDR could trigger off
apoptosis in cancer cells after overriding G2/M arrest by phosphorylation of cdc25c, which could be
dysregulated by EBNA-3C [60,110,111].

5.3. Pre-Clinical Data of Combination of Proteasome and HDAC Inhibitors on Treatment of EBV-Associated
Malignancies

Bortezomib, SAHA and romidepsin are FDA-approved for the treatment of cancers [73,74,112,113].
We tested combination of bortezomib and either SAHA or romidepsin on the killing of BL, NPC and
gastric carcinoma in vivo. We found that the drug combinations could synergistically suppress the
growth of, BL, NPC and gastric carcinoma xenografts in nude or SCID mice [58,61,72,91]. Promisingly,
bortezomib, SAHA and romidepsin could mediate strong killing on the EBV-associated malignancies
at concentrations that are much lower than the clinically achievable concentrations in patients’
plasma [114,115]. The findings that the drug combinations could induce apoptosis of NPC cells
in a ROS-dependent manner support the testing of potential complementary action of the drug
combination to radiotherapy in the treatment of NPC patients [116]. Further testing of the in vivo
anti-tumor effect of combination of proteasome and HDAC inhibitors on more EBV-associated diseases,
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including a subset of Wp-restricted EBV-associated BL, post-transplant lymphoproliferative disorder,
diffuse large B cell lymphoma and AIDS-associated lymphoproliferative disease is warranted.

Table 1. Function of Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV)
proteins affecting ubiquitin-proteasomal system.

Viruses Oncogenic Proteins/
Molecules Involved

Proteins
Processed by

UPS
Mechanisms Cell Function Affected References

EBV

BDLF3 MHC I & II Postulated E3 ligase for degradation of
MHC molecules is not identified yet Immune evasion [18]

EBNA-1
EBNA-1 Inhibits proteasomal processing of

EBNA-1 antigenic peptides Immune evasion [16]

p53
Interacts with USP7, leading to
ubiquitination and
proteasomal degradation

Apoptosis inhibition [33]

EBNA-3C

pRb
Stabilizes cyclin D1/CDK6 and recruits
SCFSkp2 E3-ubiquitin ligase to facilitate
the proteasomal degradation of pRb

Cell cycle deregulation
(Bypass sub-G1 arrest) [22,23]

p21WAF1

Physically interacts with Pim-1 which in
turn phosphorylates p21 and enhances
poly-ubiquitination of p21
for degradation

Cell cycle deregulation
(Bypass G1 arrest)
Apoptosis inhibition

[24]

p27KIP1
Enhances the phosphorylation and
proteasomal degradation of p27KIP1

through SCFSkp2 E3-ubiquitin ligase

Cell cycle deregulation
(Bypass G1 &
G2/M arrest)

[25]

Bcl-6
Interacts with Bcl-6 and promotes its
ubiquitination and
proteasomal degradation

Cell cycle deregulation
(Bypass G1 arrest)
Apoptosis inhibition
(release of Bcl-2)

[26]

p53 Recruits and stabilizes MDM2 E3 ligase
for proteasomal degradation of p53 Apoptosis inhibition [34,66,67]

LMP-1 p100
Induces proteolysis of p100 to p52
through proteasome and activates
non-canonical NF-κB pathway

Apoptosis inhibition [32]

KSHV K/V cyclin p27KIP1 Interacts with CDK6 and phosphorylates
p27KIP1 for proteasomal degradation

Cell cycle deregulation
(Bypass G1 &
G2/M arrest)

[29,30]

LANA (CR1 repeat) N/A Inhibits proteasomal processing of LANA
antigenic peptides Immune evasion [17]

RTA IRF3 & IRF7
Promotes proteasomal degradation of
IRF3 & IRF7 directly or through
stabilization of RAUL

Immune evasion [21]

vIRF4 p53
Inhibits phosphorylation of p53 by ATM
and interacts with MDM2 to facilitate
proteasomal degradation of p53

Apoptosis inhibition [35,36]

MHC, major histocompatibility complex; EBNA, EBV nuclear antigen; USP, ubiquitin-specific protease; SCF,
SKP1-Cul1-F-box protein; MDM2, mouse double minute 2; LANA, latency-associated nuclear antigen; CR, central
repeat; RTA, replication and transcription activator; vIRF, viral interferon regulatory factor; IRF, interferon regulatory
factor; RAUL, RTA-associated ubiquitin ligase; ATM, ataxia-telangiectasia mutated.
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Figure 1. Schematic diagram of exploitation of ubiquitin-proteasome system by gamma-herpesviruses
and the development of cancer hallmarks. (a) Immunological evasion: GAr domain of Epstein-Barr
virus (EBV) nuclear antigen (EBNA)-1 or Kaposi’s sarcoma-associated herpesvirus (KSHV) central
repeat (CR)1 of latency-associated nuclear antigen (LANA)inhibits proteasome so as to prevent the
proteolysis of EBNA-1 and the production of its antigenic peptides for major histocompatibility
complex (MHC) class I presentation. BDLF3 promotes internalization and proteasomal degradation
of MHC molecules. As a result, cytotoxic T lymphocytes (CTLs) are not able to detect and kill the
latent viruses-infected cells. Replication and transcription activator (RTA) (KSHV) itself or through
stabilization of RTA-associated ubiquitin ligase (RAUL) facilitates the ubiquitination and proteasomal
degradation of interferon regulatory factor (IRF)3 and IRF7, which are important for innate immunity;
(b) Deregulation of cell cycle: EBNA-3C can stably interact with pRb and recruit SKP1-Cul1-F-box
protein (SCF)Skp2 E3-ubiquitin ligase to promote degradation of pRb. Thus, E2F is released and activates
the transcription of cyclin-dependent kinases for cell cycle progression. Moreover, EBNA-3C also
physically interacts with and degrades Bcl-6 through ubiquitin-specific protease (UPS) but the ligase
that facilitates the ubiquitination is still under investigation. EBNA-3C interacts with Pim-1 which
enhances the phosphorylation of p21WAF1 and promotes proteasomal degradation of p21WAF1. The
association of SCFSkp2 with EBNA-3C or cyclin-dependent kinase (CDK)4/6 with K/V cyclin (KSHV)
increases phosphorylation and proteasomal degradation of p27KIP1. Additionally, stabilization of cyclin
A by EBNA-3C also promotes degradation of p27KIP1 through UPS. In summary, gamma-herpesviruses
possess multiple mechanisms to assist the infected cells to bypass cell cycle checkpoints for proliferation;
(c) Inhibition of apoptosis: EBNA-1 displaces p53 in the interaction with ubiquitin-specific protease
7 (USP7), resulting in destabilization of p53 and its degradation by proteasome. On the other hand,
MDM2 E3-ubiquitin ligase is recruited and stabilized by EBNA-3C or vIRF4 (KSHV), leading to
ubiquitination and proteasomal degradation of p53. Viral interferon regulatory factor (vIRF)4 also
inhibits the phosphorylation of p53 by ataxia-telangiectasia mutated (ATM) kinase upon DNA damage
response, causing destabilization and proteasomal degradation of p53.
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Table 2. Proteasome inhibitors.

Proteasome
Inhibitor Type Viral Protein

Affected
Lytic

Reactivation Clinical Development Structure

Bortezomib Boronate

EBNA-3C
(combination
with SAHA or
romidepsin)

EBV
KSHV
HSV-1

FDA-approved for MM,
MCL and RRMM [39]
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6. Concluding Remarks

In summary, the survival and replication of EBV in EBV-infected cancer cells require the
manipulation of the host’s ubiquitin-proteasome system through the action of a myriad of viral proteins
to mediate escape from immune surveillance, disruption of cell cycle regulation and suppression
of apoptosis (summarized in Figure 1). Proteasome inhibitor, such as bortezomib, can counteract
these viral functions and are promising agents to incorporate into novel therapeutic regimens
against EBV-associated cancers. Combination of bortezomib and HDAC inhibitors represents a
novel therapeutic regimen that can induce potent synergistic killing of EBV-associated lymphoid and
epithelial cancers and warrants testing of its efficacy in clinical trials.
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