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Abstract: For efficient transdermal delivery of alendronate (ALN) for anti-osteoporotic therapy,
we developed a hyaluronic acid (HA) gel sheet that was prepared simply by enhancing HA
noncovalent interactions using phosphoric acid and polyhydric alcohol (propanediol and glycerin).
HA solution viscosity increased after addition of phosphoric acid, and the HA gel sheet formed after
heated drying. The HA gel sheet could be converted to high viscosity state by addition of water. These
results indicate that phosphoric acid enhances the noncovalent interactions of HA molecules. The
HA gel sheet elicited no skin irritation over 7 days after a 24-h application. The permeation of ALN
across rat and human skin was 109 and 7.17 µg/cm2, respectively, up to 24 h after application of the
ALN-loaded HA gel sheet, which is sufficient for clinical treatment of osteoporosis. The bioavailability
of ALN in rats was ~20% after application of the ALN-loaded HA gel sheet, and plasma calcium
levels were effectively reduced 3 days after sheet application. Furthermore, in a rat osteoporosis
model, the reduction in tibial bone density was suppressed by treatment with the ALN-loaded HA
gel sheet. These results indicate that our phosphoric acid-mediated HA gel sheet is a promising
transdermal formulation for efficient ALN delivery.
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1. Introduction

Alendronate (ALN) is a bisphosphonate that inhibits osteoclastic bone resorption and is widely
used as a first-line treatment for postmenopausal osteoporosis [1]. It was reported that ALN increased
bone mineral density in women with postmenopausal osteoporosis [2] and decreased the risk of
vertebral and nonvertebral fractures, including hip fractures [3]. However, the intestinal absorption of
ALN after oral administration is limited due to its high polarity and hydrophilicity [4]. Furthermore,
ALN can cause serious gastrointestinal side effects, such as diarrhea, abdominal pain, and inflammation,
and erosions and ulceration of the upper gastrointestinal tract [5]. To prevent these side effects, patients
should sit up for at least 30 min after the oral administration of ALN, which can be difficult for
some elderly patients. Therefore, the development of alternative formulations is required to improve
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adherence and the quality of life of patients who are being treated with ALN and to improve its
therapeutic efficacy.

Of the various strategies available, transdermal delivery is considered an attractive administration
method for ALN because it is painless and easy to apply in both elderly and bedridden patients.
In addition, transdermal delivery can avoid side effects, including intestinal damage, caused by ALN.
Recently, several groups have reported transdermal ALN delivery systems. Choi et al. [6,7] and
Boche et al. [8] developed transdermal formulations of ALN. Furthermore, we reported the efficient
transdermal delivery of ALN using a hydrophilic patch system [9]. We also used hyaluronic acid
(HA) as a base material for the microneedle arrays for transdermal ALN delivery [10,11], because
HA possesses versatile properties such as biocompatibility, non-immunogenicity, biodegradability,
and viscoelasticity [12]. However, these technologies have not been applied clinically to date due to
the complexities in manufacturing these technologies and devices.

HA gel sheets are widely used for medical treatment such as wound healing and bone
regeneration [13,14]. They are usually prepared by crosslinking HA via chemical modification [15–20],
but this modified HA is not natural and its manufacturing process is complicated. For the efficient
transdermal delivery of ALN, the aim of this study was to develop an HA gel sheet that is produced
simply by noncovalent interactions. To this end, we designed a phosphoric acid-mediated, HA-based
gel sheet that is simply prepared by the physical mixing of HA, phosphoric acid, and polyhydric
alcohol (propanediol and glycerin). Using ALN-loaded HA gel sheets, we then investigated the skin
permeation and absorption of ALN using rat and human skin, and the therapeutic potential of ALN
after the transdermal application of the sheets in a rat model.

2. Materials and Methods

2.1. Materials

Alendronate sodium trihydrate was obtained from Toronto Research Chemicals, Inc. (North York,
ON, Canada). [14C]ALN sodium salt was purchased from Moravek, Inc. (Brea, CA, USA). HA
(HYALURONSAN HA-LQSH, average molecular weight; 2300 kDa) was obtained from Kewpie
Corporation (Tokyo, Japan). Propanediol, glycerin, and phosphoric acid were purchased from
FUJIFILM Wako Pure Chemicals Industries, Ltd. (Osaka, Japan). Human cadaver skin, for which
full ethical committee approval and informed patient consent were obtained, was purchased from
Platinum TRAINING (Henderson, NV, USA). This study was approved by the ethical committee on
human research of Kyoto Pharmaceutical University. All other chemicals were obtained commercially
as reagent-grade products.

2.2. Animals

Male Wistar rats (250–270 g) and male and female Sprague Dawley rats (180–200 g) were purchased
from Japan SLC, Inc. (Shizuoka, Japan). All animal experiments were conducted in accordance with
the principles and procedures outlined in the National Institutes of Health Guidelines for the Care
and Use of Laboratory Animals. The protocols for animal experiments were approved by the Animal
Experimentation Committee of Kyoto Pharmaceutical University (Permit number 18-17-027) (Date of
approval: 26 April 2018).

2.3. Preparation of ALN-Loaded HA Gel Sheets

HA (100 mg) was dissolved in 10 g of distilled water and heated at 60 ◦C until the HA was
hydrated. The HA solution was mixed with glycerin (0.8 g) and propanediol (3.2 g). Four grams of the
obtained HA–polyhydric alcohol solution was added to each well of a 6-well plate. Phosphoric acid
(1420 µL of a 1% solution) and 1164 µL of ALN solution (5 mg/mL) were added to the HA–polyhydric
alcohol solution and the mixture was dried for 2 days at 50 ◦C to obtain the ALN-loaded HA gel sheets.
The theoretical concentrations of HA, propanediol, glycerin, phosphoric acid, and ALN in the final
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dried product (ALN-loaded HA gel sheets) were 2.4%, 76.7%, 19.2%, 1.2%, and 0.5%, respectively.
Blank HA gel sheets without ALN were also prepared using the same method as described above.

2.4. Effect of Phosphoric Acid and Water on HA Gelation

HA–polyhydric alcohol solutions with and without phosphoric acid and their dried products
were prepared by the same method as described in Section 2.3 above. The samples were transferred
into the Teflon cup reservoir of a Brookfield Digital Rotational Viscometer (Brookfield Engineering
Labs., Inc., Middleboro, MA, USA). The parameters were acquired at 25 ◦C within 2 min after the
onset of the experiment. The Teflon spindle rotation rate of the viscometer was 1 rpm at a shear rate of
3.84 s−1.

2.5. Skin Irritation After Application of HA Gel Sheets in Rats

The HA gel sheets were applied to the abdomens of the rats and were removed 24 h later. Skin
irritation was assessed by observing the application sites as described previously [21,22].

2.6. In Vitro Permeation Study Using Rat and Human Skin

The abdomen of each Wistar rat was shaved using an animal hair clipper under anesthesia using
a mixture of medetomidine (0.3 mg/kg), midazolam (2 mg/kg), and butorphanol (2.5 mg/kg). The rats
were euthanized and the full thickness of abdominal skin was excised. Excess fat adhering to the dermis
side was removed using cotton. Franz diffusion cells were used for the permeation study. A piece of
excised skin (human or rat, area of 3.1 cm2, diameter of 20 mm) was mounted between the receptor
and donor chambers with the stratum corneum facing the donor compartment. An ALN-loaded HA
gel sheet (one, 0.785 cm2 piece containing 0.5 mg of ALN) was applied to the stratum corneum side of
the rat skin. [14C]ALN-loaded HA gel sheet (one, 0.95 cm2 piece containing 0.625 mg of ALN) was
applied to the stratum corneum side of the human skin. The receptor compartment was filled with
3 mL of phosphate-buffered saline (PBS, pH 7.4). The Franz cells were incubated at 32 ◦C and stirred
with magnetic bars. Receptor solution (0.3 mL) was withdrawn periodically and replaced with an
equal volume of fresh PBS [9]. The concentration of ALN that had permeated across the rat skin in each
sample was analyzed using the reversed-phase high-performance liquid chromatography (RP-HPLC)
method reported previously [23]. The [14C]ALN that had permeated across the human skin in each
sample (100 µL) was mixed with 5 mL Clear-Sol I (Nacalai Tesque, Inc., Kyoto, Japan). The samples
were stored overnight, and the radioactivity was then measured using a scintillation counter (LSC-6100,
Aloka, Tokyo, Japan).

2.7. Pharmacokinetics of ALN in Rats

Under anesthesia, using a mixture of medetomidine (0.3 mg/kg), midazolam (2 mg/kg),
and butorphanol (2.5 mg/kg), [14C]ALN-loaded HA gel sheet was applied on the shaved abdomen of
each Wistar rat at a dose of 2.5 mg ALN/kg. [14C]ALN was also intravenously administered in the
femoral vein of separate rats at a dose of 1 mg/kg. At predetermined intervals, blood was collected
from the jugular vein. The resulting plasma (100 µL) was oxidized with 100 µL of 30% hydrogen
peroxide. Then, 5 mL Clear-Sol I was added to each sample. The samples were stored overnight,
and the radioactivity was measured using a scintillation counter (LSC-6100, Aloka, Tokyo, Japan).
The concentrations of [14C] radioactivity in the plasma after intravenous injection were normalized
with respect to the percentage of dose/ml, which was then converted to ng/ml, and analyzed using the
nonlinear least-squares program MULTI [24]. The area under the concentration–time curve (AUC) after
intravenous injection was calculated based on a two-compartment model. The AUC after transdermal
administration was calculated by the trapezoidal rule from time zero to the last time point [25].
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2.8. Effect of ALN-Loaded HA Gel Sheets on Plasma Calcium Levels

The abdomens of male Sprague Dawley rats were shaved under anesthesia using a mixture of
medetomidine (0.3 mg/kg), midazolam (2 mg/kg), and butorphanol (2.5 mg/kg). On day 0, ALN-loaded
HA gel sheets were applied to the shaved abdomens for a period of 24 h at a dose of 6.0 mg/rat
(three pieces, 3.14 cm2 piece of gel sheet containing 2.0 mg of ALN). On days 0 and 3, blood was
withdrawn from the jugular veins while the animals were under anesthesia using a mixture of
medetomidine (0.3 mg/kg), midazolam (2 mg/kg), and butorphanol (2.5 mg/kg). Plasma was obtained
from the blood after centrifugation. Plasma calcium concentrations were measured using Calcium E
Test Kit (Fujifilm Wako Pure Chemical Industries, Osaka, Japan) [9].

2.9. Therapeutic Potential of ALN-Loaded HA Gel Sheets for Treatment of Osteoporosis

A postmenopausal rat model of osteoporosis was established by performing ovariectomies (OVX)
of female Sprague Dawley rats [10,26]. Four weeks after OVX, ALN-loaded HA gel sheets were
applied to the shaved abdomens of the OVX rats for a period of 24 h every 2 weeks at a dose of
6.0 mg/rat (three pieces, 3.14 cm2 piece of gel sheet containing 2.0 mg of ALN). Separate OVX rats
were subcutaneously injected with 1 mg/kg ALN every 2 weeks. Eight weeks after OVX, the rats were
euthanized, and their tibias were excised, fixed using 4% paraformaldehyde in PBS, embedded in
paraffin, and sectioned by microtome. The tibial sections were stained with hematoxylin and eosin and
observed by microscopy (BIOZERO®; Keyence, Osaka, Japan).

2.10. Statistical Analysis

Results are expressed as means ± standard errors (SE), and statistical significance was assessed by
one-way analysis of variance followed by the Student−Newman−Keuls multiple comparison test for
multiple groups at a significance level of p < 0.05.

3. Results

3.1. HA Gelation

Figure 1 shows images of the preparation and reversibility of an ALN-loaded HA gel sheet.
The viscosity of HA increased after the addition of phosphoric acid. After heated drying, the formation
of the HA gel sheet was confirmed (Figure 1A). After addition of distilled water to the sheet, it returned
to its high viscosity state (Figure 1B).
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Figure 1. Preparation and reversibility of alendronate (ALN)-loaded hyaluronic acid (HA) gel sheet.
(A) Preparation of ALN-loaded HA gel sheet. Mixture of (a) HA and distilled water; (b) HA, distilled
water, glycerin, and propanediol; (c) HA, distilled water, glycerin, propanediol, ALN, and phosphoric
acid before heated drying and (d) after heated drying. (B) Reversibility process of ALN-loaded HA
gel sheet after addition of distilled water. (a) Before addition of distilled water, (b) 15 min, (c) 30 min,
and (d) 60 min after addition of distilled water.
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3.2. Effect of Phosphoric Acid on HA Gelation

To evaluate the effect of phosphoric acid on HA gelation, we measured the viscosity of the
HA–polyhydric alcohol solution with and without phosphoric acid (Table 1). The viscosity of the
HA–polyhydric alcohol solution with phosphoric acid (approximately 8 Pa·s) was much higher than
that of the HA–polyhydric alcohol solution without phosphoric acid (approximately 1.5 Pa·s). After
heated drying, the HA–polyhydric alcohol solution without phosphoric acid was still liquid (viscosity;
approximately 51 Pa·s), but the HA–polyhydric alcohol solution with phosphoric acid formed a sheet
(viscosity; out of range).

Table 1. Effect of phosphoric acid on viscosity of HA–polyhydric alcohol solution.

Viscosity (Pa·s)

Before heated drying After heated drying

Phosphoric acid (+) 7.90 ± 0.93 out of range
Phosphoric acid (−) 1.45 ± 0.06 50.7 ± 2.38

Results are expressed as the mean ± standard error (SE) of three experiments.

3.3. Skin Irritation After Application of HA Gel Sheets to Rat Abdominal Skin

To investigate the safety of the HA gel sheets when used on skin, we evaluated localized skin
irritation after the 24-h application of HA gel sheets to the abdominal skin of rats (Figure 2). No skin
erythema or edema was observed over the 7-day observation period after removal of the HA gel sheet.
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Figure 2. Skin irritation after application of HA gel sheet to rats. Representative images of rat skin
(a) before application of HA gel sheet, (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 6 days,
and (h) 7 days after application of HA gel sheet. Scale bar represents 5 mm.

3.4. Skin Permeation of ALN After Application of ALN-Loaded HA Gel Sheets

Figure 3 shows the skin permeation of ALN after application of the ALN-loaded HA gel sheet.
The permeation of ALN across rat and human skin was 109 and 7.17 µg/cm2, respectively, 24 h
(1440 min) after application of the ALN-loaded HA gel sheet.
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3.5. Transdermal Absorption of ALN After Application of ALN-Loaded HA Gel Sheets

Figure 4 and Table 2 show the plasma concentration profiles and pharmacokinetic parameters
of ALN in rats after intravenous injection or application of the ALN-loaded HA gel sheets. ALN
was rapidly eliminated from the blood circulation by 90 min after intravenous injection (Figure 4A).
In contrast, the plasma concentration of ALN gradually increased and reached its maximum 360 min
after application of the ALN-loaded HA gel (Figure 4B). The bioavailability of ALN was approximately
20% after application of the ALN-loaded HA gel to rats (Table 2).
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Figure 4. Plasma concentration profiles of ALN (A) after intravenous administration of ALN or (B) after
application of ALN-loaded HA gel sheets. Results are expressed as the mean ± standard error (SE) of
three experiments.

Table 2. Pharmacokinetic parameters of ALN.

Dose (mg/kg) Tmax (min) Cmax (ng/mL) AUC (µg·min/mL) BA (%)

Intravenous injection 1 - - 105 ± 12 -
ALN-loaded HA

gel sheet 2.5 720 ± 360 53 ± 10 50 ± 6.5 20 ± 2.6

Tmax, time to maximum plasma concentration; Cmax, maximum plasma concentration; AUC, area under the
concentration–time curve; BA, bioavailability. Results are expressed as the mean ± standard error (SE) of
three experiments.
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3.6. Effect of ALN-Loaded HA Gel Sheets on Plasma Calcium Levels in Rats

Figure 5 shows the plasma calcium levels of rats after transdermal administration of ALN.
No significant change in the plasma calcium levels of naïve rats was observed. In contrast, the plasma
calcium levels were reduced 3 days after the application of ALN-loaded HA gel sheets at 6.0 mg/rat.
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3.7. Therapeutic Potential of ALN-Loaded HA Gel Sheets for Treatment of Osteoporosis

Figure 6 shows representative histological sections of bone tissue from the right tibia of OVX rats
after treatment with ALN. Compared to that of the naïve rat (Figure 6a), the bone matrix (shown in
pink) was decreased 8 weeks after performing OVX (Figure 6b). These results indicate that osteoporosis
could be induced in this model. The decrease in bone matrix density was effectively prevented by the
subcutaneous injection of ALN in the OVX rats (Figure 6d). Similarly, administration of ALN-loaded
HA gel sheets effectively suppressed the decrease in bone matrix density (Figure 6c).
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4. Discussion

We successfully developed an HA gel sheet that exists as a gel despite containing no gel-forming
component other than HA. Although it has been reported that HA gels can be prepared by click
chemistry, enzymatic crosslinking, disulfide crosslinking, radical polymerization, condensation
reactions, and functionalization of HA with hydrophobic molecules [15–20], reports of HA gels
obtained by noncovalent interactions of unmodified HA are scarce. In the present study, viscosity
measurements using a rotational viscometer indicate that phosphoric acid plays a key role in the HA
gelation in our formulation, because the viscosity of HA increased after addition of phosphoric acid.
The reversibility of the HA gel sheet–high viscosity state indicates that HA gelation with phosphoric
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acid is caused by noncovalent interactions. Therefore, we believe that phosphoric acid alters the
ratio of the ionic and neutral forms of the functional groups in HA, thus altering the noncovalent
interactions (H-bonding, hydrophobic forces, etc.) between these functional groups, which contribute
to HA gelation [27], although the detailed gelation mechanism of HA is still not clear. These results,
together with the results of the skin irritation study, indicate that our gelation system using phosphoric
acid maintains the structure and properties of HA (both its function and biocompatibility). Therefore,
when compared with existing chemically-modified, cross-linked HA gel sheets, our HA gel sheet has
some advantages, being nonirritating to the skin and easy to prepare.

In the skin permeation and pharmacokinetics studies, we found that efficient skin permeation
of ALN was obtained with our HA gel sheet. The steady state of plasma concentration of ALN
over 360 min after application of ALN-loaded gel sheet to the rats could be explained by sustainable
permeation through the rat skin in vitro. Rat skin is most structurally similar to human skin, and it
is the most frequently used rodent model [28]. However, rat skin is generally more permeable than
human skin [29–31]. Therefore, the human skin drug permeation should also be examined for clinical
applications. If the area of the sheet for clinical use is calculated based on the amount of ALN
permeating through human skin, the area of the HA gel sheet should be approximately 44–88 cm2 to
obtain permeation of 315–630 µg ALN over 24 h, which is almost equivalent to the absorbed amount of
ALN after oral administration of a 35-mg tablet in clinical use [32]. Because the patches of 50–400 cm2,
such as the ketoprofen patch, are usually applied to patients in clinical use [33], our ALN-loaded
HA gel sheet would be a promising transdermal formulation for clinical applications. In general,
drugs with high polarity and hydrophilicity, such as ALN, barely permeate through the skin due to
the presence of the stratum corneum as the outer layer. In our previous study, we reported that a
hydrophilic patch system with a high concentration of ALN showed efficient skin permeation in a
dose-dependent manner [9]. Therefore, the efficient skin permeation of ALN using our HA gel sheet
was probably due to the fact that concentrated ALN on the surface of the HA gel sheet generated a
high concentration gradient of ALN across the skin, which is critical for driving passive diffusion.

The effective pharmacological effect of ALN was proportional to its efficient skin permeation
after application of the ALN-loaded HA gel sheet. Furthermore, the effect of the ALN-loaded HA
gel sheet on plasma calcium levels and bone mass was in good agreement with previously reported
results from oral and intrapulmonary administration [34]. It was reported that ALN inhibits osteoclast
functions, which leads to decreased plasma calcium levels and increased bone mass [35–37]. Therefore,
our pharmacological study of the ALN-loaded HA gel sheet indicates that pharmacologically active
ALN absorbed from the skin is effectively delivered to the bone, where it attenuates bone destruction
via osteoclast inhibition.

5. Conclusions

In conclusion, we successfully developed a phosphoric acid-mediated HA gel sheet for the efficient
transdermal delivery of ALN. We found that phosphoric acid enhanced the noncovalent interactions
of HA molecules during HA gelation. The HA gel sheet allowed sufficient skin permeability of ALN
for the treatment of osteoporosis. Although the long-term stability of ALN-loaded HA gel sheet and
the phosphoric acid-mediated gelation mechanism of HA need to be addressed before clinical use,
these results indicate that the phosphoric acid-mediated HA gel sheet is a promising transdermal
formulation for the delivery of ALN and the treatment of osteoporosis.
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