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Abstract: In this study, supercritical fluid (SCF) technology was applied to prepare reliable solid
dispersions of pharmaceutical compounds with limited bioavailability using ibuprofen (IBU) as
a model compound. Solid-state characterization of the dispersions was conducted by differential
scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM).
The PXRD and DSC results suggested that the amorphous form of IBU was maintained in the solid
dispersions. Furthermore, in vitro dissolution and in vivo pharmacokinetic (PK) studies in rats were
also performed. The dissolution performance of the SCF-prepared IBU dispersions was significantly
improved compared to that of the physical mixtures of crystalline IBU and a polymer. In addition,
the PK results revealed that the SCF-prepared IBU dispersions produced remarkably high blood
drug concentrations (both the AUC and Cmax) and a rapid absorption rate (Tmax). Finally, molecular
modeling was used to evaluate the binding energy of interactions between IBU and the polymers.
The negative binding energy suggests a relatively stable system. Hence, SCF technology can be used as
a very effective approach to prepare IBU solid dispersions with good physical stability and enhanced
in vitro and in vivo performance.
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1. Introduction

Ibuprofen (IBU), a poorly water-soluble drug, is widely used as one of the best-tolerated
nonsteroidal anti-inflammatory drugs for treatment of rheumatoid arthritis, osteoarthritis, and mild to
moderate pain [1]. However, the poor aqueous solubility of IBU significantly limits its bioavailability
and therapeutic activity [2]. In recent years, many approaches have been applied to improve
solubility and bioavailability, such as encapsulation into liposomes, nanoparticles, co-milling, solid
dispersion, nano-emulsification, etc. [3–5]. Among them, amorphous solid dispersions (ASDs) have
been extensively used due to their superior solubilization [6–10]. Supercritical fluid (SCF) technology,
a way to prepare ASDs, exhibits many unique advantages, including mild preparation conditions,
environmental friendliness, controllable processing conditions, and good reproducibility. In particular,
rapid expansion of a supercritical solution does not require an organic solvent as a mixing medium and
can directly produce microparticles even without milling. Using supercritical carbon dioxide (scCO2)
as a medium to prepare artemisinin dispersions can reportedly enhance the drug’s in vitro dissolution
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rate and intestinal absorption [11]. A solid dispersion of oxeglitazar with improved dissolution kinetics
was prepared using supercritical antisolvent and spray-freezing techniques [12]. An SCF anti-solvent
process was also applied to prepare telmisartan solid dispersions (SDs) using polyvinylpyrrolidone
and hydroxypropyl methylcellulose as carriers [13]. Compared to conventional methods, and owing
to these advantages, the use of SCF technology avoids the toxicity and pollution problems related to
organic solvent usage and reduces the risk of high-energy-induced phase transitions. SCF technology
with scCO2 as media can easily eliminate and recover the final product by controlling the pressure,
temperature, aspect ratio, etc. [14]. The Kollidon grades are manufactured by a polymerization process
in water without any organic solvents to form a popcorn polymer. A Kollidon system, crosslinked
polyvinylpyrrolidone, including Kollidon VA 64, Kollidon CL, Kollidon CL-SF, Kollidon SR, etc. has
been widely used to prepare SDs and improve oral bioavailability [15,16]. However, studies on the
use of Kollidon system SDs on improving oral adsorption and bioavailability via an SCF method are
still rare.

In this study, SCF technology was applied as a solvent-free manufacturing approach to prepare
SDs of IBU with Kollidon system-based polymeric carriers at the lab scale. Kollidon CL and
Kollidon CL-SF were selected as model polymers in the dispersions because they are reportedly
good candidates for use as drug carriers and superdisintegrants in SDs to improve the dissolution rate
for immediate-release dosage forms. The optimal conditions (i.e., temperature, pressure, and reaction
time) for using SCF technology to prepare SDs were investigated. The solid-state forms of IBU in the
SDs were investigated using powder X-ray diffraction (PXRD) and differential scanning calorimetry
(DSC). Molecular modeling was also applied to predict the binding energy, which is valuable for
evaluating and analyzing the interaction between SDs and poorly water-soluble drugs. Furthermore,
both in vitro dissolution tests and in vivo pharmacokinetic studies in rats were conducted. The in vitro
and in vivo performance of the SCF-prepared ASDs was shown to be superior to that of a drug–polymer
physical mixture (PM).

2. Materials and Methods

2.1. Materials

IBU was obtained from Knoll Co. Ltd. (Purity >98%, Bad Saulgau, BW, Germany). Kollidon CL
and Kollidon CL-SF (The volume average diameter was 110–130 µm and 10–30 µm, respectively) were
obtained from BASF AG (Ludwigshafen, Germany). Industrial-grade carbon dioxide was purchased from
Jingquan Gas Factory (Purity 99%; Shenyang, China). Deionized water was prepared by ion exchange.
All other chemicals were of analytical grade and used as required without further purification.

2.2. Preparation of SDs

IBU-Kollidon SDs were prepared using an SCF instrument (Shenyang Dongyu Supercritical
Extraction Co. Ltd., Shenyang, China). The PMs in different ratios were placed in an scCO2-permeable
bag, and the bag was then placed in the high-pressure vessel of the SCF instrument and processed,
as shown in Scheme 1. When the vessel was closed and sealed, sufficient CO2 was pumped into the
vessel to reach 25 MPa at 40 ◦C. These reaction conditions had to be maintained for at least 18 h to
enable sufficient mixing of the drug and polymer in the scCO2 medium. Next, CO2 was gradually
discharged from the vessel through a valve. The solid powders of IBU-Kollidon CL and IBU-Kollidon
CL-SF (Named as IBU-CL SD and IBU-CL-SF SD) were collected and dried in an oven at 40 ◦C for at
least 24 h.
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Scheme 1. Flow chart of supercritical fluid technology. 

2.3. Scanning Electron Microscopy (SEM) 

SEM images were obtained using a scanning electron microscope (Type SM-T20, JEOL, Tokyo,, 
Japan) to analyze the surface morphology of the particles. Samples (pure IBU, IBU-Kollidon PMs, 
and IBU-Kollidon SDs) were mounted on metal stubs using double-sided adhesive tape and 
sputtered with a thin layer of gold under the vacuum. 

2.4. Differential Scanning Calorimetry (DSC) 

Thermal analysis of the IBU SDs was performed using a differential scanning calorimeter 
(Q1000, TA Instruments, New Castle, DE, USA). Approximately 5 mg of a sample was placed in an 
aluminum pan and heated from 25 to 150 °C at 10 °C/min to obtain DSC curves. 

2.5. Powder X-Ray Diffraction (PXRD) 

The X-ray diffraction (XRD) patterns of SD samples, the pure drug, and PMs samples stressed 
at 25 °C and 65% RH were measured by a powder X-ray diffractometer (X'pert PRO, PANalytical 
B.V., Almelo, The Netherlands) equipped with a Cu Kα radiation source. The experiments were 
conducted under ambient conditions in the Bragg–Brentano geometry at 2θ values ranging from 5° 
to 45° in 0.01° steps. The voltage and current were set to 40 kV and 20 mA, respectively. 

2.6. Dissolution Studies 

Dissolution tests of the SD samples were performed using a dissolution test machine (Shanghai 
Huanghai Medicament Test Instrument Factory, Shanghai, China) applying a USP II dissolution 
apparatus [17,18]. The paddle rotation speed and temperature were fixed at 50 rpm and 37 ± 0.5 °C, 
respectively. SDs containing the equivalent of 100 mg of IBU were placed in 900 mL of distilled water. 
Samples (5 mL) of the dissolution medium were withdrawn at predetermined time intervals (1, 2, 3, 
4, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min), and each was compensated by adding 5 mL of the 
corresponding fresh buffer. Next, the samples were filtered through a 0.45 μm membrane filter and 
analyzed by high-performance liquid chromatography (HPLC) at 220 nm. 

2.7. Pharmacokinetic Studies in Rats 

Animals were bought from Laboratory Animal Center of Shenyang Pharmaceutical University 
and the guidelines were approved by Shenyang Pharmaceutical University completely. Ten male 
Wistar rats (200 ± 20 g) were fasted for 12 h but allowed free access to water. They were divided 
randomly and equally into two groups for intragastric administration; one group received an IBU-
CL-SF PM equivalent to 25 mg/kg of IBU, and the other received an IBU-CL-SF SD equivalent to 25 
mg/kg of IBU prepared by SCF methods [19]. After ether anesthesia, 0.5 mL of blood was collected 
from the retro-orbital plexus at 5, 10, 15, 30, 45, 60, 90, 120, 240, and 360 min after dosing and 
transferred immediately to a heparinized centrifuge tube. All blood samples were centrifuged at 
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2.3. Scanning Electron Microscopy (SEM)

SEM images were obtained using a scanning electron microscope (Type SM-T20, JEOL, Tokyo„
Japan) to analyze the surface morphology of the particles. Samples (pure IBU, IBU-Kollidon PMs,
and IBU-Kollidon SDs) were mounted on metal stubs using double-sided adhesive tape and sputtered
with a thin layer of gold under the vacuum.

2.4. Differential Scanning Calorimetry (DSC)

Thermal analysis of the IBU SDs was performed using a differential scanning calorimeter (Q1000,
TA Instruments, New Castle, DE, USA). Approximately 5 mg of a sample was placed in an aluminum
pan and heated from 25 to 150 ◦C at 10 ◦C/min to obtain DSC curves.

2.5. Powder X-Ray Diffraction (PXRD)

The X-ray diffraction (XRD) patterns of SD samples, the pure drug, and PMs samples stressed at
25 ◦C and 65% RH were measured by a powder X-ray diffractometer (X’pert PRO, PANalytical B.V.,
Almelo, The Netherlands) equipped with a Cu Kα radiation source. The experiments were conducted
under ambient conditions in the Bragg–Brentano geometry at 2θ values ranging from 5◦ to 45◦ in
0.01◦ steps. The voltage and current were set to 40 kV and 20 mA, respectively.

2.6. Dissolution Studies

Dissolution tests of the SD samples were performed using a dissolution test machine (Shanghai
Huanghai Medicament Test Instrument Factory, Shanghai, China) applying a USP II dissolution
apparatus [17,18]. The paddle rotation speed and temperature were fixed at 50 rpm and 37 ± 0.5 ◦C,
respectively. SDs containing the equivalent of 100 mg of IBU were placed in 900 mL of distilled water.
Samples (5 mL) of the dissolution medium were withdrawn at predetermined time intervals (1, 2,
3, 4, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min), and each was compensated by adding 5 mL of the
corresponding fresh buffer. Next, the samples were filtered through a 0.45 µm membrane filter and
analyzed by high-performance liquid chromatography (HPLC) at 220 nm.

2.7. Pharmacokinetic Studies in Rats

Animals were bought from Laboratory Animal Center of Shenyang Pharmaceutical University
and the guidelines were approved by Shenyang Pharmaceutical University completely. Ten male Wistar
rats (200 ± 20 g) were fasted for 12 h but allowed free access to water. They were divided randomly
and equally into two groups for intragastric administration; one group received an IBU-CL-SF PM
equivalent to 25 mg/kg of IBU, and the other received an IBU-CL-SF SD equivalent to 25 mg/kg
of IBU prepared by SCF methods [19]. After ether anesthesia, 0.5 mL of blood was collected from
the retro-orbital plexus at 5, 10, 15, 30, 45, 60, 90, 120, 240, and 360 min after dosing and transferred
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immediately to a heparinized centrifuge tube. All blood samples were centrifuged at 10,000 g for 10 min
to obtain the plasma, which was transferred to a centrifuge tube and stored at –20 ◦C until analysis.

Plasma samples were processed as follows: exactly 0.2 mL of a plasma sample was transferred
to a 1.5 mL plastic tube with a stopper and mixed with 0.1 mL of an internal standard solution
(cinnamic acid, 38.1 µg/mL), 0.1 mL of methanol, and 0.2 mL of acetonitrile. After vortexing for 5 min,
the mixture was further centrifuged at 10,000 g for 10 min, and a 20 µL aliquot was analyzed using
a HPLC system.

2.8. HPLC Analysis of IBU

HPLC analyses were performed using a Shimadzu HPLC system (Kyoto, Japan) equipped with
an LC-10AT pump, a UV detector (PD-10AV) at 220 nm, and an Inertsil ODS-3 reverse-phase column
(5 µm, 46 mm × 150 mm, GL Science Inc., Tokyo, Japan) maintained at 35 ◦C. The mobile phase was
methanol/phosphate buffer (pH 3.0) solution (75:25, v/v), and the flow rate was 1.0 mL/min.

2.9. Molecular Docking

The 3D structures of both IBU and the polymer were built using the SYBYL 6.9.1 software package
(Tripos Inc. St. Louis, MO, USA). The optimal parameters were as follows: The maximum number of
iterations was 10,000, and the change in energy was 0.005 kcal/(mol × Å).

AutoDock Tools (1.5.4) were applied to transfer both the polymer and the molecule into PDBQT
format and define the binding site for a further molecular docking study. The docking results were
analyzed using the docking conformations with the highest percentage frequency and the lowest
binding energy as representatives.

The optimized parameters of the AutoDock 4.0 software were as follows: the maximum number
of energy evaluations was increased to 25,000,000 per run, the iterations of the Solis and Wets local
search were 3000, the number of individuals in a population was 300, and the number of generations
was 100. Results differing by <2 Å in a positional root mean square deviation were clustered together.
In each group, the lowest binding energy configuration with the highest percentage frequency was
selected as the group representative. All other parameters were maintained at the default values [20].

Discovery Studio Visualizer 4.5 (BIOVIA) was used for molecular interaction analysis.

2.10. Statistical Analysis

The unpaired student’s t-text was applied to do a statistical analysis. Data were presented as
mean ± SD and the significant level was set at a probability of p < 0.001.

3. Results

3.1. Optimization of Preparation Conditions

SDs of IBU-CL-SF were prepared at different conditions and the same temperature by applying
SCF technology, as shown in Table 1. The drug release profiles of SDs (Figure 1) indicated that the
cumulative percentage of drug release in the IBU-CL-SF SD increased with increasing preparation time,
pressure, and drug-to-carrier ratio. Both Group 5 and Group 7 had a relative higher drug release
percentage. However, IBU in scCO2 exhibited higher solubility under a higher preparation pressure,
resulting in better interaction between the drug and carriers to yield the desired SDs. Considering all
the factors, the IBU-CL-SF SDs were prepared at a drug-to-carrier ratio of 1:5, a reaction pressure of
25 MPa, and a reaction time of 18 h.
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Table 1. Cumulative percentage of drug release from carriers at different conditions (reaction pressure,
reaction time, drug-to-carrier ratio).

Group Pressure (MPa) Reaction Time (h) Drug-to-Carrier Ratio Cumulative Percentage
of Drug Release (%)

1 20 6 1:5 73.21
2 20 12 1:5 80.44
3 20 18 1:5 87.90
4 15 18 1:5 80.58
5 25 18 1:5 91.05
6 20 18 1:1 77.45
7 20 18 1:3 91.45
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Figure 1. Dissolution profiles of Ibuprofen Kollidon CL-SF solid dispersion (IBU-CL-SF SD) systems
prepared by the supercritical fluid (SCF) method with different preparation times (A), preparation
pressure (B), and ratio (C).

3.2. Characterization

3.2.1. SEM Results

The SEM images in Figure 2 show the surface morphology of pure IBU and Kollidon, together
with that of the IBU-Kollidon PMs and SDs. As shown in Figure 2A,B,E, the IBU powder exhibited
rod-shaped crystals, whereas Kollidon CL and Kollidon CL-SF were observed to have rough surfaces
and irregularly shaped agglomerates of different sizes. Notably, free crystals of IBU were clearly
observed in the PMs but not in the two SDs, which demonstrated that IBU in the amorphous state was
present in the IBU-CL and IBU-CL-SF SDs prepared by the SCF method.
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3.2.2. PXRD Analysis

As a complementary method, PXRD can provide direct evidence of IBU crystallization. Powder
X-ray diffractograms of pure IBU and the IBU-Kollidon PM and SD systems are shown in Figure 3.
Characteristic diffraction peaks of IBU were clearly observed in the IBU-Kollidon PMs but not in
the SDs, suggesting that IBU was transformed into an amorphous state in the SDs of IBU-CL and
IBU-CL-SF obtained by the SCF method, which is in agreement with the DSC study.
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3.2.3. DSC Analysis

To demonstrate the presence or absence of the crystalline drug, a DSC analysis was conducted.
DSC thermograms of pure IBU and SDs composed of IBU-Kollidon obtained by the SCF method are
shown in Figure 4. IBU is a crystalline compound exhibiting a single, sharp endothermic peak at
80.3 ◦C, which corresponds to the melting point of IBU. An endothermic peak was detected in the PMs,
confirming the existence of a crystalline phase, although the endothermic behavior was weaker than
that of pure IBU. This was in contrast to its crystalline phase in the PMs, in which the two SDs exhibited
the amorphous state instead. Therefore, the drug–carrier interactions appeared to be effective for
inhibiting drug crystallization.
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3.3. Dissolution Studies

The dissolution profiles of IBU in the PMs and SDs prepared with different carriers (Kollidon CL
and Kollidon CL-SF) were investigated and are shown in Figure 5. In contrast to the corresponding
PM, the SD significantly enhanced the dissolution rate of IBU. As shown in the dissolution profiles,
in the first 5 min, 60.0% and 83.7% of the IBU in the Kollidon CL and Kollidon CL-SF SDs was dissolved;
these values are 15.9 times and 22.3 times those of pure IBU and the corresponding PM, respectively.
Moreover, the selection of the carrier during SD preparation was also critical. In this study, Kollidon
CL-SF produced a more remarkable improvement in the dissolution rate of IBU than IBU-CL; thus,
the cumulative percentages of IBU in the IBU-CL-SF and IBU-CL SDs reached 94% and 80%, respectively,
within 15 min. Considering all of the above results, the IBU-CL-SF SD was the optimal choice for
improving the solubility and in vitro dissolution of IBU.
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Figure 5. Dissolution profiles of IBU-Kollidon different grade SD systems prepared by the SCF method.

Release kinetic modeling was conducted by using DDSolver software [21], including zero-order,
first-order, Weibull, Makoid-Banakar, Peppas-Sahlin, and Korsmeyer-Peppas [22–24], as is shown in
Table 2. The release profile of IBU and IBU-CL-SF SD were fit into a first-order kinetic model, whose
equations were F = 57.736×

(
1− e−0.009t), r2 = 0.9915 and F = 90.550×

(
1− e−0.862t

)
, r2 = 0.9980,

respectively. Among the following equations, the Makoid-Banakar equation was the best one for IBU-CL
SD (F = 39.238× t0.251 × e−0.004t, r2 = 0.9906), IBU-CL PM (F = 8.811× t0.455 × e−0.004t, r2 = 0.9969)
and IBU-CL-SF (F = 19.688× t0.244 × e−0.002t, r2 = 0.9844).
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Table 2. Release rate constants and r2 coefficients obtained from drug release profile based on kinetic equations.

Equations IBU-CL SD IBU-CL-SF SD IBU IBU-CL PM IBU-CL-SF PM

Zero-order
F = C + kt

F = 51.441 + 0.376t
r2 = 0.2997

F = 71.947 + 0.266t
r2 = 0.0875

F = 2.131 + 0.332t
r2 = 0.9769

F = 16.276 + 0.369t
r2 = 0.7279

F = 25.417 + 0.288t
r2 = 0.5396

First-order
F = a × (1 − e−kt)

F = 78.064 × (1 − e−0.366t)
r2 = 0.9474

F = 90.550 × (1 − e−0.862t)
r2 = 0.9980

F = 57.736 × (1−e−0.009t)
r2 = 0.9915

F = 45.904 × (1−e−0.076t)
r2 = 0.9328

F = 44.493 × (1 − e−0.247t)
r2 = 0.9328

Weibull
F = 100×{1 − e[−(tˆβ) / α]}

F = 100 × {1 − e[− (tˆ0.294) / 1.873]}
r2 = 0.9630

F = 100 × {1 − e[− (tˆ0.278) / 0.934]}
r2 = 0.9742

F= 100 × {1 − e[− (tˆ0.869) / 128.345]}
r2 = 0.9912

F = 100 × {1 − e[− (tˆ0.410) / 9.318]}
r2 = 0.9858

F = 100 × {1 − e[ −(tˆ0.248) / 4.333]}
r2 = 0.9794

Makoid-Banakar
F = k × tn × e−bt

F = 39.238 × t0.251 × e−0.004t

r2 = 0.9906
F = 66.349 × t0.135 × e−0.003t

r2 = 0.9870
F = 0.637 × t0.936 × e−0.003t

r2 = 0.9910
F = 8.811 × t0.455 × e−0.004t

r2 = 0.9969
F = 19.688 × t0.244 × e−0.002t

r2 = 0.9844
Peppas-Sahlin

F = k1 × t0.5 + k2t
F = 26.104 × t0.5 − 1.821t

r2 = 0.8292
F = 34.669 × t0.5 − 2.603t

r2 = 0.3378
F = 1.237 × t0.5 + 0.223t

r2 = 0.9875
F = 8.968 × t0.5 − 0.404t

r2 = 0.9967
F =12.862 × t0.5 − 0.794t

r2 = 0.8805
Korsmeyer-Peppas

F = k × tn
F = 45.960 × t0.140

r2 = 0.9294
F = 72.461 × t0.064

r2 = 0.9460
F = 1.020 × t0.766

r2 = 0.9895
F = 11.220 × t0.329

r2 = 0.9771
F = 21.366 × t0.192

r2 = 0.9762
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3.4. In Vivo Pharmacokinetic Evaluation

The profiles of the mean plasma concentration versus time for the IBU-CL-SF PM and IBU-CL-SF
SD after administration are shown in Figure 6, while Table 3 shows the pharmacokinetic parameters of
the IBU-CL-SF PM and SD systems.
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Table 3. Pharmacokinetic parameters of IBU-CL-SF PM and SD systems.

Parameters IBU-CL-SF PM IBU-CL-SF SD

Cmax (mg/L) 6.98 ± 0.18 20.6 ± 5.4
Tmax (min) 48 ± 6.7 33 ± 12.55

AUC(0–t) (mg/L ×min) 1476.4 ± 411.7 3203.7 ± 450.9
MRT(0–t) (min) 140.5 ± 30.8 115.7 ± 23.8

After oral administration, IBU was quickly detected in plasma, and the maximum concentrations
Cmax of IBU-CL-SF PM and IBU-CL-SF SD were rapidly achieved, with values of 6.98 ± 0.18 within
48 min and 20.6 ± 5.4 within 33 min, respectively. Compared with those in the IBU-CL-SF PM,
the Cmax value of IBU was 2.95 times higher, and Tmax decreased by 15 min in the IBU-CL-SF SD.
These phenomena may result from the enhanced solubility and improved dissolution rate of IBU in
the IBU-CL-SF SD during in vitro release.

All these results demonstrated that the oral bioavailability of IBU was significantly enhanced
in rats owing to the increased dissolution amount and rate of IBU in the IBU-CL-SF solid dispersion
prepared by the SCF method.

3.5. Drug–Polymer Interactions in Molecular Docking Simulation

Kollidon affects the dispersibility of the drug and the particle size. Small particles can ensure
uniform distribution of the drug and easily form a water-soluble complex, accelerating drug dissolution
and improving bioavailability. The sizes of Kollidon CL and Kollidon CL-SF are 110 to 130 µm and 10
to 30 µm, respectively. As shown in the literature [25], binding of the drug to Kollidon was simulated
by 1-methyl-2-pyrrolidone (Etp), which is similar in structure to the Kollidon unit. Here, as shown in
Figure 7, the interactions of IBU with Kollidon systems were represented at the molecular level with
both the polymer and molecule in three dimensions. Generally, the polymer effectively undergoes
a hydrophobic interaction with the drug; from a thermodynamic point of view, a negative free energy
(4G < 0) suggests a relatively stable system, whereas a positive4G indicates that an unstable system
was formed when the molecule complexed with the polymer. The binding energy (4G) obtained in
the molecular docking simulation, which was −5.71 kcal/mol, was used to evaluate the interactions
between IBU and the polymers.
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4. Discussion

SCF technology, an experimental friendly process, minimized the particle size distribution,
damage by shear forces, etc., in comparison with conventional approaches. It is categorized by
a rapid expansion of supercritical solutions, supercritical antisolvents, gaseous antisolvents, particle
formation from gas-saturation, and so on [26]. Among the processes above, SCF technology using
scCO2 was greatly advantageous, since scCO2 is easier to remove from the system and the limited
amount remaining would not be dangerous to patients. As shown in Scheme 2, point A is the critical
point of CO2 (304.2 K, 7.39 × 103 kPa), and when the system is above the critical pressure and
temperature, the interface between the gas phase and the liquid phase disappears; this is called the
supercritical state. IBU is a crystalline drug. The pressure of supercritical fluid has a great influence on
the solubility of IBU. The density of CO2 increases as the pressure increases, and the ability to dissolve
substances is proportional to its density. Therefore, the solubility of IBU was improved significantly.
The XRD results suggested that the crystal peak of the drug-loaded-carrier disappeared, or the large
amount of the carrier masked the peak of the crystalline drug. Therefore, we further adopted DSC
characterization and molecular simulation to prove that the drug can be spontaneously loaded in the
carrier to form a stable system (4G < 0). IBU, indeed, converted to amorphous, which is beneficial
to the dissolution of the drug [27–29]. In the supercritical CO2, hydrogen bond dimers formed
between the molecules of IBU. The high fluid density caused the dimerization balance between the
monomers to shift, which weakened the bonding and increased solubility. In this process, IBU-CL-SF
SDs were prepared at the same supercritical state (40 ◦C) but with different reaction times, pressure,
and drug-to-carrier ratio. The results indicate that the cumulative percentage of the drug released
with the extension of the three conditions. Prolonging the reaction time was preferable to obtain ideal
solid dispersions, since the drug and carriers were more thoroughly dissolved and dispersed in scCO2.
The cumulative percentage of drug release in IBU-CL-SF SDs increased with the rise of preparing
pressure. This could be attributed to the fact that IBU in scCO2 possessed higher solubility under
higher preparing pressure, resulting in the more thorough interaction between drug and carriers to
obtain desirable solid dispersions. Considering the comprehensive factors, optimized conditions were
determined. In addition, IBU has a relatively low melting point and boiling point. This makes IBU
easy to sublimate and is also the reason for its high solubility. Solubility of poor water-soluble drugs is
significant for enhancing oral bioavailability. Therefore, the preparation of ibuprofen solid dispersion
by a supercritical fluid static reaction method is a very feasible method. We believe that Kollidon
system SDs prepared by SCF technology will potentially become a carrier with good biocompatibility
and high drug delivery efficiency.
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5. Conclusions

IBU SDs were formulated with Kollidon CL and Kollidon CL-SF carriers in SCF media. The obtained
results suggest that IBU-Kollidon CL-SF solid dispersion prepared by SCF technology markedly improves
in in vitro and in vivo performance. Moreover, a molecular docking simulation showed that intermolecular
interaction occurred and also suggested a relatively stable system. Using SCF technology combined with
a Kollidon system to prepare solid dispersions is a promising approach to improving the absorption and
oral bioavailability of water-insoluble drugs. We hope our study may open a new window for designing
different formulations to improve bioavailability in the future.
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