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Abstract: Granules with superior fluidity and low moisture absorption are ideal for tableting and
capsule filling. Melt granulation as a solvent-free technology has attracted increasing interest for
the granulation of moisture-sensitive drugs. The objective of the present study was to develop a
solvent-less and high throughput melt granulation method via the melt centrifugal atomization
(MCA) technique. The granule formability of various drugs and excipients via MCA and their
dissolution properties were studied. It was found that the yield, fluidity, and moisture resistance
of the granules were affected by the drug and excipient types, operation temperature, and collector
diameter. The drugs were in an amorphous state in pure drug granules, or were highly dispersed
in excipients as solid dispersions. The granules produced via MCA showed an improved drug
dissolution. The present study demonstrated that the solvent-free, one-step, and high-throughput
MCA approach can be used to produce spherical granules with superior fluidity and immediate drug
release characteristics for poorly water-soluble and moisture-sensitive therapeutics.

Keywords: melt centrifugal atomization (MCA); spherical granules; melt rheology; immediate release;
moisture absorption

1. Introduction

Granules exhibiting superior fluidity are ideal for tableting and capsule filling. Compared
with conventional granulation techniques, such as grinding and spray drying [1,2], melt granulation
via a series of solvent-free techniques presents an alternative granulation approach suitable for
moisture-sensitive drugs [3]. The melt granulation technique circumvents the need for a drying
process, providing a more economical and environmentally sustainable process. Currently, spray
congealing is the most commonly reported melt granulation method used to prepare drug-loaded
granules. During the melting process, the state of the drug is often transformed from crystalline to
amorphous. Consequently, an immediate drug release can be achieved using hydrophilic carriers
such as mannitol and hydroxypropyl methylcellulose [4,5], whereas, sustained release can be obtained
using hydrophobic carriers such as paraffin wax [6]. However, complex instrumentation and operation
procedures have hindered the widespread use of this technique.

An alternative approach for melt granulation is melt centrifugal atomization (MCA), in which a
centrifugal force is employed to stretch the melt jet into molten droplets, which immediately solidify
into spherical granules [7]. As a one-step and high-throughput approach to prepare uniform spherical
granules, MCA has been used in the field of metal granule preparation [8]. However, the application
of MCA is not directly transferrable to the pharmaceutical industry, because existing instruments are
operated at temperatures that are much higher than the melting temperatures of active pharmaceutical
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ingredients and excipients. Whether MCA can be used for the one-step formation of drug-loaded solid
dispersion granules with immediate drug release characteristics has not been previously reported.

In our previous study, drug-loaded fibers were prepared via centrifugal met spinning, and the
mechanism of fiber formation was investigated [9]. The present study aims to produce drug-loaded
granules via the MCA technique using an in-house device. Various drugs and pharmaceutical excipients
were tested for granule formability, and melt rheology was employed in order to understand the
granulation process. The effects of drug and excipient type, operation temperature, and collector
diameter on the morphology and properties (e.g., dissolution and moisture absorption) of the produced
granules were investigated.

2. Materials and Methods

2.1. Materials

Indomethacin (IND) was supplied by XiYinHe Chemical Co., Ltd. (Wuhan, China). Nifedipine
(NF), tinidazole (TNZ), and metoprolol tartrate (MT) were purchased from YuanCheng Pharmaceutical
Co., Ltd. (Wuhan, China). Astragalus polysaccharide (AP; 90% extracts) was purchased from
Xian Jinheng Chemical Co., Ltd. (Xi’an, China). Polyethylene glycol (PEG; 6000 Da) was purchased
from XiLong Chemical Co., Ltd. (Shantou, China). Mannitol was provided by Merck KGaA (Darmstadt,
Germany). Sucrose was provided by Guangdong Guanghua Sci-Tech Co., Ltd. (Shantou, China).
Soluplus® (SOL) was provided by BASF (Ludwigshafen, Germany). Stearic acid (SA) was purchased
from Wenzhou Chemical Material Factory (WenZhou, China). Glycerol monostearate/distearate
(GMDS) was purchased from Er-Kang Biological Technology Co., Ltd (Changsha, China). Paraffin was
purchased from Shanghai Hualing Kuangfu Co., Ltd. (Shanghai, China). Eudragit® RL PO (RL) was
supplied by Evonik Rohm Co., Ltd. (Darmstadt, Germany).

2.2. Preparation of Spherical Granules

Spherical granules were prepared using an in-house MCA device, as illustrated in Figure 1.
The size of the orifices on the side wall of the device was about 50 µm. Pure drug granules (i.e., IND,
NF, TNZ, MT, and AP), pure excipient granules (i.e., PEG, mannitol, sucrose, SOL, SA, GMDS, paraffin,
and RL), and granules containing both drug and excipient were produced. The materials were mixed
in a mortar for 10 min in varying ratios, and were added into the melting chamber. The melting
chamber was heated at a rate of 5 ◦C/min until the materials inside them started to melt, and then
it was immediately rotated at a speed of 3000 rpm. The molten materials with different amounts
(i.e., ~2 or 5 g) were centrifuged through the spinneret orifices on the side wall, and the products were
collected at different collection distances (i.e., 5 and 19 cm) using concentric barrels with different radii
(i.e., 11 and 25 cm).
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Figure 1. Illustration of the granulation process via melt centrifugal atomization (MCA).

2.3. Characterization of Granules

The morphology of the products collected was observed using a stereomicroscope (ZY-HD1400,
ZongyanWeiye, Shenzhen, China) in the magnification of 200×. The yield of the granules was
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determined using a gravimetric sieving method. The granules passed through the 65-mesh screen
were weighed and the yield was calculated. About 5 g of the granule samples were dispensed through
a stainless-steel funnel onto a circular base plate to form a conical heap. The angle of repose was
calculated by determining the radius and height of the cone [10].

The moisture absorption study was conducted according to the method described in EP 9.0.
Glass weighing bottles were equilibrated in 25 ± 1 ◦C, with a saturated ammonium sulfate solution
(RH 80% ± 2%) for 24 h, and were accurately weighed. The particle samples were transferred into the
bottles to form a 1-mm thick layer, and the bottles were kept under the same temperature and humidity
conditions as described above. At pre-determined time intervals, the weight and mass percent increase
were accurately determined.

2.4. Thermal Analysis

Thermal gravimetric analysis (TGA) was conducted to determine the thermal decomposition
temperature (Td). Accurately weighed samples (~20 mg) (i.e., IND, NF, TNZ, and MT) were heated from
25 to 400 ◦C at a constant rate of 10 ◦C/min under a nitrogen purge of 20 mL/min using a TG analyzer
(Q5000, TA instrument, New Castle, DE, USA) [11]. The TGA curves were drawn subsequently.

Differential scanning calorimetry (DSC) was conducted to determine the melting temperature
(Tm). Accurately weighed samples (~5 mg) were analyzed using a differential scanning calorimeter
(DSC1, Mettler-Toledo, Greifensee, Switzerland) [12] at a temperature range of 25–150 ◦C for TNZ and
MT, and 25–200 ◦C for NF and IND, respectively. The heating rate was 10 ◦C/min under a nitrogen
purge of 50 mL/min.

2.5. Melt Rheological Study

The melt rheological properties of the representative drugs and excipients were determined via an
Anton Paar Physica Rheometer (MCR 302, Anton Paar, Graz, Austria). NF and TNZ were selected as
representative model drugs, as NF has the highest melting point and TNZ has the lowest melting point
out of all of the drugs studied. In addition, PEG with excellent granule formability, and GMDS and SOL
that form fibers rather than granules, were selected as representative excipients. There were 25.0 mm
parallel plates used in an oscillation mode, with a gap distance of 0.3 mm [13]. Frequency sweep
tests were performed at an angular frequency of 10 rad/s with a strain amplitude of 0.5%. Complex
viscosity (η*) measurements were taken every 5 s. When the samples reached their equilibrium
temperature (NF = 190 ◦C, TNZ = 135 ◦C, PEG = 100 ◦C, GMDS = 80 ◦C, and SOL = 200 ◦C), the test
was commenced at a cooling rate of 0.8 ◦C/min.

2.6. X-ray Diffraction (XRD) Analysis

XRD analysis of the samples (i.e., raw IND, IND granules, raw NF, and NF granules) was
performed in an X-ray diffractometer (D/max 2550/PC, Rigaku, Tokyo, Japan) with Cu Kα1 radiation.
The samples were scanned at 40 kV and 40 mA, in the 2θ range of 5–50◦ at 10◦/min [14].

2.7. In Vitro Dissolution Study

The in vitro dissolution testing was conducted using a USP apparatus II method at 37 ± 0.5 ◦C, with
the paddle speed set at 100 rpm. Then, 500 mL of release media (i.e., phosphate buffer solution (pH 7.2))
for IND and 0.5% (w/v) SLS solution for NF, were used. At predetermined time intervals, release
samples were withdrawn, filtered, and analyzed using a spectrophotometer (UV-2450, Shimadzu,
Japan). The calibration curve for IND at 320 nm was A = 0.0193C (R = 1.0000), and the calibration curve
for NF at 333 nm was A = 0.0149C − 0.0048 (R = 0.9999). Both methods were validated for accuracy,
precision, and recovery (data not shown). The cumulative drug release at different time points was
calculated, and the in vitro dissolution curves were drawn.
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3. Results and Discussion

3.1. Influence of Drugs and Excipients on Granule Formability

Poorly water-soluble drugs (i.e., IND and NF), water-soluble drugs (i.e., TNZ and MT),
and hygroscopic natural product extracts (i.e., AP) were studied in order to understand the effect of
the drugs on the granule formability via MCA technique. As shown in Table 1, the Tm determined
via DSC was found to be MT < TNZ < IND < NF, and the Td determined via TGA was found to be
MT < NF < TNZ = IND. The operation temperature of the MCA process should be above Tm and
below Td. The natural product extract AP had no obvious melting temperature and carbonized easily.
Therefore, pure AP granules could not be produced via the MCA process. As shown in Figure 2,
the collected pure drug granules exhibited a spherical morphology with a particle size of 100–200 µm.
Among them, the IND granules were transparent and the other three drug-loaded granules were
opaque, presenting the color of the drugs themselves. In addition, the obtained pure drug granules
had a low angle of repose (IND = 29.7◦, NF = 29.0◦, TNZ = 30.0◦, and MT = 30.7◦) suggesting
superior fluidity.

Table 1. Melting temperature (Tm) and thermal decomposition temperature (Td) of drugs (i.e., indomethacin
(IND), nifedipine (NF), tinidazole (TNZ), and metoprolol tartrate (MT)), hydrophilic excipients (i.e.,
polyethylene glycol (PEG), mannitol, sucrose, and Soluplus® (SOL)) and hydrophobic excipients
(i.e., stearic acid (SA), glycerol monostearate/distearate (GMDS), paraffin, and Eudragit® RL PO (RL)).

Drugs Tm (◦C) Td (◦C) Hydrophilic
Excipients Tm (◦C) Td (◦C) Hydrophobic

Excipients Tm (◦C) Td (◦C)

IND 162 220 PEG [15] 60 290 SA [16] 60 250
NF 174 215 mannitol [4] 166 270 GMDS [17,18] 56 125

TNZ 124 220 Sucrose [19] 185 210 paraffin [6,20] 61 235
MT 123 180 SOL [21] / 250 RL [22] / 170
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Figure 2. Morphology of indomethacin (IND), nifedipine (NF), tinidazole (TNZ), and metoprolol
tartrate (MT) granules observed using a stereomicroscope.

Commonly used hydrophilic excipients (such as PEG, mannitol, sucrose, and SOL) and
hydrophobic excipients (such as SA, GMDS, paraffin, and RL) were studied to understand the
effect of different excipients on granule formability via MCA. Tm and Td of the excipients were obtained
from the literature [4,6,15–22] and are listed in Table 1. Compared with PEG, paraffin, SA, and GMDS
with low Tm (56–61 ◦C), mannitol and sucrose had much higher Tm (166–185 ◦C). SOL and RL had
no obvious Tm, and their softening temperature observed during the MCA process was about 150
and 160 ◦C, respectively. As shown in Figure 3, the products made of PEG, mannitol, SA, GMDS,
and paraffin were typically spherical granules, while the products made of sucrose, SOL, and RL
were fibers with different diameters. Moreover, the obtained granules composed excipients also had a
low angle of repose (PEG = 29.3◦, mannitol = 29.4◦, SA = 31.0◦, GMDS = 29.5◦, and paraffin = 29.7◦),
suggesting superior fluidity.

A melt rheology study of the drugs and excipients was conducted in order to elucidate the
formation mechanism of the granules during the MCA process. As shown in Figure 4a, TNZ and NF
had low η* values (<1 Pa·s) at their melting temperatures. Upon leaving the spinneret orifices, the melts
with a low viscosity easily broke into melt droplets and rapidly solidified into spherical granules.
A similar phenomenon was previously reported [23], in which a solution jet broke into spherical
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droplets during centrifugation. As shown in Figure 4b, the melt viscosity curves of PEG and GMDS
were similar to those of TNZ and NF, leading to the formation of spherical granules (Figure 3). On the
other hand, the η* value of SOL gradually increased from 147 to 42,990 Pa·s when cooled from 200 to
120 ◦C. As a result, the molten SOL had a high η* value upon leaving the spinneret orifices, and was
stretched into fibers instead of spherical granules. This was consistent with the results reported in the
literature [24], where an increase in the liquid viscosity resulted in the formation of ligaments instead
of droplets during the granulation process. This suggested that maintaining a low η* within a wide
temperature range facilitated in the formation of granules via MCA. Crystalline or waxy excipients
with specific melting temperatures (e.g., PEG or SA) seemed to be suitable for producing granules via
MCA. Whereas, amorphous polymers (e.g., SOL and RL) may be more suitable for preparing fibers via
either centrifugal met spinning [9] or MCA.Pharmaceutics 2018, 10, x FOR PEER REVIEW  5 of 11 
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and (b) polyethylene glycol (PEG), Soluplus® (SOL), and glycerol monostearate/distearate (GMDS).

3.2. Influence of Operating Parameters on the Morphology and Yield of Granules

The effect of collecting the distance on the morphology of the granules is shown in Figure 5a–d.
When a small amount of material (about 2 g) was used, the products collected at a short distance of
5 cm were similar to those collected at a long distance of 19 cm, existing mainly as spherical granules
(Figure 5a,b). During the MCA process, the particle morphology is mainly governed by a centrifugal
force, viscous force, and surface tension exerted on the molten materials [25]. When keeping the
melting temperature and rotating speed constant, the particle size of the products was mainly affected
by the material properties e.g., viscosity, density, and surface tension. However, when a larger amount
of material (about 5 g) was used, the products collected at a short distance (5 cm) were mainly an
irregular-shaped large mass (Figure 5c). Granules easily agglomerated as a result of the incomplete
solidification at a short collecting distance. On the other hand, the products collected at a long distance
(19 cm) remained spherical (Figure 5d). With a constant material feeding amount of 5 g, the granule
yield was increased when the collecting distance was increased from 5 to 19 cm (Figure 5e). A longer
collecting distance resulted in a more complete solidification, and hence the formation of spherical
granules and higher yield.
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The effect of the operation temperature on the morphology and yield of the granules is shown in
Figure 6. In general, it takes a longer time for most excipients (e.g., mannitol, SA, GMDS, and paraffin)
to cool down and to solidify when heated to a higher temperature. When the operation temperature
was 15 or 30 ◦C above Tm, incomplete particle solidification and agglomerate formation in the collector
were observed, resulting in a reduced granule yield. Therefore, the optimized MCA process conditions
were as follows: 5 g of material centrifugated at an operation temperature of Tm, and a collecting
distance of 19 cm.
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(c) 30 ◦C above Tm on the morphology of products. PEG—polyethylene glycol; SA—stearic acid;
GMDS—glycerol monostearate/distearate.
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3.3. Moisture Absorption of Granules

As discussed in Section 3.1 above, the natural product extract AP itself had no granule formability
via MCA. As an excipient with a high granule formability, PEG was chosen as a carrier, and mixed
with a spray-dried AP powder to prepare AP/PEG granules via MCA. As shown in Figure 7a,
the drug/excipient ratio had little effect on the morphology of the AP/PEG granules. As shown in
Figure 7b, the moisture absorption of the AP/PEG granules prepared via MCA was significantly
decreased compared with those of the spray-dried AP powder and the corresponding physical mixture
(PM). The moisture absorption at 24 h of the AP/PEG (1/1, w/w) granules, PM (AP/PEG:1/1, w/w),
and AP powder was 6.49%, 9.80%, and 13.51%, respectively. The AP/PEG granules exhibited a larger
particle size and hence a reduced specific surface area compared with the AP powder, resulting in less
water absorption. Further increasing the PEG concentration (AP/PEG:1/2, w/w) had no obvious effect
on the moisture absorption, suggesting that the hygroscopic property of AP may be size dependent.
As shown in Figure 7c, the appearance of the AP/PEG (1/1, w/w) granules did not change after being
exposed to a high humidity (RH 80% ± 2%) for 24 h, while the wetting phenomenon was found in
the pure AP powder and PM (AP/PEG:1/1, w/w) at 24 h. The AP/PEG granules prepared via MCA
can be further processed into tablets and capsules, and are expected to have better stability during
preparation and storage compared with the AP powder.
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Figure 7. (a) Typical morphology of astragalus polysaccharide (AP)/polyethylene glycol (PEG) granules
with different ratios at 0 h observed by a stereomicroscope. (b) Moisture absorption curves of granules
produced via melt centrifugal atomization (MCA), physical mixture (PM) of AP and PEG, and AP
during 24 h; and (c) their typical appearance at 24 h.

3.4. Immediate Release Characteristics of Granules

As shown in Figure 8a, the dissolution of IND granules prepared via MCA was faster than that of
the IND powder. The cumulative IND released from the granules at 5 min was over 90%. Further XRD
results (Figure 8b) demonstrated that the IND transitioned from a crystalline to amorphous state in the
IND granules during the MCA process, resulting in an immediate drug dissolution characteristic.
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Figure 8. (a) In vitro dissolution profiles and (b) XRD results of indomethacin (IND) granules prepared
via melt centrifugal atomization (MCA) and IND powder.

It was unexpected that no immediate drug release characteristic was found in the NF granules
prepared via MCA. The influence of particle size on the NF dissolution is shown in Figure 9a. The results
revealed that NF released from small NF granules (120–150 µm) prepared via MCA was faster than
that from large NF granules (180–230 µm) prepared via MCA, but slower than that from the drug
powder (80–106 µm). Although, the XRD results (Figure 9b) demonstrated that the crystallinity of NF
was reduced in the NF granules compared to that in the NF powder. It appeared that the main factor
affecting NF dissolution was particle size.
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Figure 9. (a) In vitro dissolution profiles and (b) XRD results of nifedipine (NF) powder and NF
granules prepared via melt centrifugal atomization (MCA).

In order to improve the dissolution of NF granules, PEG was added as a hydrophilic carrier.
It was observed that the drug/excipient ratio had no obvious effect on the morphology and shape of the
NF/PEG granules (Figure 10a). However, the drug/excipient ratio had a significant influence on the NF
dissolution behavior (Figure 10b). Granules containing a higher PEG content resulted in an enhanced
dissolution rate and extent of NF. The drug dissolution of the NF/PEG granules at 10 min was up
to 79.62% and 93.51% for the granules with NF/PEG ratios of 1/3 and 1/4, respectively. DSC studies
(Figure 10c) confirmed that the resulting system was an amorphous or molecular solid dispersion,
and thereby, immediate NF release was attained. An effort was also made to produce granules with
sustained release characteristics, using TNZ as the model drug and GMDS as the hydrophobic carrier.
Even when the GMDS was as high as 80%, no sustained TNZ release was obtained (data not shown).
These results suggested that the MCA technique can be an effective way to produce spherical granules
with enhanced dissolution profiles for poorly water-soluble therapeutics such as NF.
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Figure 10. (a) Typical morphology observed by stereomicroscope and (b) in vitro dissolution profiles
of nifedipine (NF)/polyethylene glycol (PEG) granules with different ratios. (c) DSC curves of NF
granules, NF/PEG: 1/4 granules, NF powder, and PEG.

4. Conclusions

A solvent-less, one-step, and high throughput MCA method was developed to prepare spherical
granules. The produced granules had a high drug loading, superior fluidity, low moisture absorption,
and immediate release properties. Maintaining a low molten viscosity in a wide temperature range was
found to be critical for the formation of spherical granules. The results demonstrated that the one-step
MCA approach could be used to prepare spherical granules with immediate release characteristics for
poorly water-soluble and moisture-sensitive drugs.
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and J.S.; funding acquisition, Y.Y. and W.S.
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Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

MCA melt centrifugal atomization
IND indomethacin
NF nifedipine
TNZ tinidazole
MT metoprolol tartrate
AP astragalus polysaccharide
PEG polyethylene glycol
SOL Soluplus®

SA stearic acid
GMDS glycerol monostearate/distearate
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RL Eudragit® RL PO
TGA thermal gravimetric analysis
Td thermal decomposition temperature
DSC differential scanning calorimetry
Tm melting temperature
η* complex viscosity
XRD X-ray diffraction
PM physical mixture
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