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Abstract: The interest in injectable hydrogels for cancer treatment has been significantly growing over
the last decade, due to the availability of a wide range of starting polymer structures with tailored
features and high chemical versatility. Many research groups are working on the development of
highly engineered injectable delivery vehicle systems suitable for combined chemo-and radio-therapy,
as well as thermal and photo-thermal ablation, with the aim of finding out effective solutions to
overcome the current obstacles of conventional therapeutic protocols. Within this work, we have
reviewed and discussed the most recent injectable hydrogel systems, focusing on the structure and
properties of the starting polymers, which are mainly classified into natural or synthetic sources.
Moreover, mapping the research landscape of the fabrication strategies, the main outcome of each
system is discussed in light of possible clinical applications.

Keywords: injectable hydrogels; drug delivery; anticancer activity; natural polymers; synthetic
polymers; stimuli-responsive materials

1. Introduction

Injectable hydrogels can be defined as three-dimensional hydrophilic polymeric networks with
a very high affinity for body fluids that may be delivered into body through a catheter or by direct
injection with a syringe [1]. Injectable hydrogels have been proposed in the biomedical field as a
platform for tissue engineering, as well as for the delivery of therapeutics (Figure 1) [2–4].
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A gelling mechanism allows injectable hydrogels to be classified into chemically and physically
cross-linked hydrogels [5].

Chemical intermolecular cross-linking can be created by the generation of new covalent bonds
between polymer chains via photo- or thermo-irradiation [6], or by specific reaction mechanisms
involving Schiff’s base formation [7], Diels–Alder cycloaddition [8], Michael-type addition [9], and
azide–alkyne (CuAAC) click chemistry [10,11]. The encapsulation of suitable therapeutic agents
within the gels during hydrogel formation allows the preparation of three-dimensional structures
able to act as a platform for controlled drug delivery or tissue engineering [12]. Chemical hydrogels
possess higher mechanical strength (due to high stable crosslink points [13]), longer physical stability,
and a prolonged degradation period [14]. Nevertheless, in vivo applications appear reduced due to
some potential toxic agents, such as cross-linking monomers, photo-initiators, organic solvents, or
catalyzers [2]. Non-covalent bonds such as hydrophobic interactions [15], hydrogen bonding [16],
ion cross-linking [17], and host-guest interactions [18] can be exploited in the formation of injectable
physical hydrogels. Usually, in the synthesis of this kind of structure, the required mild reaction
conditions avoid the generation of any toxic by-products. Furthermore, organic solvents, cross-linking
catalysts, or photo-initiation processes are not required during the gelation process [2]. On the
contrary, physical hydrogels suffer from some drawbacks compared with the chemically cross-linked
formulations, particularly related to bond stability and poor mechanical properties [19].

The mechanical properties of injectable hydrogels are a critical parameter for its function and
applications, with the nature of gel being evident by a storage modulus G′ higher than the corresponding
values of the loss modulus G” [20,21]. The resulting mechanical properties of any injectable hydrogels
should be adequate to withstand the deformations occurring in the body [22]. The viscosity of the
polymer solution is an important parameter that should also be considered in the case of injectable
matrices: Precursor aqueous solutions should possess sufficiently low viscosity, or at least adequate
shear-thinning properties, to allow for easy injection [23–25]. This requirement makes molecular
weight control, polymer architecture, as well as chemical composition, very important parameters to be
controlled in the design of an effective hydrogel system, which should also allow a homogeneous drug
dispersion before the gelation of the cross-linked structure [26]. The U.S. Food and Drug Administration
(FDA) fixed the upper limit for any injectable solutions to 0.05 Pa s [27]. Upon gelation, a rapid increase
in this value was observed, followed by a leveling off over time [28]. The mechanical properties of
the whole hydrogel are strictly dependent on another important structural parameter, such as the
porosity (e.g., the space between cross-links). An increased concentration or cross-linking density
would enhance the mechanical strength, thus promoting the integrity duration of the hydrogels [29].
Nevertheless, this would determine the hydrogel’s porosity to be significantly reduced, limiting the
movement of nutrients and solutions for either the growth of the cell in tissue engineering applications
or the modulation of the release profile in drug delivery [30]. Thus, a valuable balance between these
parameters should be achieved.

Clinical applications of injectable hydrogels require some fundamental mandatories, such as
biodegradability, biocompatibility, stability, non-toxicity, and suitable mechanical and viscoelastic
properties. A biocompatible injectable hydrogel should be non-carcinogenic, non-toxic, and should
not induce any chronic or adverse physiological response after its degradation. To develop systems
with high biocompatibility towards tissues, cells, and body fluids, natural polymers are more suitable
than synthetic cross-linked structures due to their subunits, which are more similar to the natural
extracellular matrix [31]. Gradual degradation of the hydrogel into biocompatible by-products should
also be considered because of their possible accumulation that could generate adverse effects. Usually,
carbohydrates, peptides, and nucleic acids naturally degrade in non-toxic by-products [31]. Among the
different applications of injectable hydrogels, cancer therapy is one of the most widely explored [32].
The treatment of cancer by systemic chemotherapeutic procedure, indeed, often determines a high
level of cytotoxicity [33] and, to overcome this inconvenience, intratumor delivery of therapeutics
employing injectable hydrogels can provide a controlled and targeted release within the tumor site [34].
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Here, we have reviewed the synthesis and the application of different injectable hydrogels proposed
as drug delivery systems for the local delivery of chemotherapeutics. Additionally, stimuli-responsive
release of anticancer agents have been treated by the analysis of thermo-, pH-, photo-, or multi-sensitive
drug delivery systems, as well as active targeting hydrogels [35]. Based on the main component of
the polymer network, herein we have classified the injectable hydrogels reviewed and discussed as
synthetic or natural systems. For each class of materials, a summarizing table containing information
about composition, carrier and delivery properties, as well as cancer models employed in either in vivo
or in vitro experiments has been introduced. Moreover, when available, data about studies in health
models have given information about side toxicity and pharmacokinetic profiles. Finally, injectable
hydrogels containing nanoparticle systems as functional additive to control the releasing rate have
been defined as composite materials, while N/S hybrid hydrogels refer to the simultaneous presence of
natural and synthetic polymers within the same polymer structure.

2. Synthetic Injectable Hydrogels

2.1. Polyphosphazenes

Polyphosphazenes (PPZs) are a class of hybrid organic–inorganic macromolecules consisting in a
linear or branched skeletal structure of repeating phosphorus and nitrogen atoms with alternating
single and double bonds [36]. Each phosphorus atom is linked to two organic side groups, ranging
from alkyl and aryl moieties to amino acids (Figure 2) [37].
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PPZs are obtained via different synthetic routes, with most of the biologically-relevant materials
being prepared by a ring-opening polymerization, followed by macromolecular substitution
reactions [38]. Either the modification of organic side groups and their ratios, or the attachment
of multiple different side groups to the same backbone, allow the preparation of a wide range of
PPZs, with finely tuned physical and mechanical properties [39]. The interest in PPZs as materials
for the formulation of injectable hydrogels is related to the ability of their aqueous solutions to
undergo reversible sol–gel transitions depending on the temperature. In fact, PPZs are in the sol
state at room temperature (or below), but they gelate at body temperature. Such transition is tunable
by adjusting the balance of hydrophobic to hydrophilic substituents [40]. Furthermore, a growing
number of hydrolytically-sensitive PPZ hydrogels have been designed, with negligible toxicity arising
from the degradation of by-products generally consisting of H3PO4, ammonium, and free organic
side groups [41]. On the contrary, the employment of cyclic PPZ architecture should be accurately
investigated, because such derivatives are characterized by a relatively long time of degradation which
can reduce the biomedical applicability [42]. Although a large number of PPZ polymers have not found
commercial success [43], several research groups have developed different types of PPZ injectable
hydrogels (Table 1). PPZ-based hydrogels were successfully tested for the delivery of cytotoxic drugs
or sRNA to solid tumors, both in vitro and in vivo [40,44–50]. They proved the ability of these systems
to extend the release profiles overtime [47] with no-toxicity on healthy mice [46,47] and the possibility
to confer targeted behavior [50]. A further upgrade of the use of PPZ was proposed in [51], where
the injectable hydrogels consisted of a Camptotechin (CPT) prodrug useful for the treatment of lung
and colon cancer cell lines. The insertion of metal ferrite superparamagnetic iron oxide nanoparticles
within the hydrogel structure was proved to be a suitable strategy for enabling tumor imaging and
magnetic hyperthermia ablation [52,53].
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Table 1. Composition and anticancer performance of injectable hydrogels based on polyphosphazenes.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel
(Gelation Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[40] PPZ (Physical – T) - - - 30 - - - ME (0.15) 35 Breast MDA-MB-231 MDA-MB-231 - - - - - -

[44] PPZ (Physical – T) - - - - - - - - - DOX (10) 30 Stomach HSC44Luc HSC44Luc - - - - - -

[45] PPZ (Physical – T) - - - >50 - - - DOX (0.3–0.6) 35 Stomach SNU-601 SNU-601 - - - - - -

[46] PPZ (Physical – T) - - - - - - - - - DTX (10) 28# Stomach 44As3Luc 44As3Luc - - - Mice

[47] PPZ (Physical – T) - - - 10–20 - - - DTX (1–3) 10–20
Stomach SNU-601 SNU-601

- - - MicePancreas AsPC-1 - - -

Liver SNU-398 - - -

[48] PPZ (Physical – T) - - - - - - - - - PTX (0.6–0.9) 60
Colon DLD-1 - - - - - - - - -

Stomach SNU-601 SNU-601

[49] PPZ (Physical – T) - - - - - - - - - PTX-DOX (0.6) 60–100# Stomach SNU-601 SNU-601 - - - - - -

[50] PPZ (Physical – T) - - - - - - - - - sRNA 30# Prostate PC3 PC3 - - - - - -

[51] PPZ (Physical – T) - - - 12–25 - - - CPT* (10) 60

Lung A549 - - -

- - - - - -
Colon

DLD-1
HT-29HCT-116

HT-29

[52] PPZ (Physical – T) CoFe2O4 30 Magnetic SN-38 (0.8–0.12) 60 Glioblastoma U-87 U87 3T3 - - -

[53] PPZ (Physical – T) Zn0.47Mn0.53Fe2O4 25 Magnetic - - - - - - Glioblastoma U-87 U87 3T3 Mice

* Conjugated to hydrogel; # from in vivo experiments; DL: Drug loading; T: Temperature; CPT: Camptotechin; DOX: Doxorubicin; DTX: Docetaxel; ME: 2-Methoxyestradiol; PPZ:
Poly(organophosphazene); PTX: Paclitaxel; SN-38: 7-ethyl-10-hydroxycamptothecin.
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2.2. Polaxamers

Poloxamers (also known as Pluronics) are tri-block amphiphilic polymers consisting of
poly(ethylene oxide)-poly(propyleneoxide)-poly(ethylene oxide) (PEO-PPO-PEO) repeating units [54].
They are non-ionic surfactants, with physical and chemical properties depending on the molecular
weight and hydrophilic (PEO) to hydrophobic (PPO) balance (Figure 3) [55].
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Figure 3. Schematic representation of poloxamers. x: 2–130; y: 15–67.

Among others, PF127 (PEO/PPO balance 70/30) is one of the most widely employed poloxamers
for biomedical applications due to the ability to form either micellar nanocarriers for lipophilic drugs
(due to PPO content) or hydrogel networks upon reverse thermal gelation. PF127 water solutions
(>20% by weight) show a low-viscosity state at 4 ◦C, while semisolid gels are obtained upon heating to
room or body temperature, probably due to micellar packing and entanglement [56,57].

To date, PF127 injectable hydrogels (Table 2) have been proposed as delivery vehicles for drug
and drug crystals in the treatment of both blood and solid tumors [58,59]. Interestingly, such systems
were found to reverse the multi-drug resistance in MCF-7/ADR cells because of the ability to increase
the intracellular drug concentration escaping the efflux pumps on the cell membrane [59]. To extend
the drug release profiles overtime, nanoparticle carriers (e.g., micelles or polymeric nanoparticles)
loaded with the cytotoxic agent were incorporated into the hydrogels [60–62]. This approach allowed a
co-delivery of 5-Fluoruracil (5-FU) and Doxorubicin-loaded Poly(d,l-lactide-co-glycolide) nanoparticles
(DOX@PLGA) for the in vitro and in vivo treatment of melanoma [61]. When metal nanoparticles (e.g.,
Cu or Au) were used as loaded nanocarriers, photothermal and hyperthermia effects were achieved
(Figure 4) [62,63].
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PTX: Paclitaxel; GNR: Gold NanoRods; NIR: Near InfraRed. Adapted with permission from [62].
Elsevier, [2016].

Despite the advantageous features of poloxamers, these polymers suffer from weak mucoadhesivity,
poor mechanical properties, and short residence time due to the easily dissolution at the action site [64].
To overcome these drawbacks, PF127 was mixed with different polymers from synthetic (polyacrylic
acid (PAA) or α-Tocopheryl Polyethylene glycol 1000 Succinate (TPGS)) [65,66] or natural (Hyaluronic
acid (HA)) [67,68] origin to increase the gel strength [65] and enhance the drug efficiency [66]. Finally, it
should be cited the incorporation of cyclodextrins (α-CD) into the hydrogel network for the preparation
of effective depot system in cervix and breast cancer treatment [69]. A further improvement consisted
in the insertion of graphene oxide (GO) or reduced graphene oxide (rGO) materials, with the formation
of hybrid hydrogels with more sustained drug delivery behavior [70].
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Table 2. Composition and anticancer performance of injectable hydrogels based on poloxamers.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation
Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[58] PF127 (Physical – T) - - - - - - pH MLX (7.5) 1 Leukemia
K562 - - - - - - - - -
HL60

[59] PF127 (Physical – T) - - - - - - - - - PTX (2.0) LAP (4.0) 4 Breast
MCF7 - - - BT 474 Mice

MCF7-ADR

[60] PF127 (Physical – T) MPEG-PCL - - - - - - Q* (7.0) 9 Ovary SK-OV-3 SK-OV-3 - - - - - -

[61] PF127 (Physical – T) PLGA - - - - - - 5-FU (2.0) DOX*
(2.0) 35 Melanoma B16F10 B16F10 - - - - - -

[62] PF127 (Physical – T) OCS
MPEG-AuNRs - - - PTX* (34.8) 18# Liver HepG2 HepG2 - - - - - -

[63] PF127 (Physical – T) PVP - - - - - - Cu2MnS2* - - - Murine
breast 4T1 4T1 - - - - - -

[65] PF127/PAA
(Physical – I,T) - - - - - - - - - OXA (2.3) 1 Colon SW480 - - - IEC-6 - - -

[66] PF127/TPGS
(Physical – T) - - - - - - Temperature DTX (5.0) 3 Liver SMMC-

7721/RT
SMMC-
7721/RT - - - - - -

[69]
PF127/β-CD
(Physical – T)

- - - - - - Temperature
pH CUR (10) 2

Cervix HeLa - - - L929 - - -
Breast MCF-7

[70]
PF127/α-CD

(Physical – T) GO
8 - - - DOX (6.0) CPT (14) 8 6 - - - - - - - - - - - - - - -

PF127/α-CD
(Physical – T) rGO

* Loaded into composite component; # from in vivo experiments; DL: Drug loading; I: Ionic; T: Temperature; 5-FU: 5-Fluoruracil; CD: Cyclodextrin; AuNRs: Gold nanorods; CPT:
Camptotechin; CUR: Curcumin; DOX: Doxorubicin; DTX: Docetaxel; GO: Graphene oxide; rGO: Reduced graphene oxide; LAP: Lapatinib; MLX: Meloxicam; MPEG: Monomethoxy
poly(ethylene glycol); OCS: N-octyl chitosan; OXA: Oxaliplatin; PAA: Poly(acrylic acid); PCL: Poly(ε-caprolactone); PF: Pluronic F; PLGA: Poly(lactide-co-glycolide); PTX: Paclitaxel; PVP:
Polyvinylpyrrolidone; Q: Quercetin; TPGS: α-Tocopheryl polyethylene glycol 1000 succinate.
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2.3. Polyesters

During the last decades, thermosensitive in-situ gels of amphiphilic copolymers based on
biodegradable polyesters and polyethylene glycol (PEG) have represented a suitable alternative in the
intratumoral delivery of hydrophobic therapeutics [71], allowing to recover high drug concentration at
the tumor site while overcoming, at same time, the limitations usually associated with the systemic
administration of these drugs [72]. The advantages of this class of polymers arise from the possibility to
ensure both a physical targeting to the cancer site and a controlled/sustained delivery of hydrophobic
drugs [73], as well as from their high biodegradability which allows the obtainment of stimuli responsive
and biocompatible delivery platforms [74]. On the other hand, the main drawback of such materials
is that their acidic degradation by-products significantly influence the pH value of the surrounding
media, with potential limitations in biomedical applications [75].

Different biodegradable polymers have been proposed for the development of injectable hydrogels,
each showing peculiar features and biological performances (Table 3). The structures of the main
polyesters employed to this regard are sketched in Figure 5.
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Biodegradable poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PLA-PEG-PLA)
amphiphilic triblock copolymer showed the ability to self-assembly in aqueous medium into
core-shell micelles, forming a physical network when exposed to the body temperature [76].
Injectable thermo-sensitive PLA–PEG–PLA for the local delivery of Gemcitabile (GEM) and Cisplatin
(CisPt) was employed to promote synergistic combination therapy against pancreatic cancer [77].
Alternatively, poly(d,l-lactide) PLA was combined with pluronic L (PL) moieties in the preparation of
three-block hydrogels (PLA–PL–PLA) proposed for intraperitoneal therapy of colon cancer [78,79].
This amphiphilic copolymer displayed thermosensitive behavior freely flowing at lower temperatures
but turning into gel at body temperature. d,l-lactic (LA) acid oligomer combined with methoxy
poly(ethylene glycol) and poly(octadecanedioic anhydride) was employed in the preparation of
thermosensitive amphiphilic triblock copolymer suitable for local cancer chemotherapy. In particular,
paclitaxel (PTX) loaded into LA oligomer nanoparticles could be stored as freeze-dried powders, and
easily re-dispersed into aqueous medium at ambient temperature, forming a hydrogel in the injection
site [80].

Poly(d,l-lactide-co-glycolide) (PLGA) and PEG triblock copolymer (PLGA–PEG–PLGA) hydrogels
were synthesized via ring-opening polymerization of d,l-lactide (LA) and glycolide (GA) in the presence
of PEG and Tin (II) 2-ethylhexanoate as macroinitiator and catalyst, respectively. Thermo-induced
gelation of amphiphilic PLGA–PEG–PLGA can be related to the micellar aggregation as a consequence of
the increase in the hydrophobic interactions between the PLGA moieties and the partial dehydration of
the PEG chains [81,82]. Literature data indicates that the transition temperatures of PLGA–PEG–PLGA
gels were in the range 10–40 ◦C for a polymer concentration of 15-20% wt [83]. Copolymer concentration
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influenced sol–gel transition temperature, because the formation of the micellar aggregation network
was simplified when the concentration of the polymer increased [84]. PLGA–PEG–PLGA gel was
proposed as a carrier of topotecan (TPC), DOX, CisPt, and methotrexate (MTX), and employed for the
treatment of osteosarcoma in in vivo experiments (Figure 6) [85,86].
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Injectable thermosensitive hydrogel can be loaded with either drug or drug-loaded
nanoparticles [87]. In particular, the interaction of ionic drugs with specific surfactants has been
exploited to achieve sustained release of 2-methoxyestradiol (ME) and Cytarabine (CYT) in the therapy
against leukemia and breast cancer, respectively [88,89]. Additionally, drug-loaded particles entrapped
in a PLGA–PEG–PLGA hydrogel have been proposed as dual-stimuli responsive drug delivery systems
combining the pH-responsivity of the nanoparticles with the temperature response of the PEGylated
polyester gels [90,91]. In addition, in a modern scheduled treatment, sustained co-delivery of DOX
and sRNA@Poly(ethyleneimine)-Lysine (PEI-Lys) complexes displayed significant synergistic effects
in promoting the PLK1 silencing, tumor apoptosis, and cell cycle regulation of osteosarcoma cells [92].

In the pharmaceutical and biomedical fields, the sustained release of both hydrophobic and
hydrophilic drugs from a single release device represents a newsworthy challenge, exhibiting different
clinical survival advantages compared with the single drug treatment. To this regard, a strategy to realize
the synchronous, sustained co-delivery of hydrophilic CisPt and hydrophobic PTX in one injectable
device was achieved by synthesis of a Pt(IV) prodrug based on MPEG–PLGA, able to self-assemble in
a core-corona micelle showing hydrophobic inner cores where PTX can be incorporated [93].

Finally, a promising strategy involved the use of cytokine-carrying thermosensitive MethoxyPEG
(MPEG)−PLGA hydrogels followed by injection of vaccine vectors loading antigens [94]. This device
provides a sustained release profile of granulocyte-macrophage colony-stimulating factor, able to
facilitate proliferation, recruitment, and maturation of dendritic cells and macrophages at the site of
inoculation, providing an efficient tool proposed in the melanoma therapy.

ε-Caprolactone was employed in the synthesis of amphiphilic block copolymers bearing PEG
pendants. Different injectable Poly(ε-caprolactone) (PCL)-based nanocomposite hydrogels with
multicomponent compatibility were proposed for the sustainable release of therapeutics, such as
PTX, Camptotechin (CPT), 5-FU, and DOX. Three-block copolymers (PEG–PCL–PEG) were prepared
by ring-opening polymerization in presence of Tin(II) 2-ethylhexanoate as macroinitiator [73,95–97].
Alternatively, PCL–PEG diblock [98] and PCL–PEG–PCL copolymers [99–102] were synthesized
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in the presence of 1,4,8-trioxa[4.6]spiro-9-undecanone to obtain a modified PCL able to undergo
PEGylation reaction.

A MPEG–b–PCL copolymer diblock was proposed in the synthesis of supramolecular hydrogels
by combination with α-CD to achieve an injectable delivery system for the release of PTX, DOX, and
CisPt in lung and bladder tumors [32,103]. In these systems, α-CD were selectively inserted onto
the linear polymer chains, and the resulted supramolecular complex aggregated in packed columns,
mainly formed by host–guest interactions or π–π stacking between polymeric chains [104]. These
systems have attracted special interest because of their favorable properties, such as thixotropy and
reversibility, with their in situ encapsulation characteristics able to prolong the retention time in cancers,
reducing side effects [105]. In another system, the coordination between platinum(II) atoms and
carboxylic groups of poly-(acrylic acid) (PAA) blocks induced poly(ethylene glycol)–b–poly-(acrylic
acid) (PEG–b–PAA) self-assembly into micelles, with the supramolecular hydrogels eventually formed
by the addition of α-CD [106]. Different supramolecular hydrogels based on PEG block polymers
(e.g., nucleobase (adenine/thymine)-terminated PEG) were tested for the buccal delivery of DOX in
in vivo mouse models [107]. Folic acid (FA)-modified cationic and amphiphilic MPEG–PCL–PEI–FA
was proposed as supramolecular system able to form polyplexes with anionic plasmid for sustained
gene delivery effectively inhibiting in vivo tumor growth [108].

Drug delivery systems based on PEG–PCL–PEG were loaded with 5-FU and PXT and tested
in in vivo experiments for the treatment of colon and breast tumors, respectively [73,95]. Another
promising injectable hydrogel for in situ gel-forming controlled drug delivery systems is based on
PCL–PEG–PCL, due to several benefits, such as prolonged drug release, sol–gel transition around
the body temperature, and ease of handling, being in a solid state at room temperature [109]. In situ
gelling materials based on PCL–PEG–PCL loaded with PTX and CPT were proposed as drug delivery
systems against breast and gastro-intestinal cancers, with excellent results in both in vivo and in vitro
experiments [96,97]. However, the preparation of the anticancer-gel formulations require high
temperatures or extended times, which are unsuitable for formulations containing unstable drugs [110].
Moreover, strong hydrophobicity and high crystallinity of PCL units confer to PCL–PEG–PCL a slow
degradation rate, which is not always desirable.

To address this concern, chemical modification of PCL allowed the synthesis of new polymeric
systems with improved properties. In particular, PCL modified with cyclic ether pendant groups,
i.e., poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethyleneglycol)-poly(ε-capro-
lactone-co-1,4,8-trioxa[4.6]spiro-9-undeca-none), were prepared [111]. The insertion of
cyclic ether pendant groups into PCL units was performed by copolymerization of
1,4,8-trioxa[4.6]spiro-9-undecanone with PCL, and the resulting macromer showed modified gelation
performances as a consequence of the changing of PCL crystallization properties. By this approach,
injectable carriers for DOX and PXT were obtained and proposed for the treatment of breast and liver
cancers [99–101,112].

Methoxy poly(ethylene glycol)–b–poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)
(PEG–PCL) diblock copolymer was employed to prepare host–guest inclusion injectable nanocomposite
devices based on surface-modified gold nanorods, PTX/PEG–PCL nanoparticles, andα-cyclodextrin [98].
A single local injection of this hydrogel allowed to deliver abundant PTX/PEG–PCL nanoparticles and
gold nanorods at the target site, developing remarkable anticancer activity and photothermal effect.
Alternatively, the coupling of PTX/PEG–PCL with α-CD allowed the synthesis of supramolecular
hydrogels based on the hydrophobic aggregation of pseudorotaxane between cyclodextrins and block
copolymers [113].

Co-delivery of anticancer agents and radiosensitizer isotopes was exploited in the design of
innovative drug delivery systems able to combine the effects of chemo- and radio-therapy with
reduction of the damage to normal tissue and improved therapeutic efficiency [114]. Specifically,
PEG–PCL-based hydrogels were employed in the preparation of multifunctional devices for the
delivery of DOX and β-emitter species, such as iodine-131 and rhenium-188, for the treatment of the
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hepatocellular carcinoma [102,115]. Finally, an advanced system involving linear copolymer formed by
poly(ε-caprolactone) was proposed for transcatheter arterial chemoembolization, a technique based on
the combination of chemotherapeutic efficacy from delivered anticancer drugs and a blockage of tumor
feeding vessels with an embolic material [116]. Specifically, sulfamethazine-based anionic pH-sensitive
block PCL copolymer was fabricated by free radical polymerization [117]. Aqueous solutions of the
synthesized copolymer underwent a sol-to-gel phase transition upon lowering the environmental pH,
and created a gel region able to cover the physiological conditions and low pH environments typical of
the tumor site.

Polyurethane (PU) derivatives, such as poly(amino ester urethane) (PAEU) block copolymers,
were employed as drug delivery systems, thanks to their ability to form electrostatic interactions and
hydrogen bonds with bioactive molecules, and to exhibit sol–gel phase transition after injection into the
body. PAEU copolymers were proposed for the fabrication of injectable radiopaque embolic materials,
based on a mixtures of an aqueous copolymer solution and Lipiodol, a commercial long-lasting
X-ray contrast agent [118]. In particular, exploiting the influence of pH and temperature on the
self-assembly capacity of this polymeric material, a dual drug delivery system was proposed as
a carrier for the regional release of DOX in the liver compartment. Additionally, target-specific
release of CisPt was proposed by incorporation of CisPt chondroitin sulfate-based nanogels into
pH- and temperature-responsive PEG–PAEU hydrogels [119]. In this case, ionic interactions, under
physiological conditions, between the tertiary amine and sulfate groups allowed to form hydrogel
networks able to selectively bind a receptor specifically expressed on cancer cells [120].

Linear copolymers obtained by suitable mixing of polyester monomers were used to synthesize
injectable hydrogels with tailored properties due to their specific hydrophobic/hydrophilic balance.
To this regards, PCLA–PEG–PCLA triblock copolymer was synthesized using a ring-opening
copolymerization involving ε-Caprolactone and LA, in the presence of PEG and Tin(II) 2-ethylhexanoate.
In particular, amphiphilic copolymer was conjugated with heparin to construct non-anticoagulant
heparin prodrugs loaded in thermosensitive hydrogel for anti-metastasis treatment [121] and as a
GEM carrier for the treatment of pancreatic cancer [122]. Moreover, PCLA–PEG–PCLA copolymer
was modified via polyaddition polymerization with sulfamethazine, acting as anionic pH-sensitive
moiety, to synthesize a dual stimuli responsive polymeric system, proposed for the DOX release in
liver cancer [123]. Finally, injectable pentablock copolymer hydrogels PEG–PCL–PLA–PCL–PEG, with
different ratios of PCL and PLA, were proposed as single-shot sustained release of vaccines. Specifically,
vaccine was encapsulated into PLGA nanoparticles and incorporated in the thermoresponsive hydrogels
in order to modulate gelation temperature and minimize burst release of antigen and adjuvants in the
treatment of melanoma [124]. Nevertheless, the synthetic strategies involving lactide, glycolide, or
ε-caprolactone derivatives to generate a temperature-sensitive and biodegradable polymeric backbone
suffered from the lack of chemical functionality in the parent aliphatic polyesters that makes it difficult
to modify the polymeric chains.

A valuable alternative way exploited the employment of methyltrimethylcarbonate
(PCB), cyclic carbonates derived from 2,2-bis(methylol) propionic acid (bis-MPA), as synthon
for functional biodegradable monomers [16]. Ring-opening polymerization, followed by
N,N’-dicyclohexylcarbodiimide-mediated condensation, was the synthetic strategy proposed to prepare
hydrophilic/hydrophobic PEG-functionalized cyclic carbonate based on 2,2-bis(methylol)propionic
Acid (bis-MPA) [125]. Micellization provided a physical cross-linked system, displaying a lower
critical solution temperature at values near the body temperature that can be suitable for PXT release
against hepatic cancer cells. A different protocol involved the formation of a biodegradable polymeric
biomaterial consisting of PEG and a polycarbonate of dihydroxyacetone (pDHA), proposed for the
prevention of the seroma post-operative complications following ablative breast cancer surgery [126].
Vitamins E and D-functionalized polycarbonates were proposed as a hydrophobic block in the synthesis
of three-block copolymers able to form physically cross-linked injectable hydrogels for local and
sustained delivery of herceptin in breast cancer treatment [127,128].
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Table 3. Composition and anticancer performance of injectable hydrogels based on polyesters.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel
(Gelation Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vitro In Vitro In Vitro

[77] PLA-PEG-PLA
(Physical – T) PLA-PEG-PLA - - - - - - GEM* (10) CisPt*

(0.2) 10 Pancreas Bxpc-3 Bxpc-3 - - - Mice

[78] PLA-PL64-PLA
(Physical – T) PLA-PL35-PLA - - - - - - DTX (4.5) LL37*

(7.5) 24 Colon HCT 116 - - - HEK293 Mice

[79]
PLA-PL35-PLA
(Physical – T) PLA-PL35-PLA - - - - - - OXA DTX* (4.4) 14 Murine colon CT26 CT26

3T3 - - -
HEK293

[80]
MPEG-POA-LAO

(Physical – T) MPEG-POA-LAO - - - - - - PTX* (0.9) 17#
Breast MCF7 MCF7 - - - - - -
Cervix HeLa - - -

[83]
PLGA-PEG-PLGA

(Physical – T)
- - - - - - - - -

DOX (1.0)
12 Osteosarcoma

Saos-2 Saos-2
L929 - - -

CisPt (1.0)
MG-63 - - -

MTX (1.0)

[85] PLGA-PEG-PLGA
(Physical – T) - - - - - - - - - TPT (1.0) 5 Sarcoma - - - S180 - - - - - -

[86]
PLGA-PEG-PLGA

(Physical – T)
- - - 44 - - - DOX (1.0) 15

Osteosarcoma Saos-2 - - - - - - - - -
Murine

osteosarcoma K7 K7

[88]
PLGA-PEG-PLGA

(Physical – T) Vesicles - - - - - - CYT* (25.4) 12 Leukemia
K562 - - - - - - Rabbit

HL-60

[89] PLGA-PEG-PLGA
(Physical – T) Liposome - - - - - - ME* (5.6) 70 Murine breast - - - 4T1 mice - - - - - -

[90]
PLGA-PEG-PLGA

(Physical – T)
Arg Dendrimers - - - pH DOX* (13.6)

20 Murine breast 4T1 4T1 mice
3T3 - - -

Lys Dendrimers DOX* (14.3) RAW267

[91] PLGA-PEG-PLGA
(Physical – T) SLN - - - pH ME* (2.05–2.23) 45 - - - - - - - - - - - - - - -

[92]
PLGA-PEG-PLGA

(Physical – T)
PEI-Lys 40 - - - DOX (1.0) sRNA* 16# Osteosarcoma

Saos2 Saos2 - - - - - -
MG-63 - - -

[93] MPEG-PLGA
(Physical – T) MPEG-PLGA - - - - - - PTX (4.0) Pt* (0.8) 80 Ovarian SKOV-3 SKOV-3 - - - - - -
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Table 3. Cont.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel
(Gelation Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vitro In Vitro In Vitro

[94]
MPEG-PLGA
(Physical – T)

- - - - - - - - - GM-CSF (15–25) 14 Murine
Melanoma

B16 - - - - - -
B16-F10 B16-F10

[95] PCL-PEG
(Physical – T) - - - - - - - - - 5-FU (1.0) 7 Colon CT26 CT26 - - - - - -

[73] PEG-PCL-PEG
(Physical – T) MPEG-PCL - - - - - - PTX* (8.3) 20 Breast 4T1 4T1 - - - - - -

[96]
PCL-PEG-PCL
(Physical – T)

- - - - - - pH PTX** (20) 30
Liver HepG2 - - - L929 Mice
Breast MCF7

[97] PCL-PEG-PCL
(Physical – T) PCL-PEG-PCL - - - CPT* (4.1–13.5) 14 Colon - - - CT26 L929 - - -

[98] MPEG-PCL- α-CD
(Physical – T)

MPEG-PCL
AuNRs 14 3§ - - - PTX* (3.0) 14 Murine Breast 4T1 4T1 - - - - - -

[100]
PCL-PEG-PCL
(Physical – T) PCL-PEG-PCL - - - - - - PTX* (1.25, 2.5) 45

Erlich ascites EAC EAC - - - - - -
Ovarian - - - OVCAR-3

[101]
PCL-PEG-PCL
(Physical – T) PCL-PEG-PCL - - - pH DOX* (1.0) 35

Liver HepG2 - - - - - - - - -
Breast - - - Bcap-37

[102] PCL-PEG-PCL
(Physical – T) HA - - - pH DOX 131I* (0.5–2) 35 Liver HepG2 HepG2 - - - - - -

[32] MPEG-PCL-α-CD
(Physical) MPEG-PCL - - - - - - PTX* (18.8) 3 Lung A549 - - - - - - - - -

[103] MPEG-PCL-α-CD
(Physical) MPEG-PCL - - - pH DOX* (15) CisPt*

(20) 8 Bladder EJ - - - HEK293 - - -

[106] MPEG-PAA-α-CD
(Physical) MPEG-PAA - - - - - - CisPt* (0.5–1.0) 4 Bladder EJ - - - HEK293 - - -

[107] APEGA/TPEGT-α-CD
(Physical) - - - - - - - - - DOX (0.2–0.6) 11 Buccal - - - U14 L929 - - -

[108]
MPEG-PCL-PEI-α-CD

(Physical – SE)
- - - - - - - - - PTX (10) pDNA 7#

Liver HepG2 - - - HEK293 - - -
Lymphoma Bcl-2 LO2

[112]
PCL-PEG-PCL/

MPEG-PPFEMA
(Physical – T)

- - - - - - - - - PTX (4.2) DOX
(4.2) 42 Breast MCF7 Bcap-37 - - - - - -
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Table 3. Cont.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation
Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vitro In Vitro In Vitro

[113] MPEG-PCL-α-CD
(Physical) MPEG-PCL - - - - - - PTX* (1–3) 20 Murine breast - - - 4T1 - - - - - -

[115] PCL-PEG-PCL
(Physical – T) Liposome - - - - - - 188Re DOX* (2.0) 10 Murine liver BNL-Luc BNL-Luc - - - - - -

[117] PCLMA-PEGMA-SMA
(Chemical – RP) - - - - - - pH DOX (0.2–0.4) 27 Liver HepG2 VX2 L929 - - -

[118] PAEU (Physical – T, pH) - - - - - - - - - DOX (10) 14 Liver HepG2 VX2 L929 - - -

[119] PEG–PAEU
(Physical – T) CHS-Nanogel 28 pH CisPt* (0.2) 14 Lung A549 - - - 3T3 Mice

[121] PCLA-PEG-PCLA
(Physical – T) PCLA-PEG-PCLA 35 - - - Hep* 10 Cervix HeLa HeLa HaCaT - - -

[122] PCLA-PEG-PCLA
(Physical – T) MMT 56 - - - GEM* (10) 7 Pancreas - - - Panc-1 293T - - -

[123] PCLA-PEG-PUSSM
(Physical – T) - - - 28 pH DOX (5.0) 28 Liver HepG2 VX2 293T - - -

[124] PEG-PCL-PLA-PCL-PEG
(Physical – T) PLGA 30 - - - OVA (0.8) MPL

(0.6) QA (1.1) 30 Melanoma - - - B16 OT-I
B16 OT-II - - - - - -

[125] Bis-MPA-PEG
(Chemical – ROP) - - - - - - Temperature PTX (3.9) 7 Liver HepG2 - - - - - - - - -

[126] PEG-pDHA (Physical) - - - 1 - - - - - - - - - Breast - - - Rat - - - - - -

[127] VitE-PCB-VitE (Physical) - - - 42 - - - TZB (4.0) 16
MCF-7 - - -

HDF - - -
BT474 BT474

[128]
VitD-PCB-VitD
VitE-PCB-VitE

(Physical)
- - - - - - - - - TZB (4.0) 42 Breast BT474 BT474 - - - Mice

* Loaded into composite component; # from in vivo experiments; DL: Drug loading; I: Ionic; T: Temperature; RP: Radical polymerization; ROP: Ring-opening polymerization; SE:
Solvent evaporation; Arg: Arginine; 5-FU: 5-Fluoruracil; CD: Cyclodextrin; APEGA: Adenine-terminated poly(ethylene glycol); AuNRs: Gold nanorods; CHS: Chondroitin sulfate; CisPt:
Cisplatin; CPT: Camptotechin; CYT: Cytarabine; pDHA: Polycarbonate of dihydroxyacetone; pDNA: Plasmid DNA; DOX: Doxorubicin; DTX: Docetaxel; GEM: Gemcitabine; GM-CSF:
Granulocyte-macrophage colony-stimulating factor; HA: Hyaluronic acid; Hep: Heparin; LAO: Lactic acid oligomers; Lys: Lysine; ME: 2-Methoxyestradiol; MMT: Montmorillonite; bis-MPA:
2,2-bis(methylol)propionic acid; MPEG: Monomethoxy poly(ethylene glycol); MPL: Monophosphoryl lipid A; MTX: Methotrexate; OVA: Ovalbumin; OXA: Oxaliplatin; PAA: Poly(acrylic
acid); PAEU: Poly(β-aminoester urethane); PCB: Polycarbonate; PCL: Poly(ε-caprolactone); PCLA: Poly(ε-caprolactone-co-lactide); PCLMA: Poly(e-caprolactone) monomethacrylate; PEG:
Polyethylene glycol; PEGMA: Methoxypoly(ethylene glycol) monomethacrylate; PEI: Poly(ethylene imine); PL: Pluronic L; PLA: Polylactide; PLGA: Poly(lactide-co-glycolide); POA:
Poly(octadecanedioic anhydride); PPFEMA: Poly(2-(perfluorobutyl)ethyl methacrylate); PTX: Paclitaxel; PUSSM: Poly(urethane sulfide-sulfamethazine); QA: Quil A; SLN: Solid lipid
nanoparticles; SMA: Sulfamethazine-acrylamide; TPEGT: Thymine-terminated poly(ethylene glycol); TPT: Topotecan; TZB: Trastuzumab; Vit: Vitamin.
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2.4. Polyacrylates

Photo-induced radical polymerization involving acrylate monomers and/or functionalized
macromers represents an alternative to thermal gelation in the preparation of injectable hydrogels able
to be self-assemble after injection following a UV-irradiation (Figure 7) [129,130].
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The main component of this class of materials enclosed PEG acrylate polymers (PEG-PA), which
was designed to allow the insertion of PEG properties (e.g., non-cytotoxicity, non-immunogenicity, and
ability to reduce opsonization) within a hydrogel network, showing increased drug loading capability
and retention time and improved mechanical properties (Table 4) [23,131].

This approach was investigated in the treatment of glioblastoma, employing a system based on
polyethylene glycol dimethacrylate (PEGDMA). The photopolymerizable monomer was UV-irradiated
in the brain tumor resection bed and employed for the delivery of Temozolomide (TMZ) and Paclitaxel
(PTX) [132,133]. This approach could present several advantages, including the killing of the tumor cells
that, after the resection of the main primary tumor, could infiltrate the brain tissue and the parenchyma.

Hybrid materials were also prepared by incorporating carbon nanotubes [134] or Zn ferrite
nanoparticles [135] for breast cancer treatment by combined DOX/photothermal and thermal
ablation therapy, respectively. Injectable hydrogels, proposed for the thermo-responsive delivery
of different drug molecules to prostate cancer in vivo, were prepared by radical polymerization
of oligo(ethylene glycol) methacrylate (OEGMA) monomers [136]. In another study, PAA was
combined with a poly[4-(2,2,6,6-tetramethyl piperidine-N-oxyl)aminomethylstyrene]–b–poly(ethylene
glycol)–b–poly[4-(2,2,6,6-tetramethylpiperidine-N-oxyl)aminomethylstyrene] (PMNT–PEG–PMNT)
triblock copolymer to obtain a redox-active polyion complex for the local protein therapy of murine
colon cancer [137].

A different approach involved the synthesis of specific gold nanorods incorporated into the
three-dimensional network achieved by radical polymerization of methacrylated poly-β-cyclodextrin
(MPCD)-based macromer and N-isopropylacrylamide (NIPAAm) as a poly(N-Alkylacrylamide) (PAAR)
derivative [138]. The hydrogel, exhibiting near-infrared and pH responsivity, was efficiently loaded
by host–guest interactions with adamantane-modified DOX prodrug, and its efficiency was tested in
in vitro tests against MCF7 (breast) and HeLa (cervix) cancer cells, and in in vivo experiments carried
out in the treatment of murine sarcoma.

Alternatively, thermoresponsive supramolecular poly(N-acryloyl glycinamide-co-acrylamide)
(PNAm) hydrogels, bearing polydopamine-coated gold nanoparticles and DOX, were fabricated by
radical photopolymerization [139], and proposed as a breast filler. This system, after heating in the sol
state, was injected into the cavity of resected breasts, where a rapid gelation occurred during cooling to
body temperature.
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Table 4. Composition and anticancer performance of injectable hydrogels based on polyacrylates.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation
Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[132] PEGDMA (Chemical – RP) PEG–PCL - - - - - - TMZ* (0.9–1.3) 12 Glioblastoma - - - U87 - - - - - -

[133] PEGDMA (Chemical – RP) PLGA - - - - - - PTX* (4.0) 7 Glioblastoma U87 U87 - - - Mice

[134] PEGDMA (Chemical – RP) TiO2MWCNT - - - NIR DOX* (10) 3 Breast MCF7 MCF7 - - - - - -

[135] PEGDMA (Physical – T) ZnFe2O4 - - - Magnetic - - - - - - Breast - - - 4T1 - - - - - -

[136] p(MEO2MA-OEGMA-AA)
(Chemical – RP) - - - - - - - - - BSA (1.6) Epo

(1.6) 3 1.5 Prostate - - - PC3 3T3 - - -

[137] PMNT–PEG–PMNT/PAA
(Physical) - - - - - - - - - IL-12 (0.07) 15 Murine

Colon - - - C26 - - - - - -

[138] p(NIPAAm-MPCD)
(Chemical – RP) AuNRs - - - pH NIR DOX (6.6) 30

Breast MCF7 - - -

- - - - - -Cervix HeLa - - -

Murine
sarcoma - - - S180

[139] PNAm (Chemical – RP) PDA–AuRNs - - - NIR DOX 2§ Murine
breast - - - 4T1 - - - - - -

* Loaded into Composite Component; DL: Drug loading; RP: Radical polymerization; AuNRs: Gold nanorods; BSA: Bovine serum albumin; DOX: Doxorubicin; Epo:
Erythropoietin; IL: Interleukin; MEO2MA: Methyl ether methacrylate; MPCD: Methacrylated poly-β-cyclodextrin; MWCNT: Multi-walled carbon nanotubes; NIPAAm: N-isopropyl
acrylamide; NIR: Near-infrared; OEGMA: Poly(ethylene glycol) methyl ether methacrylate; PAA: Poly(acrylic acid); PCL: Poly(ε-caprolactone); PDA: Polydopamine; PEG:
Polyethylene glycol; PEGDMA: Polyethylen glycole dimethacrylate; PLGA: Poly(lactide-co-glycolide); PMNT: Poly[4-(2,2,6,6-tetramethyl piperidine-N-oxyl)aminomethylstyrene;
PNAm: Poly(N-acryloylglycinamide-co-acrylamide); PTX: Paclitaxel; TMZ: Temozolomide.
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2.5. Synthetic Polypeptide

Polypeptides (Pep) are synthetic protein-mimicking materials particularly attractive for their
biocompatibility and biodegradability [140–142]. Another advantage of this class of compounds lies in
the great chemical diversity due to the wide number of monomer sources from 21 natural amino acids
and their synthetic derivatives (Figure 8).
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Figure 8. Schematic representation of synthetic polypeptides.

In addition, exploiting intramolecular hydrogen bonds within peptide backbones, polypeptides
can adopt ordered secondary structures (i.e., α-helix and the β-sheet) that confer them the self-assembly
behavior. Self-assembling polypeptides were employed as starting materials for the preparation of
injectable hydrogels (Table 5) [143–145] via gelation processes of their aqueous solutions upon changes
in pH, ionic strength, or temperature. The introduction of cytotoxic molecules into the solution led to
the encapsulation of bioactive agents for the treatment of different tumors. In detail, ionic gelation
was proposed for the preparation of Ce6 carrier system [146] for breast cancer, and stimulation of
immune system in health mice [147,148]. Thermo gelation processes were used for the fabrication
of injectable hydrogels for TMP-2 [149] and DOX-based therapy [150,151] of breast, cervix, and lung
cancers, as well as for DOX or gene (CDN) administration with simultaneous stimulation of immune
responses [152,153]. Furthermore, DOX@Liposome formulations were loaded in Pep hydrogels for an
Losartan (LST) combination therapy [154]. Another approach for the preparation of starting materials
for injectable hydrogels involves the conjugation of peptide moieties to oligoethylene glycol (OEG) [141]
or PEG derivatives, with the formation of PEGylated [155–158] or block [15,159,160] copolymers. Such
hydrogels were found to be suitable for the preparation of pro-drugs [160–162] and the delivery of
different clinically relevant cytotoxic agents, with the possibility to trigger the releasing profile in
response to physiological stimuli such as pH [155], temperature [158], and cell redox state [15,160–162],
or stimulate the immune system (Figure 9) [157].
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Figure 9. In vivo modulation of dendritic cells (DCs) by sustained release of tumor antigens and tumor
cell lysates 3 (TLR3) agonist from a polypeptide hydrogel, evoking a strong cytotoxic T-lymphocyte
(CTL) response. With permission from [157]; Elsevier, [2018].
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Table 5. Composition and anticancer performance of injectable hydrogels based on synthetic polypeptide.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[146] Fmoc-FF/PLL (Physical – I) - - - - - - - - - Ce6 (0.4) 14# Breast - - - MCF7 - - - - - -

[147] Fmoc-FF/PLL (Physical – I) - - - - - - - - - - - - - - - - - - - - - - - - - - - Mice

[148] RGD–PIC (Physical – T) - - - - - - - - - - - - - - - - - - - - - - - - - - - Mice

[149] AcVES3 (Physical – T) - - - - - - - - - TIMP-2 (4.0) 28 Lung A549 - - - - - - - - -

[150] FEFFFK (Physical – T) - - - - - - - - - DOX (0.5) 20#
Breast MDA-MB 231 MDA-MB

231 - - - - - -

Murine breast 4T1 4T1

[151]
Nap-GFFYGRGDHn (n = 0–2)

(Physical – T)
- - - - - - pH DOX** (3.9–12.4) 7

Lung A549
- - - - - - MiceCervix HeLa

Breast MCF-7

[152] K2(SL)6K2 (Physical – T) - - - - - - - - - CDN (40) 1 Murine Oral MOC2-E6E7 MOC2-E6E7 - - - - - -

[153] (RADA)8 (Physical – T) - - - 10 - - - MEL** DOX (16) 7 Murine
Melanoma B16F10 B16F10 - - - - - -

[154] C16-GNNQQNYKD-OH
(Physical – T) Liposome - - - - - - LST DOX* 9 Breast - - - 4T1 - - - - - -

[155] PEG–PAH (Physical – T) - - - - - - pH DOX (1.7) 2 Fibrosarcoma HT1080 HT1080 3T3 - - -

[156]
MPEG–(PELG–LG)

(Physical – T)
- - - 28 - - - CisPt (1.0) 7

Murine colon C26 C26
- - - - - -

Cervix HeLa - - -

Breast MCF-7 - - -

[157] MPEG–PV (Physical – T) - - - - - - - - - TCL (50) 21# Murine
Melanoma - - - B16 - - - - - -

[158] MPEG–PAF (Physical – T) - - - 28 Temperature DOX (6.0) CA4
(6.0) 28 Murine cervix - - - U14 - - - - - -

[163] MPEG–PLD–Arg-α–CD
(Physical) - - - - - - - - - sRNA 6 Epithelium HNE-1 HNE-1 3T3 - - -

[159] PELG–PEG–PELG
(Physical – T) - - - 14 - - - PTX (6.0) 21 Liver HEPG2 HEPG2 - - - Mice



Pharmaceutics 2019, 11, 486 18 of 51

Table 5. Cont.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[15] (Me-D-1MT)–PEG–(Me-D-1MT)
(Physical – T) - - - 21 ROS PD-1/PD-L1

CTLA-4 16# Murine
Melanoma B16F10 B16F10 - - - - - -

[160] FFE–EE (Physical – Red) - - - - - - Redox SN-38** 3 Breast MD-MBA-231 - - - - - - - - -

[161] KE–EE/AcKE–EE/E–EE/R–EE/S–EE
(Physical – Red) - - - - - - Redox DXM** TX** 1 Liver HepG2 - - - - - - - - -

* Loaded to composite component; ** conjugated to hydrogel; # from in vivo experiments; DL: Drug loading; I: Ionic; T: Temperature; Red: Redox; Ac: Acetyl; AcVES3:
Ac−VEVSVSVEVDPPTEVSVEVEV−NH2; Arg: Arginine; C16: Palmitic acid; CA4: Combretastatin CDN: Cyclic dinucleotides; CisPt: Cisplatin; CTLA-4: Cytotoxic T lymphocyte antigen 4;
D-1MT: Dextro-1methyl tryptophan; DOX: Doxorubicin; DXM: Dexamethasone; Fmoc-FF: N-fluorenylmethoxycarbonyl diphenylalanine; LG: L-glutamic acid; LST: Losartan; MEL: Melittin;
MPEG: Monomethoxy poly(ethylene glycol); Nap: Naphthylacetic acid; PAF: Poly(alanine-phenylalanine); PAH: α,β-polyaspartyl hydrazide; PD-1/PD-L1: Programmed cell death protein
1/programmed cell death-ligand 1; PEG: Polyethylene glycol; PELG: Poly(ethyl-L-glutamate); PIC: Tri-ethylene glycol-substituted polyisocyanopeptide; PLL: Poly-L-lysine; PTX: Paclitaxel;
PV: Poly(L-valine); ROS: Reactive oxygen species; SN-38: 7-ethyl-10-hydroxycamptothecin; TIMP-2: Tissue inhibitor of metalloproteinase 2; TLC: Tumor cell lysates; TX: Taxol.
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Disulfide bonds were also employed for the preparation of thermo-responsive injectable
hydrogels. For example, PEGylated disulfide bond containing poly(l-cysteine) derivative
(poly(l-EGx-SS-Cys)) possessed an irreversible thermo-responsive behavior in water, probably ascribed
to chemical cross-linking caused by disulfide bond exchange. A thermogel consisting of PEG and
poly(l-EG4-SS-Cys) diblock copolymer was used as reduction responsive injectable hydrogel [164].
Physical cross-linking approach was also employed for the preparation of injectable hydrogels with
excellent shearing thinning features using PEG44-NH2 as a macroinitiator [165].

2.6. Dendrimers and Other Systems

Dendrimers are synthetic branched polymers with a globular structure, nanometric size, and
low polydispersity index [166], fabricated via a sequence of reaction steps in which monomer units
are added to a Generation 0 core [167]. This class of materials possesses unique features for drug
delivery applications, including the high affinity of the inner hydrophobic environment for different
drug molecules, the wide number of functional groups suitable for tailored functionalization [167], and
the ability to cross the cell membrane via paracellular and endocytosis pathways [168,169]. Different
injectable hydrogels based on dendrimers have been proposed in the literature for the treatment
of solid cancers (Table 6), mainly consisting in modified PEG [170], poly(amine-ester) [171], and
polyamidoamine (PAMAM) (Figure 10) [172,173].
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The main component of this class of materials enclosed PEG acrylate polymers (PEG-PA), which
was designed to allow the insertion of PEG properties (e.g., non-cytotoxicity). PEG dendrimers were
modified by insertion of disulfide bonds [174,175] or boronic acid moieties [176] to confer redox
and pH responsivity, respectively. Boronic acid derivatives were also proposed to enhance the pH
biodegradability patterns of injectable hydrogels employed for breast cancer treatment in mouse
models [177], while the formation of Shiff’s base with poly-L-lysine (PL) carried out to an effective MTF
and 5-FU delivery system to colon C26 cells [34]. Targeting behavior can be conferred by derivatization
with heparin residues [178]. PEGylated PAMAM injectable hydrogels with increased solubility
and improved biodistribution characteristics [179] were tested as 5-FU carriers or as pH and redox
responsive DOX delivery vehicles for head/neck and cervix cancer treatment, respectively [172,173].
Other examples of injectable hydrogels for cancer therapy consist in lipid nanocapsule-based hydrogels
able to cross the blood–brain barrier [180], and in pH responsive PVA/GO hybrids loaded with a
CPT-CD complex [181]. The latter systems take the advantages of the peculiar properties of the high
biocompatible carbon nanostructures [182–184].
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Table 6. Composition and anticancer performance of injectable hydrogels based on dendrimers and other systems.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

Dendrimers

[170] PGA–MA/PEG-4–SH
(Chemical – MR) - - - - - - - - - TZB (1.0–13) 42 Breast BT474 BT474 - - - - - -

[171] HPAE (Chemical – RP) - - - 7 - - -
DOX (0.05)

5 Breast MCF7 - - - L929 - - -
5-FU (0.5)

LC (0.2)

[172] PAMAM(G4)/PEG–PDBCO
(Physical) - - - - - - - - - 5-FU (4) 0.5 Head/Neck HN12 HN12 3T3 - - -

[173] PEGDA–PAMAM
(Chemical – MR) - - - 14-22 1.4-2.0 pH Redox DOX (4) 2 Cervix HeLa - - - - - - - - -

[174]
PEG-4–SH/PDMA–PEGMA

(Physical)
p(AA-co-4-VPBA) 21 pH Redox CA4P (0.05) DOX*

(14.3–96.3) 3 14
Breast MCF-7 - - -

3T3 - - -
Liver - - - HepG2

[175] PEG-4–SH/PEG-2–MI
(Physical – pH) - - - 2.7 Redox BSA (1.2) 7 - - - - - - - - - - - - - - -

[176] PEGBA-4/PEGBA-8
(Chemical – RP) PEGBA-4/PEGBA-8 - - - pH PLP* 20 Oral CAL-27 - - - - - - - - -

[177] PBA–PEG (Physical) - - - - - - pH DOX (1.2) 5 Murine Breast 4T1 4T1 3T3 - - -

[34] PEG-4–SH/PLL (Chemical –
C) - - - 14 pH MTF (5.0) 5-FU

(0.5) 14 Colon C26 C26 - - - - - -

[178] Hep–PEG-4–SH (Physical) - - - - - - - - - DOX (0.004–0.08) 4 Breast
MCF-7

MDA-MB-231 - - - - - -
MDA-MB-231

Other systems

[181] PVA/GO (Physical) β-CD - - - pH CPT (5.0) 5 - - - - - - - - - - - - - - -
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Table 6. Cont.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[180] GemC12LNC (Physical – PI) - - - - - - - - - - - - - - - Glioblastoma

U251 - - -

- - - - - -T98-G - - -

9L-LacZ - - -

U-87 U87

* Loaded into composite component; DL: Drug loading; MR: Michael reaction; RP: Radical polymerization; 4-VPBA: 4-vinylboronic Acid; 5-FU: 5-Fluoruracil; CD: Cyclodextrin; AA:
Acrylic acid; BSA: Bovine serum albumin; CA4P: Combrestatin A4 phosphate; DOX: Doxorubicin; GO: Graphene oxide; Hep: Heparin; HPAE: Hyperbranched poly(amine-ester);
LC: Leucovorin calcium; LNC: Lipod nanocapsule; MPEG: Monomethoxy poly(ethylene glycol); MTF: Metformin; PAMAM: Polyamidoamine; PBA: Phenylboronic acid; pDMA:
Poly(3,4-dihydroxyphenethyl)-methacrylamide; PEG-4-SH: 4-arm PEG; PEGBA-4: 4-arm PEG-boronic acid; PEGBA-8: 8-arm PEG-boronic acid; PEGDA: PEG-based diacrylate; PGA-MA:
Maleimide-modified c-polyglutamic acid; PEGMA: Methoxypoly(ethylene glycol) monomethacrylate; PEG-2-MI: Maleimide-functionalized linear PEG; PLD-Arg: Arginine-poly(L-lysine)
dendron; PLL: Poly-L-lysine; PLP: Polyphenols mixture; PVA: Polyvinyl alcohol.
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3. Natural Polymers

3.1. Polysaccharides

Polysaccharides are widely employed for the fabrication of injectable hydrogels, owing
to their outstanding advantages consisting in water affinity, biocompatibility, biodegradability,
non-immunogenicity, and non-fouling features. Furthermore, the presence of multiple chemical
functionalities (e.g., acid, amine, hydroxyl, and aldehyde groups) allows easy chemical modifications
with the obtainment of a plethora of biomedical devices. They exert biological activities such as
cell recruiting, cell adhesion, and modulation of the inflammatory process, and the pharmacokinetic
profiles can be tailored by choosing the appropriate molecular weight distribution [185,186].

Polysaccharides are obtained from renewable plant and animal sources, including algae (e.g.,
dextran, alginate), plants (e.g., cellulose, agarose), microbes (e.g., dextran, gellan gum), and animals
(e.g., hyaluronic acid, chitosan). In this review, when polysaccharides are mixed with synthetic
polymers to further modify their physical, mechanical, and chemical properties, the resulting systems
are referred as N/S hybrids.

Chitosan (CS, Figure 11), the N-deacetylated derivative of chitin, is a biomaterial with a wide
range of biomedical applications due to its high biocompatibility and biodegradability.
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In addition, the wound-healing, anti-tumor, and antimicrobial activities, make CS an ideal starting
material for designing pharmaceutical injectable formulations (Table 7) [187–189]. A CS prodrug of a
photosensitizing agent was used as base material to obtain an injectable pH-responsive hydrogel to be
used in breast cancer and melanoma therapy [190], whereas the chemical cross-linking of CS with β-GP
was proposed in several research works as a valuable strategy to obtain thermo-responsive materials for
the treatment of a number of cancer diseases. In more detail, CS/β-GP systems were either employed
as platforms for the release of antineoplastic drugs [191–194] or loaded with nanoparticles bearing
the anticancer agent, in order to obtain a more sustained drug release in the site of interest [195–198].
Other applications involved the possibility to combine chemo- and radio-therapy [195,199], and
produce local hyperthermia for different types of cancer [200–202]. Thermal gelation of CS in the
presence of G carried out to injectable hydrogels for the treatment of breast cancer [203], while
mixed polysaccharide hydrogels, including CS-ALG [204] and CS-HA-NIPAAm [205,206] complexes,
were designed to produce targeted delivery of anti-VEGF antibody [204], as well as pH-responsive
systems for the DOX [205] and DOX@GO [206] vectorization to colon and breast cancer, respectively.
Injectable hydrogels were also prepared using CS hydrophilic derivatives [207]; for example, CS
modified with glycol moieties was covalently linked with PEG to obtain hydrogel materials for the
release of self-healing [208] and photosensitizing [209] agents. In another approach, DOX@PLGA
nanoparticles were inserted into the hydrogel structure, together with magnetic nanoparticles, to raise
a more sustained release profile combined with magnetic ablation of breast cancer [210]. Furthermore,
supramolecular hydrogels composed of GCS, PF127, and α-CD were proposed as DOX delivery
platforms in the treatment of liver carcinomas [211]. Different modifications involved the bonding of
hydroxybutyl [212], hydroxypropyl [7], carboxymethyl [213,214], and carboxyethyl [215–217] groups.
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Table 7. Composition and anticancer performance of injectable hydrogels based on chitosan.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

Naturals

[190] CS (Chemical – C) TA-ZnPc 1 Light pH TA-ZnPc (6.0) 8
Breast MDA-MB-231 - - - - - - - - -

Melanoma A435

[191] CS/β-GP (Physical – T) - - - - - - - - - CisPt (1.0) 15
Colon HCT-116 - - - - - - - - -
Breast MCF7

[193] CS/β-GP/HA (Physical – I) - - - - - - pH DOX (0.016–0.033) 5 Cervix HeLa - - - - - - - - -

[194] CS/β-GP/CNT (Physical – T) - - - 21 - - - MTX 7 Breast MCF7 - - - 3T3 - - -

[196] CS/β-GP (Physical – T) MPEG - - - - - - MEL** (4.6–10.6) 4 - - - - - - - - - - - - - - -

[198] CS/β-GP (Physical – T) Liposome - - - pH TPT* (0.97) 2 Murine
Liver - - - H22 - - - - - -

[197] CS/β-GP (Physical – T) Liposome - - - - - - DOX* (4.5) 7 Ovarian A2780 - - - - - - - - -

[195] CS/β-GP (Physical – T) Liposome - - - - - - DOX* (0.2) 188Re* 21 Murine
Breast - - - 4T1 - - - - - -

[199] CS/β-GP (Physical – T) Sn - - - - - - DOX (0.025) 188Re 2 Liver N1-S1 N1-S1 - - - - - -

[200] CS/β-GP (Physical – T) Fe3O4 48 Magnetic BCG - - - Bladder - - - Mice - - - - - -

[201]

CS/β-GP (Physical – T)

F3O4 - - - Magnetic - - - - - -

Breast

- - -

SK-BR-3

- - - - - -
Ovarian SKOV-3

ALG (Physical – T)
Glioblastoma LN229

Colon
Co112

T380

[202] CS/β-GP (Physical – T) GO/PEI–Fe3O4 - - - pH
Magnetic DOX* (200) 0.5

Breast MCF7 - - -
- - - - - -

Murine
Sarcoma - - - S180

[203] CS/G (Physical – T) - - - 21 - - - MTX (0.0125) 7.5 Breast MCF7 - - - - - - - - -
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Table 7. Cont.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[204] CS-ALG (Physical – I) - - - 31 - - - anti-VEGF (0.018) - - - - - - - - - - - - HUVECs - - -

[212] HBCS (Physical) - - - 45 - - - DOX (2.5–10) 3 Murine
Breast 4-T1 - - - HUVEC - - -

[214] CMCS-oxALG (Chemical – C) - - - - - - - - - HDBP - - - Liver Bel-7402 - - -
L02 - - -

Murine
Liver H-22 H-22

[216] CECS-oxALG (Chemical – C) MGM 14 Magnetic 5-FU* (4.0) 35 - - - - - - - - - - - - - - -

[217] CECS/HA (Chemical – C) - - - 10 pH DOX (0.3) 3.5 Cervix HeLa - - - - - - - - -

[218] CS–oxDEX (Chemical – C) PF127 10 pH Redox 5-FU (2.5) CUR*
(7.6) 10 Cervix HeLa - - - - - - - - -

[219] PBCS–oxDEX (Physical – T) - - - - - - pH
Glucose DOX (1.0) 0.5 - - - - - - - - - L929 - - -

[220] CS–DA/oxPLN (Chemical – C) - - - - - - pH DOX (0.01–0.32)
AMX (0.5) 2.5 1.5 Colon HCT116 - - - - - - - - -

[221] SCS–oxCS (Chemical – C) - - - 11 pH DOX (3.0) FeG1
(5.0) 6 2 - - - - - - - - - MSC - - -

[222] SCS–oxALG (Physical) - - - - - - pH DOX** (7.6) 2 Breast
MCF7 - - - - - - - - -

MDA-MB-231

[223] GTMACS/ePC/LA (Physical) - - - - - - - - - DTX - - - - - - - - - - - - - - - mice

[224] CS–CAT (Physical – I) - - - - - - - - - DOX DTX (2.5) 18
Murine
Lung - - - LLC

C212 - - -

Murine
Breast 4T1 4T1

[225] CS–TRIPOD (Chemical – C) - - - - - - Light pH TPP** 12
Breast MCF7 - - - - - - - - -
Liver HepG2
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Table 7. Cont.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

N/S Hybrids

[192] CS/β-GP/NIPAAm–IA (Physical –
T) pH Thermo DOX (3.0) 8 Breast MCF7 - - - - - - - - -

[205] CS–HA–NIPAAm (Chemical – C) - - - 40 pH DOX (10) 12 Murine
Colon CT-26 CT-26 - - - - - -

[206] CS–HA–NIPAAm (Physical – T) GO 60 pH DOX* (14.20) 9 Breast MCF7 MCF7 - - - - - -

[207] GCS/GMA (Chemical – IRD) - - - - - - - - - DOX (1.0) 7 Breast MCF7 MCF7 - - - - - -

[208] GCS–PEG (Physical – T) - - - - - - - - - CRB (2.0) 0.25 - - - - - - - - - - - - mice

[209] GCS–PEG (Physical – T) - - - - - - - - - TMPyP (0.05–0.2) 7# Cervix U14 U14 - - - - - -

[210] GCS–PEG (Chemical – C) PLGA-F3O4 - - - Magnetic DTX* (9.0) 30 Breast MDA-MB-231 MDA-MB-231 - - - Mice

[211] GCS/PF127/α-CD (Physical) - - - 11 pH DOX (1.0–5.0) 8
Liver HepG2 - - - - - - - - -

Murine
Liver - - - H22

[7] PPLG–HPCS–PPLL (Physical – I) oxDEX 21 - - - DOX* (22.1) IL-2*
(8.3) IFN-γ* (8.7) 24#

Breast MCF7 - - - - - - - - -
Cervix HeLa

Lung A549 A549

[213] CMCS–NIPAAm (Chemical – RP) - - - - - - pH Thermo 5-FU (6.2–8.9) 2
Breast MCF-7 - - - L929 - - -
Cervix HeLa

[215] CECS–PEG (Chemical – C) - - - 8 pH DOX 7.5 Liver HepG2 - - - L929 - - -

[226] TCS–PEGDMA (Chemical – MR) STC - - - Enzyme CUR (3.8) LSZ* 7 0.5 Liver HepG2 HepG2 - - - - - -

* Loaded in composite component; ** conjugated to composite component; # from in vivo experiments; C: Condensation; I: Ionic; IRD: Irradiation; MR: Michael reaction; RP: Radical
polymerizarion; T: Temperature; 5-FU: 5-Fluoruracil; CD: Cyclodextrin; β-GP: β-Glycerophosphate; ALG: Alginate; AMX: Amoxicillin; BCG: Bacillus Calmette–Guérin; CAT: Catechol;
CECS: Carboxyethyl chitosan; CisPt: Cisplatin; CMCS: Carboxymethyl chitosan; CNT: Carbon nanotubes; CRB: Carbazochrome; CS: Chitosan; CUR: Curcumin; DA: Dihydrocaffeic
acid; DOX: Doxorubicin; DTX: Docetaxel; ePC: Egg phosphatidylcholine; FeG1: Non-hormonal contraceptive; G: Graphene; GCS: Glycol chitosan; GMA: Glycidyl methacrylate;
GO: Graphene oxide; GTMACS: Glycidyltrimethylammonium chitosan; HA: Hyaluronic acid; HBCS: Hydroxybutyl chitosan; HDBP: Hydrogel degradation by-product; HPCS:
Hydroxypropyl chitosan; IA: Itaconic acid; IL: Interleukin; IFN: Interferon; LA: Lauric aldehyde; LSZ: Lysozyme; MEL: Melphalan; MGM: Magnetic gelatin microspheres; MPEG:
Monomethoxy poly(ethylene glycol); MTX: Methotrexate; NIPAAm: N-isopropyl acrylamide; oxALG: Oxidized alginate; oxCS: Oxidized chitosan; oxDEX: Oxidized dextran; oxPLN:
Oxidized pullulan; PBCS: Phenylboronic-modified chitosan; PEG: Polyethylene glycol; PEGDMA: Polyethilenen glycol dimethacrylate; PEI: Poly(ethylene imine); PF: Pluronic F; PLGA:
Poly(lactide-co-glycolide); PPLG: 4-Arm PEG-polyglutammic acid; PPLL: 4-arm poly(ethylene glycol)-poly(L-lysine); SCS: Succinate chitosan; STC: Starch; TA-ZnPc: Tetra-aldehyde
functionalized zinc phthalocyanine; TCS: Thiolated chitosan; TMPyP: Meso-tetrakis(1-methylpyridinium-4-yl) porphyrin; PP: Tetrakis(4-aminophenyl)porphyrin; TPT: Topotecan; TRIPOD:
2,4,6-tris(p-formylphenoxy)-1,3,5-triazine; VEGF: Vascular endothelial growth factor
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In more detais, carboxymethyl chitosan (CMCS) was copolymerized with NIPAAm [213] to
obtain pH- and thermo-responsive depots for the on-off release of 5-FU to cervix and breast cancers.
hydroxypropyl chitosan (HPCS) was condensed with PPLL dendrimers by Schiff’s bases and subjected
to an ionic gelation process in the presence of PEG dendrimers and oxDEX nanoparticles bearing DOX,
IL-2, and IFN-γ for a synergistic anticancer therapy.

In another approach, CS [218], PBCS [219], CS-DA [220], or CS alkyl derivatives [214,216,217]
were condensed with oxidized polysaccharides, including DEX [218,219], ALG [214,216], HA [217],
and PLN [220].

SCS was combined with oxCS [221] or oxALG [222] to obtain pH-responsive injectable hydrogels
for DOX sustained release. Other examples of CS derivatives include GTMACS [223] and CS-CAT [224],
used for DTX or DOX/DTX combination therapy, respectively. TCS was employed to produce an
enzyme-responsive CUR delivery vehicle [226], and CS-TPP was proposed for photothermal therapy
in breast and liver cancers [225].

Hyaluronic acid (HA, Figure 12), a non-sulfated glycosaminoglycan, is one of the major components
of connective tissues and synovial fluid.

Pharmaceutics 2019, 11, 486 29 of 56 

 

In more detais, carboxymethyl chitosan (CMCS) was copolymerized with NIPAAm [213] to 
obtain pH- and thermo-responsive depots for the on-off release of 5-FU to cervix and breast cancers. 
hydroxypropyl chitosan (HPCS) was condensed with PPLL dendrimers by Schiff’s bases and 
subjected to an ionic gelation process in the presence of PEG dendrimers and oxDEX nanoparticles 
bearing DOX, IL-2, and IFN-γ for a synergistic anticancer therapy. 

In another approach, CS [218], PBCS [219], CS-DA [220], or CS alkyl derivatives [214,216,217] 
were condensed with oxidized polysaccharides, including DEX [218,219], ALG [214,216], HA [217], 
and PLN [220]. 

SCS was combined with oxCS [221] or oxALG [222] to obtain pH-responsive injectable 
hydrogels for DOX sustained release. Other examples of CS derivatives include GTMACS [223] and 
CS-CAT [224], used for DTX or DOX/DTX combination therapy, respectively. TCS was employed to 
produce an enzyme-responsive CUR delivery vehicle [226], and CS-TPP was proposed for 
photothermal therapy in breast and liver cancers [225]. 

Hyaluronic acid (HA, Figure 12), a non-sulfated glycosaminoglycan, is one of the major 
components of connective tissues and synovial fluid. 

 
Figure 12. Schematic representation of hyaluronic acid (HA). 

It is able to interact with cell surface receptors (e.g., CD44), thus promoting cell migration, and, 
in virtue of its high biocompatibility, has been extensively exploited as a starting material for the 
fabrication of different injectable hydrogel systems (Table 8) [227–230]. The thermo-gelation of HA 
in the presence of PF127 carried out to injectable hydrogels suitable for DOX release to breast [231] 
and colon cancers [68], or for the DOX-DTX synergistic treatment of CT26 cancer cells [67]. Oxidized 
HA was chemically cross-linked to obtain an injectable biomaterial mimicking embryonic 
microenvironments, thus exerting and controlling the phenotype of aggressive cancer cells [232]. 
Injectable HA hydrogels obtained with the same approach were either physically loaded with, or 
chemically conjugated to, CisPt-loaded HA nanogels for gastric cancer treatment [233]. Different 
cross-linking strategies involved the preliminary derivatization of HA with Tyr residues [234–236], 
or the insertion of thiol groups [237]. In the first case, horseradish peroxidase (HRP) catalyzed the 
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Figure 12. Schematic representation of hyaluronic acid (HA).

It is able to interact with cell surface receptors (e.g., CD44), thus promoting cell migration, and,
in virtue of its high biocompatibility, has been extensively exploited as a starting material for the
fabrication of different injectable hydrogel systems (Table 8) [227–230]. The thermo-gelation of HA in
the presence of PF127 carried out to injectable hydrogels suitable for DOX release to breast [231] and
colon cancers [68], or for the DOX-DTX synergistic treatment of CT26 cancer cells [67]. Oxidized HA was
chemically cross-linked to obtain an injectable biomaterial mimicking embryonic microenvironments,
thus exerting and controlling the phenotype of aggressive cancer cells [232]. Injectable HA hydrogels
obtained with the same approach were either physically loaded with, or chemically conjugated to,
CisPt-loaded HA nanogels for gastric cancer treatment [233]. Different cross-linking strategies involved
the preliminary derivatization of HA with Tyr residues [234–236], or the insertion of thiol groups [237].
In the first case, horseradish peroxidase (HRP) catalyzed the coupling reaction between HA–Tyr chains
with the formation of injectable hydrogels for the delivery of IFN-α to Kidney cancer (Figure 13) [236],
while the incorporation of hyaluronidase allowed the selective vectorization of conjugated IFN-α [234]
and loaded TZB [235] to liver and breast cancer, respectively.
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Table 8. Composition and anticancer performance of injectable hydrogels based on hyaluronic acid.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

Naturals

[232] oxHA (Chemical – C) - - - 10 - - - Anti-2B11 24#

Breast
MCF7 - - -

- - - - - -
MDA-MB-231 MDA-MB-231

Murine Breast - - - BT-474

Murine
Melanoma - - - B16

[233] oxHA (Chemical – C) HA-IDA
HA-MA - - - - - - CisPt* (200) 7.5 Stomach - - - MKN45P - - - - - -

[236] HA–Tyr (Chemical – HRP) - - - - - - IFN-α 1 Kidney ACHN ACHN - - - - - -

[234] HA–Tyr (Chemical – HRP) - - - - - - Enzyme
(HAse) IFN-α 1 Liver HAK-1B HAK-1B - - - - - -

[235] HA–Tyr (Chemical – HRP) - - - 28 Enzyme
(HAse) TZB (0.3) 28 Breast BT474 BT474 - - - - - -

[237] HA–SH (Chemical – Red) - - - - - - Redox

DOX (1.0)
21

Breast
MCF7 - - -

- - - - - -DOX/SRB (1.0/1.0) MDA-MB-231

DOX/SRB/MTF
(1.0/1.0/1.0) Murine Breast 4T1 4T1

[238] HA (Physical – pH) MSNs - - - Enzyme
(HAse) DOX* (27) 6 Breast SKBR3 - - - 293T - - -

[239] HA–αCD (Physical) AuBNs-MSNs 7 Enzyme
(HAse) DOX* (11.1–32.0) 7 Squamous

Carcinoma SCC - - - HaCaT - - -

N/S Hybrids

[231] HA/PF127 (Physical – T) - - - 31 - - - DOX (0.5) 31 Breast MCF7 - - - - - - mice
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Table 8. Cont.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation Process) Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[68] PF127/HA (Physical – T) - - - - - - - - - DOX (1.0) 1
Murine colon C26 C26

- - - - - -
Colon HT29 - - -

Breast MCF7 - - -

[67] PF127/HA (Physical – T) PF127_PL121 - - - - - - DOX (1.0) DTX*
(1.6) 3 Colorectal - - - CT26 - - - - - -

[240] HA–Gln/PEG-8–SH–Lys
(Chemical – E) - - - - - - - - - - - - - - - Breast MCF7 - - - C2C12 - - -

* Loaded in composite component; # from in vivo experiments; C: Condensation; E: Enzymatic; Red: Redox; T: Temperature; CD: Cyclodextrin; AuBNs: Gold nanobipyramids; CisPt:
Cisplatin; DOX: Doxorubicin; DTX: Docetaxel; Gln: Glutamine substrate peptide; HA: Hyaluronic acid; HAase: Hyaluronidase; HA-IDA: HA-iminodiacetic Acid; HA-MA: HA-malonic
acid; HRP: Horseradish peroxidase; IFN: Interferon; Lys: Lysine; MSNs: Mesoporous silica nanoparticles; MTF: Metformin; oxHA: Oxidized HA; PEG-8-SH: 8-arm PEG; PF: Pluronic F; PL:
PLuronic L; SRB: Sorafenib; Tyr: Tyramine; TZB: Trastuzumab.
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On the other hand, the oxidation of thiol groups was exploited to generate disulfide bonds acting
as cross-links of the hydrogel. The resulting redox-responsive material was employed as a delivery
vehicle of DOX and the combinations of DOX–SRB and DOX–SRB–MTF [237]. HA was also employed
as a functional element for the enzymatic synthesis of PEGylated dendrimers able to modulate the
cellular phenotype of human mammary cancer epithelial cells and mouse myoblasts [240].

Finally, the incorporation of MSNs [238] and α-CD–AuBNs–MSNs [239] within HA hydrogels
allowed the fabrication of hybrid systems suitable for photothermal DOX combination therapy of
mammary and squamous carcinoma, respectively.

Cellulose (CL, Figure 14) is a polysaccharide consisting of repeating β-D-glucopyranose units
obtained from different sources, including wood pulp, cotton, tunicates, fungi, bacteria, and algae [241].
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Figure 14. Schematic representation of cellulose (CL).

The superior biological features, together with the large availability and low cost, make CL-based
materials suitable for a wide range of applications, including biomedicine (Table 9) [242].

Hydrophilic CL derivatives, such as quaternized cellulose [243] and hydroxypropyl methyl
cellulose [244], were investigated for the DOX-based and PTX/TMZ therapy of hepatocellular
carcinoma [243] and glioma [244], respectively. Pristine CL was also tested as a base material
for the fabrication of hybrid hydrogels for the photothermal treatment of melanoma and hepatic cancer,
both in vitro and in vivo [245], with black phosphorus nanosheets acting as active agent.

Alginate (ALG, Figure 15), an anionic biopolymer consisting of units of mannuronic acid and
guluronic acid in irregular blocks [246], is widely used in biomedical field due to its several favorable
properties, including biocompatibility, hydrophobicity, and availability of hydroxyl and carboxyl
groups for tailored chemical modifications (Table 9) [247].
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Figure 15. Schematic representation of alginate (ALG).

Injectable hydrogels prepared by ionic gelation were proposed for the delivery of CisPt dendrimers
to breast and lung cancer cells with high efficiency [248], as well as for the incorporation of magnetic
nanoparticles for the thermal ablation of different types of cancers, including breast, ovary, glioblastoma,
and colon [201]. The insertion of NIPAAm moieties carried out the formation of thermo-responsive
vehicles of gene [249] and DOX@micelles [250] to prostate cancer and osteosarcoma. Further
modifications of ALG chains involved the oxidation to aldehyde derivatives, suitable for coupling with
PEI polymers. The obtained in situ gelling systems were proposed as delivery systems for core-shell
nanoparticles loaded with CisPt and PTX, and found to be effective in the treatment of breast, skin,
and liver neoplasia [251,252].
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Table 9. Composition and anticancer performance of injectable hydrogels based on other polysaccharides.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation
Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

Naturals

[243] QCL–CCNCs
(Physical – I) - - - 18 - - - DOX (0.5) 21 Murine Liver - - - H22 COS-7 - - -

[245] CL (Chemical – C) BPNs - - - - - - - - - - - -
Murine

Melanoma B16 - - - J774A.1 - - -

Liver SMMC-7721 SMMC-7721

[248] ALG (Physical – I) PAMAM - - - - - - CisPt* (37.0) 30# Breast
MFC7 - - -

3T3 - - -
MDA-MB-231

Lung PC9 PC9

[253] oxDEX–SRC
(Chemical – C)

- - - 70 - - - HRP (0.39–1.36)
DOX (0.39–1.36) 50 30 Melanoma - - - B16F10

C2C12
mice

HL7702

[254] oxDEX (Chemical – C) PAMAM 14 - - - Pt* 9# Breast MDA-MB-231 MDA-MB-231 - - - mice

[255] MADEX–SH/MAHA
(Chemical – Red) Bi NPs - - - - - - DOX* (3.1) 7.5 Murine Breast 4T1 4T1 - - - - - -

[256] GG (Physical) Liposome - - - - - - PTX (33) 2
Bladder T24 - - - - - - mice
Murine
Bladder NBT-II

[257] GG (Physical) CuS NPs - - - NIR DOX* (0.1) 0.2 Murine Breast 4T1 4T1 - - - - - -

[258] AGR (Physical) - - - 7 pH NIR DOX (4.5) 2
Murine Breast 4T1 4T1 L929 - - -

Cervix HeLa - - - HUVEC

[259] AGR (Physical) DEX-SH - - - - - - DOX* (20–50) 80 Breast MDA-MB-231 - - - 3T3 - - -

N/S Hybrids

[244] HPMCL/PF127/ALG
(Physical) MPEG–DPPE - - - - - - PTX* (5.1) TMZ*

(5.3) 3 Murine Glioma C6 C6 - - - - - -

[249] ALG–NIPAAm
(Physical – T) - - - 365 Thermo DNA 29 Prostate PC3 - - - - - - - - -

[250]
ALG–NIPAAm
(Physical – T)

- - - - - - Thermo DOX (1.2) 21 Prostate
AT3B-1N - - - - - - - - -
AT3B-1
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Table 9. Cont.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation
Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

[251] oxALG–PEI (Physical) PLGA–PLA - - - - - - CisPt* (0.01–2.48)
PTX* (1.0–1.7) 45 Breast MDA-MB-231 - - - - - - - - -

[252] oxALG–PEI (Physical) PLGA–PLA - - - - - - CisPt* (0.01–2.48)
PTX* (1.49–1.70) 45 Liver HepG2 - - - MRC-5 - - -

[260] DEX–HEMA/PEI–MA
(Chemical – RP) - - - 9–17 - - - sRNA 9–17 - - - - - - - - - HEK 293 - - -

* Loaded in composite component; # from in vivo experiments; C: Condensation; I: Ionic; T: Temperature; Red: Redox; RP: Radical polymerization; AGR: Agarose; ALG: Alginate; BPNs:
Black phosphorus nanosheets; CCNCs: Cationic cellulose nanocrystals; CisPt: Cisplatin; CL: Cellulose; DEX: Dextran; DOX: Doxorubicin; DPPE: Dipalmitoylphosphatidyle-thanoiamine;
GG: Gellan gum; HPMCL: Hydroxypropyl methyl cellulose; HRP: Horseradish peroxidase; MADEX: Methacrylated DEX; MAHA: Methacrylated HA; MPEG: Monomethoxy poly(ethylene
glycol); NIPAAm: N-isopropyl acrylamide; NIR: Near-infrared; NPs: Nanoparticles; oxALG: Oxidized alginate; oxDEX: Oxidized dextran; PAMAM: Polyamidoamine dendrimer; PEI:
Poly(ethylene imine); PF: Pluronic F; PLA: Polylactide; PLGA: Poly(lactide-co-glycolide); PTX: Paclitaxel; QCL: Quaternized cellulose; SRC: Sericin; TMZ: Temozolomide.
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Dextran (DEX, Figure 16) consists of glucose monomers linked via α-1,6 glycosidic bonds, with
branches originating from α-1,3 linkages. It finds a wide range of applications in the biomedical field,
due to its high availability, low cost, and easy chemical modification.
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Moreover, its high stability, hydrophilicity, absence of toxicity, and biodegradability make this
polysaccharide an ideal drug delivery carrier (Table 9) [261]. It is able to promote the penetration of
chemotherapeutic agents in tumor masses [262], thus allowing the fabrication of effective delivery
vehicles for cancer treatment [263]. Preliminary derivatization of dextran, including oxidation [253,254]
and conjugation to acrylic [260] or thiol groups [255], was carried out to obtain effective carriers for the
delivery of cytotoxic drugs [253,254], gene [260], or DOX in combination with Bismuth Nanoparticles
in a combined X-ray radio- and chemo-therapy [255].

Gellan gum (GG, Figure 17) is a linear anionic polysaccharide approved by the FDA as an additive
in food and pharmaceutical formulations (Table 9) [264].
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Figure 17. Schematic representation of gellan gum (GG).

Its biodegradability, mucoadhesivity, and thermo-reversible gelling properties make it the
ideal candidate for the preparation of injectable matrices to be employed in tissue engineering and
wound healing. Injectable nanocomposites, consisting of GG hydrogels incorporating drug-loaded
nanoparticles, were proposed for the treatment of different cancer diseases. More closely, PTX-loaded
liposomes were loaded on a GG hydrogel matrix and the overall system directly instilled in the urinary
bladder [256]; whereas, in another work, DOX-loaded CuS nanoparticles were embedded in GG
injectable hydrogels for NIR-triggered chemo-photothermal therapy of breast cancer [257].

Agarose (AGR, Figure 18) is an FDA-approved linear polysaccharide derived from marine algae.
A robust injectable thermo-responsive AGR hydrogel incorporating sodium humate and DOX was
proposed as a valuable tool for chemo-photothermal treatment of breast cancer [258]. Furthermore,
DOX@nanoparticles were encapsulated in AGR injectable hydrogels for sustained local drug delivery
(Table 9) [259].
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3.2. Proteins

The integration of the structural and functional properties of proteins in injectable hydrogels was
also tested, thanks to the high biocompatibility, biodegradability, non-toxicity, and non-immunogenicity
of such materials, as well as by virtue of their similarity to naturally occurring components of organs,
tissues, and cells (Table 10) [25,265–268].

Serum albumins, from both bovine and human serum, are the most abundant protein in blood
plasma (40–50 mg/mL) and the primary transport proteins of various endogenous and exogenous
substances in plasma, including cations, bilirubin, fatty acids, and drugs [269,270].

Albumin from bovine serum (BSA) was proposed as polymeric support in the synthesis of
injectable hydrogels for cancer therapy. BSA was added to the cross-linking agent epichlorohydrin to
prepare a gel with suitable mechanical strength, viscoelastic behavior, shear thinning, injectability, and
self-healing properties useful as DOX delivery vehicles to cervix and breast cancer [269]. Alternatively,
an injectable hydrogel consisting of PEG-modified BSA- and PTX-encapsulated red blood cell membrane
nanoparticles was proposed to improve the intraperitoneal retention of PTX in the treatment of human
gastric cancer [271]. Finally, human serum albumin (HSA) chemically conjugated to PEG dendrimers
was suggested as a functional biomaterial for the induction of apoptosis in pancreatic cancer [270].

Gelatin (GEL) represents another interesting protein material able to spontaneously undergo the
gel–sol transition process at body temperature. Despite its good biological properties, gelatin hydrogel
cannot be used in biomedical applications without chemical modifications, due to its instability
under physiological conditions and, also, poor mechanical properties [272]. Different approaches
were proposed to improve its performance in the biomedical field [273]: GEL–dendrimer [274],
GEL–pectin [275], and GEL–CS [276] composites, cross-linked by means of HRP chemistry [274,275]
or ionic gelation [276], were successfully employed in lung and skin carcinomas studies, and for
the controlled release of DOX@Liposome. In addition, GEL injectable hydrogels were proposed as
DOX carriers in the treatment of prostate cancer [277] in a multifunctional system, also acting as
regenerative matrix with pronounced adhesion to abdominal tissue that, by in situ polymerization,
allow to overcome the inconvenience usually related to radical prostatectomy. Moreover, due to its
surfactant properties [278], GEL was also employed for the fabrication of thermo-responsive hybrid
hydrogels for the controlled release of DOX to gastric cancer [279], with improved efficiency due to
the incorporation of rod-like-shaped nanoparticles, such as carbon nanotubes [280,281]. Finally, an
injectable and colloidal hydrogel composed of amphoteric GEL nanoparticles and polydopamine (PDA)
nanoparticles was developed to realize multi-stimuli (pH, enzymes, and near-infrared light)-responsive
drug delivery properties and combined chemo-photothermal cancer treatment [282]. Due to the
sensitivity of GEL nanoparticles to the tumor microenvironment and PDA nanoparticles to the NIR
laser, DOX-loaded hydrogel could show multiple responsivity to acidic pH and NIR laser irradiation,
resulting in controlled and sustained anticancer release profiles.

Silk fibroin (SF) was proved to be a biodegradable and biocompatible native natural material
derived from Bombyx mori silkworm with safe record in vivo [283,284]. SF hydrogels developed by
the protein conformation transition from amorphous to β-sheet induced by physical cross-linking,
including the ultrasound assisted processes, possess injectability as well as biocompatibility and
safety features [285]. SAL–PTX-loaded silk fibroin hydrogel was fabricated by ultrasound-assisted
cross-linkage, without toxic organic solvents and surfactants, for loco-regional tumor treatment and
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cancer stem cell inhibition in vivo [286]. Additionally, self-assembling pH-responsive silk nanofiber
hydrogels with thixotropic properties were proposed to support the injectable delivery DOX for
the treatment of breast cancers in mouse models [287]. The possibility to obtain benefits from a
photothermal treatment was exploited in the synthesis of SF nanofiber hydrogel systems complexed
with lanthanide-doped rare-earth up-conversion nanoparticles and nano-graphene oxide for breast
cancer treatment [288]. In this case, a synergistic effect of combined up-conversion luminescence
imaging diagnosis and photothermal therapy was confirmed to decrease dosage-limiting toxicity and
tissue damage by over-heating and improve the therapeutic efficiency. An innovative approach that
drastically reduces gelation times involved an enzyme-mediated cross-linking strategy to produce
fast-gelled SF-based injectable hydrogels at physiological conditions [289].

Finally, silk–elastin-like protein (SELP), genetically engineered materials composed of tandem
repeats of a six amino acid sequence commonly found in silkworm silk fibroin and a five amino
acid sequence commonly found in mammalian elastin, was proposed in the synthesis of injectable
hydrogels. This combination of silk and elastin molecular properties results in a polymer which is
responsive to temperature increases and irreversibly forms hydrogels at physiological temperature.
Gelation occurs without the need of chemically-induced cross-linking, because this phase transition
spontaneously occurs when elastin-like units collapse thermodynamically aligning the silk-like units
that form hydrogen-bonded beta sheets, and results in a physically cross-linked matrix. SELP-based
carriers were applied as a platform for drug delivery with negligible toxicity for the radiation treatment
of prostate and pancreas cancers [288,290], for localized delivery in transarterial chemoembolization
to treat intermediate stage hepatocellular carcinoma [290,291], or as gene-directed enzyme prodrug
therapy [292]. In particular, injectable brachytherapy polymers [290,291] composed of SELP labeled
with the radionuclide 131I exhibit a gelling transition as a result of two independent mechanisms, firstly
involving SELP moieties that, at the body temperature, are rapidly converted into an insoluble material.
Afterwards, the high energy β-emissions of 131I further stabilize the depot by introducing cross-links
within the SELP depot over 24 h. Additionally, SELP-based hydrogel was proposed to overcome the
limitations usually associated with the commercial embolic liquids that discourage their employment
in transarterial chemoembolization. To this regard, DOX and SRB, two chemotherapeutics used in the
treatment of hepatic carcinoma, were incorporated into the in situ gelling liquid embolic composed
of SELP polymer [290,291]. Due to its pore size and in vivo gelation properties, SELP restricts the
distribution and controls the release of therapeutic viruses, such as herpes simplex virus, for up to one
month, representing a valuable approach which may also have significant potential for increasing the
safety of adenoviral gene delivery, while not sacrificing efficacy is spatial and temporal delivery of
viruses following injection into a localized area [292]. In this way, gene expression levels at the site of
interest were localized, prolonged, and significantly increased.

4. Conclusions and Future Perspectives

Hydrogel systems represent a relevant class of healthcare products with applications ranging from
tissue engineering, bio-sensing, and bio-imaging, to drug delivery [293]. The huge interest in hydrogels
is underlined by the worldwide market, estimated at around US$10 billion in 2017 and expected to
grow up to US$15 billion by 2020 [294]. Injectable hydrogels have been proved to be a valuable tool for
the delivery of anticancer drugs, providing temporal and spatial control over the releasing rate, thus
improving the therapeutic index of commonly used chemotherapeutics [29]. To date, a few products
are currently available on the market, including CS/Organophosphate (BST-Gel ®), PLGA–PEG–PLGA
(ReGel ®), Poloxamer 407 (LeGOO ®), Poly(vinyl methyl ether co maleic anhydride) (Gantrez ®)
hydrogels, available as cartilage repair [295] hydrogel market, tumors [296], vascular injury [297], and
vaccine adjuvants [298].
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Table 10. Composition and anticancer performance of injectable hydrogels based on proteins.

Ref
Composition Carrier Properties Delivery Properties Cancer Model Health Model

Hydrogel (Gelation
Process)

Composite
Component

Degradation
Time (Days)

Smart
Responsivity

Bioactive Agent
(DL% w/w)

Release Time
(Days) Type In Vitro In Vivo In Vitro In Vivo

Naturals

[269] BSA (Chemical – CR) - - - 3 - - - DOX (0.11–0.14) 5
Cervix HeLa

- - - - - - - - -
Breast

MCF-7

MDA-MB 231

[277] GEL (Chemical – E) - - - - - - - - - AraC - - - Prostate DU-145 - - - L929 mice

[274] GEL–HPA (Chemical –
HRP) - - - - - - Enzyme

(COLase) DCs Ad 19# Murine Lung - - - LL - - - - - -

[275] GEL–SBP (Chemical –
HRP) - - - - - - - - - DOX (0.9) 6 Murine

Melanoma - - - B16F10 - - - - - -

[276] GEL–CS (Chemical - C) Liposome - - - - - - CAL (0.39–0.47) CAL* 7 21 - - - - - - - - - - - - - - -

[282] GEL (Physical – T) PDA 7
pH

Enzyme
NIR

DOX* 7 Murine Breast - - - 4T1 - - - - - -

[286] SF (Physical – US) SF NPs - - - - - - SAL* (12) PTX* (12) 5 28 Murine Liver - - - H22 - - - mice

[287] SF (Physical – CDP) - - - - - - pH DOX (8–24) 56 Breast MDA-MB-231 MDA-MB-231 - - - - - -

[288] SF (Physical – T) GO - - - - - - NaLuF4:Er3+,Yb3+ - - - Murine Breast 4T1 4T1 - - - - - -

[290] SELP (Physical – T) - - - - - - - - - 131I - - - Prostate - - - PC3 - - - - - -
Pancreas BxPc3

[291] SELP (Physical – T) - - - - - - - - - DOX (21–28) SRB
(21–28) 15-30 - - - - - - - - - - - - - - -

[292] SELP (Physical – T) - - - - - - - - - HSVtk/GCV - - - - - - - - - - - - - - - mice

N/S Hybrids

[270] HSA–SH/PEG-4–SH
(Physical – T) - - - 21 - - - TRAIL (5.8) 7 Pancreas Mia PAca-2 Mia PAca-2 - - - - - -

[271] PEG–BSA (Physical – T) PRNP 50 - - - PTX* (22.1) 6 Stomach MKN45 MKN-45 - - - - - -

[279] GEL–SWCNT–pNIPAAm
(Chemical – RP) - - - - - - Temperature DOX (1.11) 28 Stomach BGC-823 BGC-823 - - - - - -

* Loaded in composite component; # from in vivo experiments; C: Condensation; CDP: Concentration dilution process; CR: Cross-linking; E: Enzyme; US: Ultrasound; RP: Radical
polymerization; T: Temperature; Ad: Oncolytic adenovirus; AraC: Cytosine arabinoside; BSA: Bovine serum albumin; CAL: Calcein; COLase: Collagenase; CS: Chitosan; DCs: Dendritic
cells; DOX: Doxorubicin; GCV: Ganciclovir; GEL: Gelatin; HPA: Hydroxyphenyl propionic acid; GO: Graphene oxide; HPA: Hydroxyphenyl propionic acid; HRP: Horseradish peroxidase;
HSA: Human serum albumin; HSVtk: Herpes simplex virus thymidine kinase; PDA: Polydopamine; PEG-4-SH: 4-arm PEG; pNIPAAm: Poly(N-isopropyl acrylamide); PRNP: Red blood
cell membrane nanoparticles; PTX: Paclitaxel; SAL: Salinomycin; SBP: Sugar beet pectin; SELP: Silk–elastin-like protein; SF: Silk fibroin; SRB: Sorafenib; SWCNT: Single-walled carbon
nanotubes; TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand.
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The main limiting issues, concerning sterilization, scale-up, shelf-life, and user compliance
(professional and/or patient), must be addressed before the benefits afforded by injectable hydrogels
can be translated into clinical practice. Some formulations are currently in clinical trials, mainly
consisting in radiopaque PEG hydrogels (TraceIT ® and SpaceOAR ®) useful to improve the target
definition of radiotherapy, thus reducing the radiation doses [299,300].

The scientific community recognizes great potential to the use of injectable systems for anticancer
delivery, but to definitely replace the conventional therapies with the injectable systems, continuous
innovation in the development of new architectures and design strategies is required. For a more
effective translation of injectable hydrogels from research into clinical reality, future attempts should
be done to explore the possibility of combining chemotherapy, hyperthermia therapy, immunotherapy,
and radiotherapy, by selecting appropriate materials and evaluating the biological effects on metabolic
and cellular mechanisms, both in the normal and diseased states.
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20. Gačanin, J.; Kovtun, A.; Fischer, S.; Schwager, V.; Quambusch, J.; Kuan, S.L.; Liu, W.; Boldt, F.; Li, C.; Yang, Z.;
et al. Spatiotemporally Controlled Release of Rho-Inhibiting C3 Toxin from a Protein–DNA Hybrid Hydrogel
for Targeted Inhibition of Osteoclast Formation and Activity. Adv. Healthc. Mater. 2017, 6. [CrossRef]

21. Yan, C.; Pochan, D.J. Rheological properties of peptide-based hydrogels for biomedical and other applications.
Chem. Soc. Rev. 2010, 39, 3528–3540. [CrossRef] [PubMed]

22. Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative
medicine. Adv. Mater. 2009, 21, 3307–3329. [CrossRef] [PubMed]

23. Bakaic, E.; Smeets, N.M.B.; Hoare, T. Injectable hydrogels based on poly(ethylene glycol) and derivatives as
functional biomaterials. RSC Adv. 2015, 5, 35469–35486. [CrossRef]

24. Singh, N.K.; Lee, D.S. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels
for drug delivery. J. Control. Release 2014, 193, 214–227. [CrossRef] [PubMed]

25. Nguyen, M.K.; Lee, D.S. Injectable biodegradable hydrogels. Macromol. Biosci. 2010, 10, 563–579. [CrossRef]
[PubMed]

26. Tran, R.T.; Gyawali, D.; Nair, P.; Yang, J. Biodegradable injectable systems for bone tissue engineering.
In A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications; Sharma, S., Mudhoo, A.,
Eds.; RSC: London, UK, 2011; pp. 419–451.

27. Srinivasan, C.; Weight, A.K.; Bussemer, T.; Klibanov, A.M. Non-aqueous suspensions of antibodies are much
less viscous than equally concentrated aqueous solutions. Pharm. Res. 2013, 30, 1749–1757. [CrossRef]

28. Sun, S.; Cao, H.; Su, H.; Tan, T. Preparation and characterization of a novel injectable in situ cross-linked
hydrogel. Polym. Bull. 2009, 62, 699–711. [CrossRef]

29. Tu, Y.; Chen, N.; Li, C.; Liu, H.; Zhu, R.; Chen, S.; Xiao, Q.; Liu, J.; Ramakrishna, S.; He, L. Advances in
injectable self-healing biomedical hydrogels. Acta. Biomater. 2019, 90, 1–20. [CrossRef]

30. Kretlow, J.D.; Klouda, L.; Mikos, A.G. Injectable matrices and scaffolds for drug delivery in tissue engineering.
Adv. Drug Deliv. Rev. 2007, 59, 263–273. [CrossRef]
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