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Abstract: Hydrophilic matrix tablets are a type of sustained release dosage form characterized by
distributing a drug in a matrix that is usually polymeric. Tolcapone is a drug that inhibits the
enzyme catechol-O-methyl transferase. In recent years, it has been shown that tolcapone is a potent
inhibitor of the amyloid aggregation process of the transthyretin protein, and acts by stabilizing the
structure of the protein, reducing the progression of familial amyloid polyneuropathy. The main
objective of this study was to obtain a sustained release tablet of tolcapone for oral administration
with a preferred dosage regimen of 1 administration every 12 or 24 h and manufactured, preferably,
by direct compression. The SeDeM Diagram method has been used for the formulation development
of hydrophilic matrix tablets. Given the characteristics of tolcapone, the excipient selected for the
formation of the polymeric matrix was a high viscosity hydroxypropylmethylcellulose (Methocel®
K100M CR). A decrease in the particle size of tolcapone resulted in a slower dissolution release
of the formulation when the concentration of the polymer Methocel® K100M CR was below 29%.
These surprising and novel results have given rise to patent number W0O/2018/019997.

Keywords: hydrophilic matrix tablets; tolcapone; sustained release; particle size; SeDeM diagram;
direct compression

1. Introduction

Modified release pharmaceutical forms are designed with the aim of modifying the rate or the site
of release of a drug, with respect to the immediate release pharmaceutical forms of the same active
ingredient [1].

Sustained-release or extended-release forms are types of modified-release dosage forms
characterized by an initial release of the drug in enough quantities to produce therapeutic action or
even a small excess. This excess is never harmful to the organism but it allows the slow release of the
drug to continue, sometimes with a speed that is not always equal to the speed of elimination [2].
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Matrix tablets are a type of sustained-release dosage. The drug is distributed in a matrix that is
usually polymeric. This matrix hinders the access of the solution medium to the surface of the particles
and make the drug diffusion towards the outside matrix difficult [3].

Hydrophilic matrix tablets of unlimited swelling are tablets in which the active ingredient is
mainly released through a diffusion process and, to a lesser extent, through an erosion process. In the
diffusion process, the tablets, on contact with water, quickly form a gel on their entire surface. This gel
establishes a diffusion barrier for active ingredient molecules that enter a state of dissolution. As the
polymeric excipient constituting the matrix is hydrated, gelation proceeds at some speed towards the
solid core, where the polymer is in a non-hydrated state. In the erosion mechanism, the external gelled
layer, when eroded, also contributes to the process of sustained release of the active ingredient [3].

In the manufacture of hydrophilic matrices of unlimited swelling, hydrophilic polymers, mainly
cellulosic derivatives, are used. One of the most used polymers is hydroxypropylmethylcellulose
(HPMC). HPMC is a hydrophilic cellulose derivative with non-ionic, inert, odorless fillers and
is obtained from purified cellulose [4]. Hydroxypropylmethylcellulose is one of the most popular
hydrophilic polymers for the formulation of controlled drug release systems since 1960 [5-7]. Among its
most important characteristics are its high gelling capacity and swelling, which in turn have a significant
effect on the release kinetics of the drug incorporated into the system. Furthermore, it is easy to
compress and has the ability to house a large number and diversity of drugs [8-10]. It has also been
found that this polymer does not influence the variables of the manufacturing process of matrix tablets
for drug release [11-13].

Tolcapone is a drug that inhibits the enzyme catechol-O-methyl transferase (COMT) [14].
It is currently used in the treatment of Parkinson’s disease as a supplement to the medication
Levodopa/Carbidopa under the name of Tasmar®. It is marketed in immediate release tablets
manufactured by wet granulation prior to compression and final coating [15]. In recent years, it has
been shown that tolcapone is a potent inhibitor of the amyloid aggregation process of the transthyretin
protein, and acts through stabilizing the structure of the protein, reducing the progression of a
disease called familial amyloid polyneuropathy [16]. This new indication has been patented by SOM
INNOVATION BIOTECH, S.L with the reference number WO2013060668 A1 [17].

This drug has been designated as an orphan drug by the US Food and Drug Administration for
the treatment of transthyretin amyloidosis (the most common form of familial amyloidosis). Patients
with familial amyloid polyneuropathy are chronic, polymedicated patients with a deficient quality of
life [18]. Any improvement in the treatment, both at the level of administration route and the dosage
schedule of the medications, can result in an improvement in quality of life and a correct treatment
compliance [19]. Sustained release pharmaceutical forms, due to their intrinsic characteristics, can help
to minimize poor patient compliance, multiple dosing and see-saw fluctuations [20].

Tolcapone is rapidly absorbed, with a Tmax of approximately 2 h. Clinical trials have shown
that with multiple dose administration, tolcapone demonstrated linear pharmacokinetics in the 50 to
400 mg range. However, during multiple dosing with 400 and 800 mg three times a day, there was
some accumulation of the drug. With the design of a sustained release formulation, plasma levels
could be maintained by avoiding overdoses and, at the same time, improving the patient’s quality
of life [21].

The main objective of this study was to obtain a sustained release tablet of tolcapone for oral
administration with a preferred dosage regimen of 1 administration every 12 or 24 h and manufactured,
preferably, by direct compression. After studying the active ingredient and due to its intrinsic
characteristics such as low compressibility and bad flowability, among others, we decided to develop a
hydrophilic matrix to obtain the desired formulation.

The SeDeM Diagram method has been used for the formulation of hydrophilic matrix tablets.
This method is based on the determination of five parameters which allow us to predict the suitability
of the powder (either API or excipient) or of a mixture to be compressed directly according to the good
compression index (GCI) obtained [22]. It has been shown to be a suitable tool for pre-formulation
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and formulation due to its ability to characterize the galenic properties of excipients in order to define
their suitability for direct compression [22-27]. Recently, some authors have validated the tool’s
usefulness [28-31].

2. Materials and Methods

2.1. Materials

The active substance under study is tolcapone (batches: SOMO0114599 and SOMO0714600)
(CCN Industries LTD via Porschem Pharm).

The excipients studied are Vivapur® 102 (JRS, Rosenberg, Germany), Avicel® PH 101 (FMC Corp,
Brusseles, Belgium), Kleptose® (ROQUETTE, Roquette Freres, Lestrem, France), Kollidon® VA 64
(BASE, Ludwigshafen, Germany), Prosolv® HD90 (JRS, Rosenberg, Germany), Isomalt® 721 (GalenlQ,
Manheim, Germany), Methocel® K100M CR (Colorcon, Dartford, UK), talc (Fagron, Terrassa, Spain),
magnesium stearate (Fagron, Terrassa, Spain), and colloidal silicon dioxide (Fagron, Terrassa, Spain).

2.2. Methods

2.2.1. API Characterization

The SeDeM Method has been used to assess the suitability of an active ingredient for its direct
compression. The parameters considered in the SeDeM Method are the following:

e  Bulk density (Da)

e  Tapped density (Dc)

e Inter-particle porosity (L)
e Carrindex (IC)

e  Cohesion index (Icd)

e  Hausner ratio (IH)

e Angle of repose (x)

e Powder flow (t”)

e Loss on drying (%HR)

e  Hygroscopicity (%H)

e  Particle size (%Pf)

e  Homogeneity index (Ig)

These tests are grouped into five factors based on the physical characteristics of the powder and
the functionality of the drug:

(1) Dimensional Parameter: bulk density (Da) and tapped density (Dc).

These affect the size of the tablet and its capacity to pile up. In addition, these tests are used in the
calculation of other mathematical indexes for determination of the compressibility parameter.

(2) Compressibility Parameter: inter-particle porosity (Ie), Carr index (IC) and cohesion index (Icd).
These affect the compressibility of the powder.

(3) Flowability/Powder Flow Parameter: Hausner ratio (IH), angle of repose («) and flowability (t”).
These influence the flowability of the powdered substance when compressed.

(4) Lubricity/Stability Parameter: loss on drying (%HR) and hygroscopicity (%H).

These affect the lubricity and future stability of the tablets.
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)

Lubricity/Dosage Parameter: %particles < 50 mcm and homogeneity index (Ig).

These influence the lubricity and dosage of the tablets.
These parameters are determined by means of the new SeDeM Diagram method, based on known

equations [22,23], and which have been duly validated in reproducible experimental tests, as shown in

Table 1.
Table 1. Parameters and equations used in SeDeM methodology.
Incidence Parameter Symbol Unit Equation
Dimension Bulk density Da g/mL D =P/Va
Tapped density Dc g/mL Dc =P/Vc
Compressibility Inter-particle porosity Ie _ IE = Dc — Da/Dc X Da
Carr Index 1C Y% IC = (Dc — Da/Dc) x 100
Cohesion index ? Ied N Experimental
Flowability/Powder flow Hausner ratio IH _ IH = D¢/Da
Angle of repose (x) _ Tga =h/r
Powder flow t” s Experimental
Lubricity/Stability Loss on drying %HR Y% Experimental
Hygroscopicity %H % Experimental
Lubricity/Dosage Particles < 50 um %PF Y% Experimental
Homogeneity index b (Ig) _ Equation (1)

2 Hardness (N) of the table obtained with the product in question, alone or blended with lubricants if highly
abrasive. ® Determines particle size. In accordance with the percentages of the different particle-size fractions by
applying Equation (1).

The methods used for each test are described below [22]:

Bulk density (Da): The method is described in Section 2.9.34 of the European Pharmacopeia
(European Pharmacopeia 9th edition, 2017).

Tapped density (Dc): The volume taken is the value obtained after 2500 strokes using a settling
apparatus with a graduated cylinder (voluminometer).

Inter-particle porosity (le) of the powder mixture is calculated from the following equation:
Ie = Dc — Da/Dc X Da.

Carr index (IC%) [7-9]: This is calculated from Da and Dc as: IC = (D¢ — Da/Dc) x 100.
Cohesion index (Icd): This index is determined by compressing the powder, preferably in an
eccentric press. First of all, the mean hardness (N) of the tablets is calculated, the raw powder is
tested, but if it cannot be compressed, 3.5% of the following mixture is added to the mix: talc 2.36%,
Aerosil ® 200 0.14% and magnesium stearate 1.00%.

Hausner ratio (IH) (European Pharmacopeia 9th edition, 2017): This method is described in
Section 2.9.34 of the European Pharmacopeia (European Pharmacopeia 9th edition, 2017). This is
calculated from Da and Dc as: IH = D¢/Da.

Angle of repose («): The method is described in Section 2.9.36 of the European Pharmacopeia
(European Pharmacopeia 9th edition, 2017). This is the angle of the cone formed when the product
is passed through a funnel with the following dimensions: height 9.5 cm, upper diameter of spout
7.2 cm, internal diameter at the bottom, narrow end of spout 1.8 cm. The funnel is placed on
a support 20 cm above the table surface, centered over a millimeter-grid sheet on which two
intersecting lines are drawn, crossing at the centre. The spout is plugged and the funnel is filled
with the product until it is flush with the top end of the spout when smoothed with a spatula.
Remove the plug and allow the powder to fall onto the millimetre sheet. Measure the four radii of
the cone base with a slide caliper and calculate the mean value (r). Measure the cone height (h).
Deduce « from tan () = h/r.
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e Flowability (t”): The method is described in Section 2.9.16 of the European Pharmacopeia
(European Pharmacopeia 9th edition, 2017). It is expressed in seconds and tenths of a second per
100 g of sample, with a mean value of three measurements.

e Lossondrying (%HR): This is measured by the method described in Section 2.2.32 in the European
Pharmacopeia (European Pharmacopeia 9th edition, 2017). The sample is dried in an oven at
105 °C + 2 °C, until a constant weight is obtained.

e  Hygroscopicity (%H): Determination of the percentage increase in sample weight after being kept
in a humidifier at a relative humidity of 76% (+2%) and a temperature of 22 °C + 2 °C for 24 h.

e  Percentage of particles measuring < 50 um (%Pf): Particle size is determined by means of the sieve
test following the general method 2.9.12 of the European Pharmacopeia (European Pharmacopeia
9th edition, 2017). The value returned is the % of particles that pass through a 0.05-mm sieve
when vibrated for 10 min at speed 10 (CISA® vibrator).

e  Homogeneity index (Ig): This is calculated according to the General method 2.9.12 of the European
Pharmacopeia (European Pharmacopeia 9th edition, 2017).

To determine particle size by means of the sieve test, the grain size of a 100 g sample is measured
by subjecting a sieve stack to vibration for 10 min at speed 10 (CISA® vibrator). The sieve sizes used
are 0.355 mm, 0.212 mm, 0.100 mm and 0.05 mm. The percentage of product retained in each sieve
is calculated and the amount that passes through the 0.05 mm sieve is measured. The percentage of
fine particles (<50 pm) (%Pf) was calculated as described above. Note that if this percentage is higher
than that calculated in the complete sieve test, it is because some of the particles adhere to the product
retained in the sieves during the grain-size test, and the percentage of <50 um particles found may be
lower than the true figure. The following equation is then applied to the data obtained.

Equation (1) named in Table 1 is:

— Fim 1
Ig o 100+(dm_dm—1)mel+(dm+1—dm)Fm+1+(dm—dm—2)Fm—2+m+(dm—dmfn)Fm7n+(dm+n_dm)Fm+n ( )

where Ig: relative homogeneity index, particle-size homogeneity in the range of the fractions
under study.

Fm: Percentage of particles in the majority range.

Fp—1: Percentage of particles in the range immediately below the majority range.

Fi+1: Percentage of particles in the range immediately above the majority range.

n: Order number of the fraction under study, within a series, with respect to the majority fraction.

dm: Mean diameter of the particles in the majority fraction.

dm-1: Mean diameter of the particles in the fraction of the range immediately below the
majority range.

dm+1: Mean diameter of the particles in the fraction of the range immediately above the
majority range.

Once the values had been obtained following the specific methods, certain limits were set, based
on the study of the chosen parameters and the values described in the handbook of pharmaceutical
excipients [4]. The next step was to convert the numeric limits for each SeDeM Diagram parameter to
radius values (r), in accordance with Table 2 [23,32-34].
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Table 2. Conversion of limits for each parameter into radius values (r). The twelve parameters are
represented in a 12-sided polygon.

Incidence Parameter Limit Value  Radius (r)  Factor Applied to v
Dimension Bulk density 0-1 g/mL 0-10 10v
Tapped density 0-1 g/mL 0-10 10v
Compressibility Inter-particle porosity 0-1.2 0-10 10v/1.2
Carr Index 0-50 (%) 0-10 v/5
Cohesion index 0-200 (N) 0-10 v/290
Flowability/Powder flow Hausner ratio 1-3 10-0 53 -v)
Angle of repose 50-0 (°) 0-10 10 — (v/5)
Powder flow 20-0 (s) 0-10 10 — (v/2)
Lubricity/Stability Loss on drying 0-10 (%) 10-0 10-v
Hygroscopicity 20-0 (%) 0-10 10 — (v/2)
Lubricity/Dosage Particles < 50 um 50-0 (%) 0-10 10 — (v/5)
Homogeneity index 0-2x 1072 0-10 500v

When all radius values were 10, the SeDeM Diagram takes the form of a circumscribed regular
polygon, drawn by connecting the radius values with linear segments. The results obtained from
the earlier parameter calculations and conversions are represented by the radius. The figure formed
indicates the characteristics of the product and of each of the parameters that determine whether or
not the product is suitable for direct compression. In this case, the SeDeM Diagram is made up of
12 parameters, which would form an irregular 12-sided polygon.

To determine whether or not the product is acceptable for direct compression in numerical form,
the following indexes were calculated based on the SeDeM Diagram as:

Parameter index (IP) = No X p > 5/No X Pt

No X p > 5: Indicates the number of parameters whose value is equal to or higher than 5.
No x Pt: Indicates the total number of parameters studied.

Parameter profile index (IPP) IPP = mean r > 5 of all parameters

Mean r = mean value of the parameters calculated.
The acceptability limit would correspond to: IPP = meanr > 5

Good compression index GCI = IPP x f
where f is the reliability factor and is calculated as follows:
f = polygon area/circle area
The acceptability limit was calculated by:
GCI=IPP xf>5

Particle size determination was performed following the general method 2.9.31 European
Pharmacopoeia with a particle size laser analyzer MASTERSIZER 2000 (Malvern) featuring a wet
dispersion unit HYDRO 2000 SM for small volumes of sample. The following conditions were met:
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- Material:

- Sample: tolcapone suspension (500 mg of tolcapone in 50 mL of water for injection)
- Refraction index: 1.59 (default)

- Dispersant: water for injection

- Refraction index: 1.33

- Cycles:

- Measurements for aliquot: 3
- Lagtime: 12s
- Pump stirring velocity: 2500 rpm

- Measuring time:

- Measure: 12 s (in triplicates)
- Measure snaps: 12,000

- Background: 10s

- Background snaps: 10,000

Three readings have been performed for each measure.

2.2.2. Preparation of the Different Formulations

A formulation is designed to obtain sustained release hydrophilic matrix tablets which can be
obtained by direct compression. Different diluents of direct compression were chosen applying the
SeDeM Diagram method for its characterization [35].

Given the pharmacokinetic characteristics of tolcapone (rapid absorption, with a Tmax
of approximately 2 h), the excipient selected for the formation of the polymeric matrix was
hydroxypropylmethylcellulose, an excipient widely used in this kind of formulation.

As it is well known, there are different types of hydroxypropylmethylcellulose. In this study,
a high viscosity polymer (Methocel® K100M CR) was chosen because of the need to obtain a matrix
that establishes a sufficiently compact gelation barrier to allow a slow diffusion of the drug.

Six diluents (Vivapur® 102, Avicel® PHI101, Kleptose® among others) were characterized using
the SeDeM method. Depending on the API characterization results, the direct compression diluent
will be chosen. The diluent provides the bulk of the tablet and is also responsible for flow and
compaction properties.

Anhydrous colloidal silica was chosen as a glidant due to its properties in improving the flowability
of the mixer. Two lubricants, magnesium stearate and talc, are added to the formulation to enhance the
lubricity and flow properties of the formulation. Fixed concentrations of these last three components
(anhydrous colloidal silica 0.30%, magnesium stearate 0.05% and talc 0.12%) as well as tolcapone
(300 mg per tablet) were established, following previous work [22,24].

The concentrations of the polymer (hydroxypropylmethylcellulose) and the diluent chosen are
modified depending on the difficulties that may arise during the manufacturing and the results
obtained in the dissolution test.

The manufacturing process of the formulations is as follows: the raw materials are weighed
individually into polyethylene bags. Then they are sieved in a 0.8 mm sieve, transferred to a suitable
container, and mixed together (API and all the excipients, included magnesium stearate) for 20 min at
20 rpm in the Glatt biconical mixer.
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2.2.3. Tablets Preparation

The blends were compressed in a Bonals® (Cornella de Ll., Spain) continuous eccentric press,
provided with 19 mm x 10 mm punches.

2.2.4. Tablets Characterization

In the characterization of the tablets the method applied was the dissolution test. The dissolution
test was performed following USP38 monograph of tolcapone’s tablet. This monograph is described
for immediate release tablet, but in this case the measuring time is extended for 24 h.

The sample was read directly using 1 mm cuvettes in a Dissolution Apparatus Type 2 (Agilent
Technologies 708-DS). The volume of the media (pH 6.8 phosphate buffer solution containing 1% of
sodium lauryl sulphate) was 900 mL at a temperature between 36.5 and 37.5 °C using a paddle for
stirring at a speed of 75 rpm. The analysis of the sample was carried out by autosampling, followed by
filtration, spectrophotometric (Agilent Technologies 8453) reading and return of the solution to the
vessel. The measurement was done a wavelength of 271 nm.

The measuring time was carried out at start of the assay, 5, 10, 15, 30, 45, 60, 90, 105, 120, 150, 180,
210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570, 600, 630, 660, 690, 720, 750, 780, 810, 840,
870, 900, 930 until 1440 min.

The dissolution profile fit with the objective of dissolving 80% of the active ingredient in 8 h from
the start of the trial, which according to USP38 specifications established for sustained release dosage
forms monographs, corresponds to a suitable release for once daily administration.

3. Results and Discussion

3.1. Results for the API Characterization

For tolcapone batch SOMO0114599, the obtained value for the parameter index was 0.50,
for parameter profile index it was 5.00 and for the good compression index it was 4.76. For batch
SOMO0714600 the obtained value for the parameter index was 0.50, for the parameter profile index it
was 4.89 and for the good compression index it was 4.66. All these values indicate that tolcapone is
amenable for the preparation of tablets by direct compression (Figures 1 and 2) [23].

In both batches, the average values in the “Dimensions” and “Lubricity/Stability” incidences were
higher than 5. These are very acceptable results for the compression of the substance.

The average value for “Compressibility” incidence was lower than 5, with a cohesion index
smaller than 2. These low values show a potential difficulty of tolcapone to be compressed in the
absence of excipients. These results suggest that appropriate excipients may be necessary to increase
compressibility. The average value for “Flowability/Powder flow” incidence was lower than 4.5.
It should be noted that the powder flow assay has not been performed because the flow capacity
was 0 due to the powder not passing through the funnel. Addition of appropriate lubricants must
be considered in order to achieve a formulation with correct compression properties, as has been
mentioned before. The average value of “Lubricity/Dosage” incidence was lower or equal to 3, with a
homogeneity index lower than 4. These values are also low, confirming the conclusions obtained from
the analysis of the previous parameters: the active substance presents rheological characteristics which
must be corrected with an appropriate formulation.

Regarding the particle size, there were substantial differences between the two batches.
As indicated in Table 3, the SOM0714600 batch had a particle size of up to 80% lower than the
SOMO0114599 batch.
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Figure 1. SeDeM Diagram of tolcapone batch SOM0114599. Da: bulk density; Dc: tapped density;
Ie: inter-particle porosity; IC: Carr index; Icd: cohesion index; IH: Hausner ratio; «: angle of repose;
t”: powder flow; %HR: loss on drying; %H: hygroscopicity; %Pf: particle size; I5: homogeneity index.

% Pf

%H

Figure 2. SeDeM Diagram of tolcapone batch SOM0714600. Da: bulk density; Dc: tapped density;
Ie: inter-particle porosity; IC: Carr index; Icd: cohesion index; IH: Hausner ratio; «: angle of repose;
t”: powder flow; %HR: loss on drying; %H: hygroscopicity; %Pf: particle size; Ig: homogeneity index.

Table 3. % decrease in particle size of batch SOM0714600 with respect to batch SOM0114599.

Particl Maximum Particle Maximum Particle % Decrease in Particle Size of
Vai 1cle Size Batch Size Batch Batch SOM0714600 with
otume SOM0114599 SOM0714600 Respect to Batch SOM0114599
10% 22,449 um 6085 um 72.89%
50% 87,223 um 17,620 pm 79.79%
90% 30,789 um 54,329 um 82.35%
100% 1,096,478 um 316,228 um 71.15%

3.2. Results for the Final Formulations

First of all, the six diluent excipients chosen were characterized following the methodology of
SeDeM Diagram with the objective of choosing the excipient with the capacity of correcting the deficient

parameters of tolcapone.

After the evaluation of the results obtained from the characterization of the six diluents
(Table 4), Vivapur® 102 (microcrystalline cellulose) was chosen as the suitable excipient to correct the
deficiencies of this API batch for its galenical characteristics (compressibility mean incidence of 8.91
and flowability/powder flow mean incidence of 4.00) [24].
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Table 4. Individual radius parameters, mean incidences and parametric index for diluents excipients.

10 of 18

Parameters (r) Mean Incidence Index
EXCIPIENT De I IC Id IH @ ¢ %HR %H %pf (o) Dimension Compressibility PF;VOVVSZEII};:)Y‘(: '“S‘:;’E‘Iﬂg/ LBE);E;LY/ IP IPP GCI
Vivapur® 102 332 528 932 742 1000 7.05 344 150 546 759 346 3.05 430 8.91 4.00 6.53 326 058 557 531
Avicel® PHI01 347 463 602 501 1000 555 346 000 384 817 338 1000 405 7.01 3.01 6.01 669 050 529 504
Kleptose® 558 846 508 681 1000 495 351 650 000 812 360 190 7.02 7.30 498 406 275 058 538 5.2
Kollidon® VA 64 253 343 864 525 691 548 604 525 319 285 840 550 2.98 6.93 559 3.02 695 067 529 503
Prosolv® HD90 486 596 317 3690 1000 591 599 675 344 886 624 1000 541 5.62 622 6.15 812 067 624 594
Isomalt®721 440 560 406 429 1000 576 624 685 401 989 9.00 2.00 5.00 6.11 6.28 6.95 550 058 601 572

Da: bulk density; Dc: tapped density; L: inter-particle porosity; IC: Carr index; Icd: cohesion index; IH: Hausner ratio; «: angle of repose; t”: powder flow; %HR: loss on drying;

%H: hygroscopicity; %Pf: particle size; Ig: homogeneity index.
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The choice of this diluent was made taking into account that the compressibility value of the
API is extremely low, and it is necessary to increase it significantly in order to perform a direct
compression. Thus, although the value of flowability is not very high, it should be noted that this
would be increased with the addition of non-stick and lubricating excipients. So, due to its intrinsic
characteristics, Vivapur® 102 is able to compensate for the deficit cohesiveness of tolcapone.

Initially, in previous studies of preformulation, the feasibility of obtaining mixtures of
microcrystalline cellulose and hydroxypropylmethylcellulose with the possibility of being compressed
by direct compression was verified.

The experimental design used is the design of mixtures (References 1 to 6), wherein the polymer
concentration ranges between 20% (w/w) and 35% (w/w). The diluent concentration is modified in
function of polymer concentration.

Fixed concentrations of colloidal silicon dioxide, magnesium stearate and talc as well as tolcapone
(300 mg per tablet) were established.

The different formulations are shown in Table 5.

Table 5. Composition of the different formulations (refs.1-6).

Ref.1 Ref.2 Ref.3 Ref.4 Ref.5 Ref.6

Components

Y% % % % Y% %

Tolcapone 37.50% 37.50% 37.5% 37.50% 37.5% 37.5%
Methocel® K100M CR 29.00% 35.00% 23.00% 26.00% 20.00% 20.00%
Vivapur® 102 33.03% 27.03% 39.03% 36.03% 42.03% 42.03%
Talc 0.12% 0.12% 0.12% 0.12% 0.12% 0.12%
Magnesium stearate 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%

Colloidal silicon dioxide 0.30% 0.30% 0.30% 0.30% 0.30% 0.30%

Reference 1 (29% of Methocel® K100M CR) and Reference 2 (35% of Methocel® K100M CR)
present in vitro release profiles that are too slow (Figure 3).
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Figure 3. References 1 and 2 dissolution test results.

Taking into account that the objective is to obtain a formulation that should be administered,
if possible once a day, analyzing both profiles it was observed that neither of them release 80% of
tolcapone at 480 min (8 h) according to the USP38 specifications established for sustained release
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dosage forms monographs. For this reason, the release was considered too slow and the percentage of
polymer was reduced.

Reference 3 (23% of Methocel® K100M CR) and Reference 4 (26% of Methocel® K100M CR) show
in vitro release profiles (overlapped as seen in Figure 4) adjusted to the established objective since
at 8 h, 70% of tolcapone had been released. Reference 5 (20% of Methocel® K100M CR) presented a
suitable in vitro release profile (Figure 5) with 80% of tolcapone released at 8 h as intended.
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Figure 4. References 3 and 4 dissolution test results.
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Figure 5. Reference 5 dissolution test results.

This is a drug release probably produced by a mixed mechanism of diffusion and erosion,
which would explain the shape of the dissolution profile: initially fast in the first 35 min (the erosion
mechanism predominates), and then to a sigmoid profile as dissemination intervenes to a greater
extent. This is due to the lower proportion of Methocel K110M CR that exists in the tablet with respect
to the other formulations. The lower percentage of this excipient means that there is no such slow
release mediated by a predominant diffusion mechanism and the irregularity caused by the mixed
drug release mechanism is manifested more clearly, with more erosion mechanism intervention.
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As shown by the studies conducted by Guojie Xu and Hisakazu [36], it is confirmed with
tolcapone’s formulations that the higher the polymer concentrations are, the slower the in vitro release
profile of the drug is.

Reference 6 (with the same concentration of hydroxypropylmethylcellulose as Reference 5, 20%)
is manufactured to study the impact that can represent the change of physicochemical characteristics
(smaller particle size) of tolcapone (batch SOM0714600).

The manufacturing process of this reference presents no additional difficulty but the in vitro
release profile is surprisingly slower than the profile obtained for Reference 5, manufactured with the
initial batch of tolcapone (batch SOM0114599) (Figure 6).
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Figure 6. Comparative dissolution test results of References 5 and 6.

To demonstrate this, a statistical study was carried out. The data obtained were processed by a
simple regression method adjusting these data to a potential equation [Y(%dissolved) = A-X(time)®]
which was optimal to explain the evolution of the dissolution process within a bounded time interval
(50 to 650 min).

The results obtained are as follows:

Reference 5:

Adjusted equation: Y = 2.0656-X"-3887

Regression analysis-Multiplicative model: Y = a*X"b

Dependent variable: (Comp5)

Independent variable: (Time5)

Selection variable: Time5 > 50 & Time5 < 650.

Standard Statistical

Parameter Estimation Error T p-Value
Ordinate 2.06557 0.0289582 71.3295 0.0000
Slope 0.388712 0.00516411 75.2719 0.0000
Analysis of Variance
Source Square sum GL Average squar F-Ratio p-Value
Model 1.67318 1 1.67318 5665.86 0.0000
Residue 0.00590618 20 0.000295309

Total (Corr.) 1.67909 21; Correlation coefficient = 0.99824; Square-R = 99.6483 percentage.
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From the results of the analysis of variance (ANOVA) of the adjusted model, it is observed that
they explain 99.65% of the quadratic variation of dissolution as a function of time, resulting in a
correlation coefficient r = 0.9982 between the observed values and values adjusted with the help of
the equation. Thus, it may be concluded that the dissolution kinetic of the product of Reference 5
fits a mathematical model of simple potential regression with a coefficient A = 2.0656 and a power
B = 0.3887.

Reference 6:

Adjusted equation: Y = 1.6295-X"4347

Regression analysis—Multiplicative model: Y = a*X"b

Dependent variable: (Comp6)

Independent variable: (Time6)

Selection variable: Time6 > 50 & Time6 < 650

Standard Statistical

Parameter Estimation Error T p-Value
Ordinate 1.62945 0.0287 56.7753 0.0000
Slope 0.434735 0.00513096 84.7279 0.0000
Analysis of Variance
Source Square sum GL Average squar F-Ratio p-Value
Model 1.95026 1 1.95026 7178.81 0.0000
Residue 0.00543337 20 0.000271669

Total (Corr.) 1.95569 21; Correlation coefficient = 0.99861; Square-R = 99.7222 percentage.

From the results of the analysis of variance (ANOVA) of the adjusted model it is observed that they
explain 99.72% of the quadratic variation of dissolution as a function of time, resulting in a correlation
coefficient r = 0.9986 between the observed values and values adjusted with the help of the equation.
Thus, it may be concluded that the dissolution kinetic of Reference 6 fits a mathematical model of
simple potential regression with a coefficient A = 1.6295 and a power B = 0.4347.

Comparison between the dissolution profiles of the compositions of Reference 5 and Reference 6
were adjusted to the potential linear regression.

A comparative statistical study was carried out based on confidence intervals at 95% for each
experimental value to determine whether there exist statistically significant differences between the
kinetics of dissolution of the formulation of Reference 5 and Reference 6 within the time interval of
50 min to 650 min. Insofar as these intervals do not overlap each other (which can be seen when
plotting said prediction intervals), it can be concluded that there are significant differences between the
kinetics of dissolution obtained for each of the formulations.

The representation of the experimental values and the adjusted models and prediction intervals
for a confidence interval of 95% is presented in Figure 7.

It is noted that for the entire experimental range studied, the adjusted dissolution values for
the composition of Reference 5 are, with a confidence interval of 95%, higher than those for the
composition of Reference 6. Thus, it may be concluded that the composition of Reference 5 (comprising
non-micronized tolcapone) shows a higher dissolution rate than that of the composition of Reference 6
(comprising micronized tolcapone).

These results are surprising since one would expect the release of Reference 5 to be slower than
that of Reference 6 due to the lower particle size of the active ingredient in the last reference.
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Figure 7. Representation of experimental values and the adjusted models and prediction intervals for a
confidence interval of 95%.

The dissolution rate of any drug is conditioned by a series of parameters, which are related in the
Noyes-Whitney equation [37],
dC/dt = K-A-(Cs - C)

where dC/dt is the dissolution rate, K is the velocity constant that describes the diffusion of the drug
to the medium (dissolution constant), A is the surface of the solid to dissolve (directly related to the
particle size of the solid), Cs is the saturation concentration in the liquid medium surrounding the
solid to be dissolved and C is the concentration in the solvent at a given time.

As shown in the Noyes—-Whitney equation, the dissolution rate depends on the physicochemical
characteristics of the active ingredient, in addition to the formulation and solvent characteristics.
Some of these characteristics are the coefficient of solubility of each defined chemical substance,
the crystalline morphology (polymorphism) and the particle size [38].

The particle size influences the specific surface of the particle so, according to the Noyes-Whitney
equation, a smaller particle size exponentially increases the dissolution rate (smaller particle size,
greater contact specific surface with the dissolution medium).

Likewise, if, through the formulation of the drug, an increase of the solubility coefficient of the
active ingredient is achieved, the value of the solution constant K of the Noyes-Whitney equation will
increase and, consequently, the rate of dissolution will increase too.

In short, when the solubility of the drug is a problem in achieving a suitable bioavailability and
the limitation is precisely in the dissolution of it, procedures aimed at improving the dissolution rate
are required [39], such as the reduction of particle size, the formation of drug—excipient complexes or
the formation of solid dispersions, among others that increase the solubility coefficient of the drug.

Thus, the results obtained are surprising and novel and have given rise to the patent
number W02018019997 [40].

4. Conclusions

The research carried out has made it possible to obtain, using the SeDeM Diagram tool,
a hydrophilic-matrix-sustained release tablet of tolcapone for the treatment of familial amyloid
polyneuropathy. Reference 5 is proposed as the definitive prototype formula because it presents
appropriate characteristics for direct compression and dissolution.

A decrease in the particle size of tolcapone results in a slower dissolution release of the formulation
when the concentration of the polymer Methocel® K100M CR is below 29%. In this case, tolcapone,
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a substance insoluble in water, forms a dispersion in the gelled matrix more viscous as the particle size
of tolcapone becomes smaller, which would cause a slower release of the active substance.

5. Patents

These results have given rise to patent number W0/2018/019997.
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