pharmaceutics WW\D\PH
F

Article
Hot-Melt Extrusion as an Advantageous Technology
to Obtain Effervescent Drug Products

Ana Luiza Lima ¥, Ludmila A. G. Pinho 19, Juliano A. Chaker 2, Livia L. Sa-Barreto 2,
Ricardo Neves Marreto 3, Tais Gratieri 110, Guilherme M. Gelfuso 1
and Marcilio Cunha-Filho 1-*

1 Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia,
Brasilia 70910-900, Brazil; anaaluiza.ln@gmail.com (A.L.L.); ludmila.alvim@gmail.com (L.A.G.P.);
tgratieri@gmail.com (T.G.); gmgelfuso@unb.br (G.M.G.)

2 Faculty of Ceilandia, University of Brasilia (UnB), Brasilia 72220-900, Brazil; chaker@unb.br (J.A.C.);
liviabarreto@unb.br (L.L.S.-B.)

Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy,

Federal University of Goias, Goiania 74690-900, Brazil; rnmarreto@gmail.com

*  Correspondence: marciliocunha@unb.br; Tel.: +55-61-31071990

Received: 17 July 2020; Accepted: 7 August 2020; Published: 17 August 2020 ::‘P;)edc :t?sr
Abstract: Here, we assessed the feasibility of hot-melt extrusion (HME) to obtain effervescent drug
products for the first time. For this, a combined mixture design was employed using paracetamol
as a model drug. Extrudates were obtained under reduced torque (up to 0.3 Nm) at 100 °C to
preserve the stability of the effervescent salts. Formulations showed vigorous and rapid effervescent
disintegration (<3 min), adequate flow characteristics, and complete solubilization of paracetamol
instantly after the effervescent reaction. Formulations containing PVPVA in the concentration range
of 15-20% m/m were demonstrated to be sensitive to accelerated aging conditions, undergoing
marked microstructural changes, since the capture of water led to the agglomeration and loss of their
functional characteristics. HPMC matrices, in contrast, proved to be resistant to storage conditions
in high relative humidity, showing superior performance to controls, including the commercial
product. Moreover, the combined mixture design allowed us to identify significant interactions
between the polymeric materials and the disintegrating agents, showing the formulation regions
in which the responses are kept within the required levels. In conclusion, this study demonstrates
that HME can bring important benefits to the elaboration of effervescent drug products, simplifying
the production process and obtaining formulations with improved characteristics, such as faster
disintegration, higher drug solubilization, and better stability.

Keywords: hot-melt extrusion; effervescent drug product; stability; hygroscopicity; disintegration time

1. Introduction

Effervescent drug products frequently contain an organic acid source and a hydrogen carbonate
salt in their composition, which, in an aqueous medium, react vigorously releasing gas [1,2].
These preparations are hybrids between a solid dosage form, for manufacture and commercialization
purposes, and a liquid dosage form, for administration. Moreover, the traditional approach of
effervescence is still one of the most efficient and elegant alternatives to facilitate the intake of high drug
doses, increase drug release and absorption, and improve taste-masking [1,3,4]. Hence, effervescent
medicines account for an important share of the pharmaceutical market involving the delivery of
vitamins, analgesics, antacids, anti-inflammatories, and others [5,6].

A notorious weakness of effervescent formulations is their sensitivity to environmental
conditions [7]. In particular, the high hygroscopicity of the effervescent components can cause a rapid
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moisture intake, leading to hydrolysis processes that compromise drug stability. Therefore, strict control
of the production area is mandatory, including manufacturing conditions of low temperatures
and relative humidity, together with the use of hermetic packaging [8].

Some recent technological advances involving effervescent products have been proposed by means
of solvent-consuming and elaborated multistep processes, including freeze-drying, spray-drying,
and fluidized bed coating techniques [9-13], which, therefore, are not attractive to the industry.

Hot-melt extrusion (HME), in contrast, is a technology recently incorporated into the pharmaceutical
field, which is highly adapted to large-scale production due to its continuous and solvent-free
manufacturing [14,15]. The processing of the formulation takes place in a single step by the rotation of
screws in controlled conditions of heating and shear [16]. Extruded products have shown excellent
flow and tableting characteristics, as well as improved taste, wetting, solubility, and drug stability
characteristics [17-21]. Moreover, HME is the perfect match to provide drug filaments for the 3D fused
deposition modeling printing of drug products with a modified drug release profile [22].

Thus, we hypothesized here that the HME process could offer advantages for the production of
effervescent preparations, possibly by improving both production conditions and product properties.
In theory, this process could simplify the production of effervescent products by reducing its steps,
as well as obtaining more stable products with better solubility according to the polymeric matrix
characteristics. As far as we know, this is the first work involving the development of effervescent
drug products by HME.

In this scenario, the purpose of the present study was to assess the feasibility of using HME in
the manufacturing of effervescent granules through physicochemical and pharmacopoeial evaluations.
Paracetamol was selected as a model drug, considering its extensive use in effervescent commercial
products. A combined mixture design was proposed in an approach that allows monitoring the interactions
among the components of the formulation, i.e., the polymeric matrices and the disintegrating agents,
identifying compositions with optimized results.

2. Materials and Methods

2.1. Material

Affinisol™ HME 100LV (HPMC, hydroxypropyl methylcellulose, lot ID99015561) was
donated by Dow Chemical Company (Midland, MI, USA). Plasdone™ S-630 (PVPVA,
poly(vinylpyrrolidone-co-vinyl acetate), lot 2095174), and triethyl citrate (TEC, lot 15728) were
provided by Ashland Specialty Ingredients (Covington, LA, USA). Parteck® ODT (PTK, lot F1977890)
and Ludiflash® (LDF, lot 16800516K0) were granted from Merck (Darmstadt, Germany) and BASF
Corp. (Ludwigshafen, Germany), respectively. Paracetamol (lot 1511337) was provided by Purifarma
(Sao Paulo, Brazil). Both citric acid (ot MKCC6083) and sodium bicarbonate (lot SZBE0080V) were
afforded by Sigma-Aldrich (St. Louis, MO, USA). All solvents were of analytical grade.

2.2. Combined Mixture Design

The effervescent extrudates containing paracetamol were developed according to a combined
mixture design planned for using the polymeric matrix (HPMC and PVPVA) and the disintegrating
agent (PTK and LDF) as input variables (Table 1) [23-25]. The responses were chosen considering
important parameters for the production and use of effervescent drug products, i.e., moisture content,
disintegration time, compressibility, and drug solubilization. Data were modeled using the Design
Expert 11.0 software (Stat-Ease, Minneapolis, MN, USA). The possible models were analyzed by ANOVA
one-way, and the fitting model was selected for each response based on p-values. The predictive
equation for each response was built from stepwise multiple regression analysis [26]. Moreover,
a response surface was built for the optimized response considering all responses studied (desirability
function from 0 to 1).
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Table 1. Summary of the formulation composition according to the combined mixture design and their
extrusion conditions. In formulations representation, H refers to HPMC and P to PVPVA.

Formulation Components (%, m/m) Extrusion Conditions
Formulation Representation
PVPVA HPMC PTK LDF Rotation (rpm) Torque (Nm)
{
o
m’; o 10.0 10.0 0.0 5.0 50 0.20
{
d H  PJ
20.0 0.0 2.5 2.5 75 0.15
PTK _ LDF
o]
PTK LDF 10.0 10.0 5.0 0.0 50 0.20
H P?
20.0 0.0 5.0 0.0 75 0.15
PTK LDF
.
H Pl
B‘PTK LDF 0.0 20.0 5.0 0.0 50 0.30
[ ]
H P
a’ '] 10.0 10.0 25 2.05 50 0.20
PTK _LDF
E.H Pl
PTK  LDF 0.0 20.0 0.0 5.0 50 0.30

°
H_PJ
IE'_ 15.0 5.0 1.25 3.75 50 0.20

PTK LDF

°
Y
d 5.0 15.0 3.75 125 50 0.20

PTK LDF

°
H Py
IE'_ 200 0.0 0.0 5.0 75 0.15

PTK LDF

@

oTK LoF 0.0 20.0 25 25 50 0.30

2.3. Extrusion Conditions and Sample Aging

The HME formulations were comprised of the effervescent salts combined in a stoichiometric
proportion (citric acid 24.0%, m/m; and sodium bicarbonate 36.0%, m/m), the plasticizer TEC (5.0%, m/m),
the model drug paracetamol (10.0%, m/m), the polymeric matrix HPMC and/or PVPVA (20.0%, m/m),
and the disintegrating agent PTK and/or LDF (5.0%, m/m). The last two excipient categories had
their proportion in the composition adjusted according to the combined mixture design (Table 1).
All components were mixed and then extruded without recirculation in a co-rotating conical twin-screw
extruder HME (HAAKE MiniCTW, ThermoScientific, Waltham, MA, USA) at 100 °C in the two
heat-points. The parameters of extrusion, such as rotation speed and torque, were selected in order
to provide an adequate extrusion flow and material stability (Supplementary Materials Figure S1).
The filaments were milled for 20 min at 20,000 rpm using a Hamilton Beach knife mill (Glen Allen, VA,
USA) with a stainless-steel blade of 1.6 mm thick. The resulting granules (250-180 um) were used for
the tests.

An accelerated aging treatment was performed in the extrudates placed in Petri glass dishes,
which were stored under 75% relative humidity and 40 °C for 24 h [27]. Moreover, each compound
used in the formulation, a physical mixture containing paracetamol with citric acid and sodium
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bicarbonate (PM), and a commercial effervescent drug product containing paracetamol (Sonridor®,
lot XC3N, GlaxoSmithKline Dungarvan Ltd., Dungarvan, Ireland), underwent the same treatment to
serve as controls.

2.4. Physicochemical Characterization of the Extrudates

2.4.1. Thermal Analysis

Differential scanning calorimetry (DSC) was performed by a DSC-60 (Shimadzu, Japan) at a
heating rate of 20 °C min~! from 25 to 200 °C using 3-5 mg samples placed in aluminum pans.
Thermogravimetric analysis (TGA) was performed by a DTG-60H (Shimadzu, Japan) operating at a
heating rate of 10 °C min~! from 25 to 500 °C with 3-5 mg samples sited in platinum pans. All analyses

were carried out in a nitrogen atmosphere at a flow of 50 mL min~!.

2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR analyzes were performed in a Varian 640 FTIR spectrometer (Agilent Technologies,
Santa Clara, CA, USA). The spectra were recorded between 4000 and 600 cm ! atan optical resolution
of 4 cm~! using an attenuated total reflection device. The correlation coefficient between fresh and aged
samples [28] was calculated using the FTIR Essential software (Operant LLC, Madison, WIS, USA).

2.4.3. Drug Determination

Quantification of paracetamol in extrudates was performed by a spectrophotometric method
using a UV-VIS spectrophotometer UV-1800 (Shimadzu, Japan) operating at 257 nm. The analytical
method was validated following the International Conference on Harmonization parameters [29].
Selectivity against polymers and superdisintegrants was appraised, and no statistical interference of
the excipients was detected. The linearity correlation coefficient was 0.998, with a slope different from
zero and residues randomly distributed without tendency.

2.4.4. Morphological Analysis

The morphological characteristics of the samples were evaluated by optical microscopy using a
stereoscope coupled to a video camera (Laborana/SZ—SZT, Sao Paulo, Brazil) and by a scanning electron
microscope (SEM, Jeol, JSM-7001F, Tokyo, Japan) with a previous metallic coating of the samples.

2.5. Functional Characterization of the Extrudates

2.5.1. Moisture Content

The moisture content of the samples was assessed in triplicate by gravimetry using a moisture
analyzer (MOC63u, Shimadzu, Japan), operating at an equilibrium temperature of 120 °C until reaching
a mass variation less than 0.01% m/m for 30 s.

2.5.2. Disintegration Time and Drug Solubilization

Approximately 500 mg of each formulation were placed in 100 mL of water at 25 °C,
and the disintegration time was recorded. Samples were considered disintegrated when the granules
were disrupted, and the liberation of gas stopped. After 5 min, as established by the pharmacopeia [30],
aliquots were collected, filtered, and diluted to determine the drug dissolved using the analytical
method previously described. All determinations were performed in triplicate.
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2.5.3. Powder Flow Measurement

The compressibility (%) was determined in triplicate using a powder characteristic tester, PT-N
(Hosokawa Micron Powder Systems, Summit, NJ, USA), based on the values of aerated density (da)
and packed density (5t) using the following equation [31]:

compressibility (%) = 100 X (6t — da)/ot,

for samples that could not be analyzed due to their high cohesiveness, a compressibility value equal to
40% obtained for cohesive materials was assigned for model analysis purposes.

2.6. Statistical Analysis

The statistical analysis of the data was performed using the GraphPad Prism 8 (San Diego, CA,
USA). Results were analyzed using two-way ANOVA followed by Tukey post-test, since the data
passed the normality test, showing parametric behavior. The level of significance (p) was fixed at 0.05.

3. Results and Discussion

3.1. Initial Trials and Extrusion Setup

Several hydrophilic thermoplastic polymers commonly used in HME combined with effervescent
components were tested in the usual extrusion conditions of each material. The first challenge was to
achieve a satisfactory extrusion consuming a minimum amount of polymer since the salts that trigger
the gas release need to be in high proportion in effervescent products [32]. For some polymers, this was
achieved using only 20% m/m of these components.

Initial trials demonstrated that extrusion temperatures above 100 °C promoted the decomposition
of sodium bicarbonate, leading to gas release followed by the expansion and darkening of the filament.
Although the thermal decomposition of this salt occurs at 120 °C [33], the extrusion shear anticipated
this event to lower temperatures. Therefore, a plasticizer was added (5% m/m) to reduce the extrusion
temperature to 100 °C. TEC was selected for being a versatile plasticizer agent for several HME
polymers [34].

The next step was to ensure that the extruded granules had the disintegration time within 5 min,
the time required for an effervescent drug product [30]. Most of the polymeric matrices did not produce
granules with the required performance, resulting in dense materials that prevented the granule from
triggering the effervescent reaction.

The addition of co-processed excipients used in orodispersible tablets was evaluated as an
alternative. In particular, two products that combined superdisintegrants with mannitol, a sugar
alcohol with high aqueous solubility, were used (PTK and LDF). This combination of components
proved to be very effective in accelerating the disintegration of the effervescent granules with different
polymeric matrices and, therefore, were introduced as a variable in the experimental design. In fact,
the combined mechanisms of solubilization and swelling of the granule achieved by using these
materials led to a more intense effervescent reaction that rapidly disintegrates the extrudates. Moreover,
other advantages of using these materials for an effervescent product could be listed, such as improving
taste-masking, flowability, and tableting, as well as reducing the solid residual after disintegration [35].

For further formulation development, two polymeric matrices were selected with similar glass
transition temperature, allowing us to combine both in the proposed mixture design: PVPVA and HPMC.
These polymers show glass transition at 109 and 115 °C, respectively [36,37].

The trials revealed components with promising potential for obtaining, for the first time,
an effervescent drug product by HME; however, other technological challenges still needed to
be addressed. Besides fulfilling the disintegration requirements, the HME matrix must gather
other attributes such as chemical and physical stability, adequate rheology, and not hindering
the drug solubilization.
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Accordingly, a combined mixture design involving the two components that have the most
substantial influence on these responses—the polymeric matrix and the disintegrating agent—was
applied (Table 1) to understand how the formulation composition could impact its physicochemical
properties and, after that, the pharmaceutical performance.

The use of TEC, in addition to the plasticizing effects of citric acid and the drug itself, allowed
the extrusion of all formulations at 100 °C. The screws rotation was selected in order to minimize
the risk of effervescent salts degradation caused by shear, as well as promoting the homogeneous
mixture of the materials; thus, moderate screw rotation speeds were used (50-75 rpm), adjusted to
a maximum torque of 0.3 Nm (Table 1). Otherwise, higher torque triggered the decomposition of
the effervescent components with the expansion of the extruded filament due to gas release during
the extrusion. For the formulations containing HPMC, a low rotation of the screws (50 rpm) had to
be used to increase the material extrusion time and, consequently, produce a homogeneous filament.
In contrast, PVPVA formulations were processed at 75 rpm to produce a filament with appropriate
viscoelastic characteristics for granulation.

Therefore, the most favorable extrusion conditions were obtained using PVPVA, which allowed
the extrusion using lower torque, producing more flexible and porous filaments. On the other hand,
formulations using only HPMC as a polymeric matrix (F5, F7, and F11) exhibited denser and more
compact filaments (Supplementary Materials Figure S1).

3.2. Physicochemical Evaluation of the Extrudates

In the DSC results of the physical mixtures, despite the dilution of paracetamol in the formulations
and the interference of the large decomposition endotherm of sodium bicarbonate, a peak of around
170 °C corresponding to the drug melting was assigned under the performed analysis conditions.
Moreover, the enthalpy involved in this event was significantly reduced due to the partial solubilization
of the drug in the polymeric matrix during the analysis itself (Table 2). In contrast, the fresh HME
samples did not exhibit the paracetamol melting peak, suggesting the amorphization of the drug due
to the HME process (Supplementary Materials Figure S2). Similarly, the aged extrudates showed no
drug melting event, indicating the absence of drug recrystallization after aging. Similar results were
reported in the literature using paracetamol; however, upon extrusion temperatures above 120 °C [38].
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Table 2. Thermogravimetric analysis (TGA) of the extrudates including the sample initial decomposition
temperature (°C), the mass loss (%), and the number of decomposition phases occurring up to 500 °C,
together with the differential scanning calorimetry (DSC) results for Tpeak (°C) and heat (J/g) of
paracetamol melting in physical mixtures (PM) and the FTIR correlation coefficient between fresh
and aged extrudates.

TGA DSC FTIR
. . Initial
F lat; R tat i
ormuiation Representation Decomposition Mass Loss (%) Number of Tpeak (°C)  Heat (J/g) Correlation
o Decomposition Steps Coefficient
Temperature (°C)
@]
PTK LDF 126.1 62.4 6 167.9 -1.44 0.9715
ra—
1244 715 6 167.8 -1.07 0.9558
PTK _ LDF
radr|
oTK LDH 125.2 65.1 6 171.5 —1.47 0.9112
s 4
125.8 67.5 5 170.3 -1.42 0.9803
PTK _LDF
.
"o P
PTK  LDF 134.2 61.5 4 170.8 -0.23 0.9471
@
HoP
a’ ’| 1265 632 6 165.2 -119 0.9032
PTK__ LDF
.ﬁ
WP
@, . 1313 640 5 1714 -351 09349
{ }
@y
PTK LDE 127.5 77.1 5 166.5 -2.36 0.9741
@.
Y
a 1262 60.6 5 167.6 -191 0.8668

PTK LDF

e ]
123.8 68.6 5 165.4 -0.28 0.9946

PTK LDF

@i

PTK LDF 1322 59.5 4 165.7 -0.21 0.9556

The polymeric matrices and disintegrating agents alone exhibited high thermal stability according
to the TGA results, with an initial decomposition temperature above 230 °C. Additionally, paracetamol
showed a decomposition temperature above 195 °C. In contrast, the effervescent components are
thermosensitive, i.e., citric acid decomposes just after its melting at around 170 °C, while sodium
bicarbonate decomposes from 120 °C. Thus, preserving the stability of effervescent salts during
the HME process was the major challenge to overcome.

All extrudates obtained in the experimental design showed initial decomposition temperatures
in the range of 120-130 °C (Table 2), with a mass loss profile in several stages corresponding to
the sum of the excipients and drug decomposition profile (around 60-70% of the sample until 500 °C).
These results indicate chemical compatibility between the components of the formulation and suggest
the preservation of the material stability after the extrusion process [39].

The paracetamol functional groups could be identified from the FTIR spectra of the fresh extrudates,
corroborating the stability of the formulations after extrusion (Figure 1). Moreover, the drug content of
all formulations fulfills the pharmacopoeial range of 90-110% [40]. Moreover, a high correlation index
was observed among the spectra of the fresh and aged samples for all extrudates (r > 0.9, Table 2),
providing evidence that the chemical integrity of these systems would also be maintained during
the shelf period [28].
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Figure 1. FTIR of the paracetamol as supplied and the effervescent extrudates obtained according to a
combined mixture design before and after aging.

Regarding the morphological aspects, the extrudate granules showed a regular size and a rounded
shape (Figure 2). SEM photomicrographs of the surface of the granules showed that PVPVA-based
extrudates are more porous, while those obtained using HPMC presented a more regular and compact
surface (Figure 3). The thermal aging associated with a high relative humidity exposure caused intense
microstructural changes in some formulations, according to the polymeric matrix used. In particular,
extrudates containing high proportions of PVPVA underwent particle agglomeration caused by a
plasticizer effect exerted by the moisture captured by these samples. In fact, SEM photomicrographs
corroborate this hypothesis showing that in these samples (F2, F4, F8, and F10), the polymeric matrix
formed a film that extended almost continuously on the extrudate.

3.3. Pharmaceutical Performance of the Extrudates

The statistical evaluation of the combined mixture design for the selected responses led to
significant predictive models (p < 0.0001) and high correlation coefficients (* > 0.8). Moreover,
the adequate precision parameter, which determines the range of a predicted response relative to its
associated error, exhibited values higher than 10, allowing navigation in space design [41].

The determination of water content in the HME formulations, as well as in the selected controls
after aging is shown in Figure 4a. The uptake of water by the commercial effervescent product
containing paracetamol was about 7.5%, while the physical mixture of the drug with the effervescent
salts (PM) showed an even higher value (10.0%). In contrast, HME extrudates exhibited low moisture
levels between 2.5-5.0%.

In fact, the well-known hygroscopicity of effervescent components is one of the main obstacles
faced in the production of effervescent drug products, demanding productive areas with strict
environmental humidity controls [11,42]. In this sense, the higher resistance of HME extrudates to
water uptake is an important industrial advantage of these products. Additionally, the previous dry
treatment of the raw material to be used in the manufacturing of the effervescent drug product would
not be necessary using this technology, as the residual moisture of the raw materials can eventually
assist HME processing due to water plasticizer effect, without bringing negative consequences to
the extrudates, once this residual water ends up being evaporated at the end of the extrusion. In fact,
the moisture of fresh extrudates was within the range of 0.5-2.0%.
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Figure 2. Optical microscopy photomicrographs of effervescent extrudates obtained according to a
combined mixture design before and after aging at a 45X magnification.
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Figure 3. SEM photomicrographs of effervescent extrudates obtained according to a combined mixture

design before and after aging at a 1000x magnification.
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Figure 4. (a) Moisture content (%) of the drug as supplied, the physical mixture containing drug
and effervescent salts (PM), commercial drug product (CP), and effervescent extrudates after aging;
(b) Response surface for moisture content according to a linear-cubic model, together with its predictive
equation (A = PVPVA, B = HPMC, C = PTK, and D = LDF). The green regions show compositions with
low moisture levels, and the red regions indicate compositions with high moisture levels.

The moisture levels of the HME granules after aging was linked to the formulation composition,
being mainly influenced by the polymeric matrix, as illustrated on the response surface of Figure 4b.
The regions in which the formulation has higher proportions of PVPVA lead to granules with higher
water content (regions in red in Figure 4b). Furthermore, the coefficients of the terms containing
this polymer have values almost twice as high as those involving the HPMC. Previous studies have
shown that PVPVA can be a moisture-sensitive ingredient, especially under conditions of high relative
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humidity [43]. The response surface also shows compositions of the extrudate in which the moisture
levels are quite low (around 2%), containing mostly HPMC and PTK (green regions in Figure 4b).

As previously mentioned, a mandatory condition for effervescent medicines is to rapidly
disintegrate in the water at room temperature, specifically within 300 s [30]. During the extrudates
development, a densification of the polymeric matrix promoted by HME was observed, which could
have hindered the reaction of the effervescent components. Even so, in the experimental design
presented here, all the compositions met this requirement satisfactorily (grey bars of Figure 5a).
Furthermore, most of the compositions showed faster disintegration than the commercial effervescent
product (CP) and the physical mixture (PM), in which the effervescent salts are free to trigger
the effervescent reaction in the aqueous medium. These results demonstrate the promising potential of
HME in developing effervescent products conditioned by the use of suitable experimental conditions.

The response surface for this parameter in the freshly prepared HME granules shows that
the polymer matrix PVPVA is very sensitive to the disintegrating agent used, with a disintegration time
of less than 50 s when PTK is used, and higher than 200 s when using LDF (Figure 5b). The disintegration
time of extrudates containing mostly HPMC, in turn, is practically unaffected by the disintegrating
agent, resulting in granules with disintegration in around 100 s.

When forced aging conditions challenged the extrudates, formulations containing more than 15%
of PVPVA had a noticeable reduction in the intensity of the effervescent reaction and increased
disintegration times, failing the sanitary limits for this response (regions in red in Figure 5c).
The microstructural changes that occurred with these samples led to non-porous granules, as discussed
in Section 3.2, and ultimately produce a negative impact on their disintegration capacity. The polymeric
matrix interacts with components of the formulation, making them inaccessible to water, and even
annulling the effect of disintegrating agents.

In contrast, the presence of the HPMC polymer in at least 5% seems to preserve the disintegration
properties of the granules. In fact, in the predictive equation, the positive value coefficients involving
this polymer are up to five times lower than in the terms involving PVPVA (Figure 5c).

All fresh extrudates showed adequate rheological characteristics for pharmaceutical production
(gray bars of Figure 6a), with compressibility values below 20% [44] and considerable improvement
of the deficient flow characteristics of paracetamol as supplied. In fact, the HME process promotes
the densification of the solid material, and the plastic polymer matrix favors the cut in the granulation
process originating free-flow particles [45,46].

The flow results are strongly influenced by the composition of the granulate (Figure 6b).
The excellent flow was achieved when using mostly HPMC and the disintegrant PTK (compressibility
<12%), while good or fair flow was obtained using PVPVA in any composition of the disintegrating
agents studied (compressibility 16-20%).

The structural changes caused by the aging of samples containing PVPVA in proportions higher
than 10%, which initiated the aggregation of the granules (Figure 2), made these granules extremely
cohesive, confirming the loss of their functionality. Figure 6¢ shows the regions in red, which represent
compositions more sensitive to rheological problems due to water intake (coefficients of the predictive
equation involving PVPVA are up to four times greater than those that include HPMC).

An important aspect in an effervescent preparation is the drug solubilization in the liquid medium
after effervescence, ensuring an adequate bioavailability. Paracetamol, chosen as a model drug, has
high aqueous solubility (14.2 mg/mL [47]), even so, after 5 min, only 50% of the dose was dissolved in
water at 25 °C from the raw material (Figure 7a), probably due to the slow dissolution of its crystals
and the low wetting of the solid particles. Hence, simply mixing the effervescent components with
the drug, despite the effervescence reaction, does not improve this result.
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Figure 5. (a) Disintegration time (s) of fresh and aged physical mixture of drug and effervescent
salts (PM), commercial drug product (CP), and effervescent extrudates; (b) Response surface for
disintegration time in fresh extrudates according to a linear-cubic model, together with its predictive
equation; (c) Response surface for disintegration time in aged extrudates according to a cubic-linear
model, together with its predictive equation. A = PVPVA, B = HPMC, C = PTK, and D = LDF.
The red dotted line in (a) marks the pharmacopoeial limit; the green regions in (b and c¢) show
compositions within the sanitary limit, and the red regions in (c) indicate compositions outside this limit.
™ (p < 0.0001), ™ (p < 0.005).
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Figure 6. (a) Compressibility (%) of fresh and aged raw material drug, physical mixture of drug
and effervescent salts (PM), and effervescent extrudates; (b) Response surface for compressibility
in fresh extrudates according to a quadratic-quadratic model, together with its predictive equation;
(c) Response surface for compressibility in aged extrudates according to a cubic-linear model, together
with its predictive equation. A = PVPVA, B = HPMC, C = PTK, and D = LDF. The red dotted line
in (a) marks the limit for an appropriate flow; the green regions in (b) and (c) show compositions
within particle flee flow, and the red regions in (c) indicate compositions with cohesive particles.

skt

(p < 0.0001).
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Figure 7. (a) Drug dissolved (%) of fresh and aged raw material drug, physical mixture of drug
and effervescent salts (PM), and effervescent extrudates; (b) Response surface for drug dissolved
in fresh extrudates according to a quadratic-quadratic model, together with its predictive equation;
(c) Response surface for drug dissolved in aged extrudates according to a quadratic-quadratic model,
together with its predictive equation. A = PVPVA, B = HPMC, C = PTK, and D = LDE. The red
dotted line in (a) marks the limit for drug solubilization according to the FDA; the green regions in
(b) and (c) show compositions with appropriate solubilization, and the red regions in (c) indicate
compositions with inappropriate solubilization. ™ (p < 0.0001), * (p < 0.05).

In contrast, the HME processing promoted drug amorphization, which, combined with a
hydrophilic polymeric base and the effervescent reaction, led to the complete solubilization of
paracetamol in a short time for most of the extrudates (Figure 7a). For some extruded compositions,
however, the solubilization of the drug was similar to that of the drug as supplied (about 50%).
In the response surface for fresh samples, this happened specifically in mixtures containing the two
polymers in equal proportion and using LDF (red regions in Figure 7b). In fact, the term involving
both polymers and PTK (ABD) in the predictive equation was negative and had a high coefficient
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(Figure 7b). Despite the rapid disintegration of these systems (Figure 5b), the divided concentration of
each polymeric matrix in this region of the design is not sufficient to promote a marked interaction of
the drug with any of the polymers, annulling its action in assisting the solubilization of paracetamol.

After forced aging of the samples, some extrudates lost the ability to dissolve the drug rapidly
(F1,F4, and F10, dark bars in Figure 7a). As a comparison, the FDA recommends that immediate-release
solid oral dosage forms should dissolve at least 85% of their dose at the end of the assay [48].
These extrudates, which contain higher proportions of PVPVA, underwent major structural changes
as previously discussed, hindered matrix disintegration, and, consequently, the drug solubilization.
The response surface shows that the combination of PVPVA and LDF intensifies this effect, resulting in
less than 20% of paracetamol dissolved before the patient intake (red regions in Figure 7c).

Still, formulations containing mostly HPMC preserve their high solubilization capacity after aging,
regardless of the disintegrating agent used. In fact, this polymer showed in the predictive equation
coefficients values up to four times higher than the coefficients related to PVPVA (Figure 7c).

Finally, all the responses were integrated in order to produce an optimized response surface with
outcomes following the pharmacopoeial parameters. Hence, formulations containing only HPMC,
as a polymeric matrix, with any of the disintegrating agents, as well as mixtures of both polymers
HPMC/PVPVA and PTK led to suitable results (green regions in Figure 8). Importantly, this wide
range of possible formulation compositions facilitates the scale-up production, allowing adjustments
in the formulation in large-scale production. In addition, the HME process usually presents a more
simplified scale-up than other industrial processes [49]. Particularly, HME production of effervescent
products could be associated to an open zone in the barrel, therefore any water vapors could be
eliminated by the degassing process of the material, producing filaments with even lower moisture
content [50,51].

Optimized response

&

PTK

0%/

o b
0% . - ¥
wewc (T S =

Figure 8. Response surface for the optimized response (desirability index) of effervescent formulations

LDF

produced by HME, considering moisture content, disintegration time, compressibility, and drug
solubilization. The green regions show compositions within better pharmaceutical performance.

4. Conclusions

This study demonstrates that the HME process can bring great benefits to the production of
effervescent drug products, simplifying the production process, involving fewer manufacturing
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steps, and originating intermediate products with more favorable flow characteristics for a tablet
transformation. Furthermore, the final product may present better characteristics than commercial
effervescent drug products prepared by traditional processes, such as faster disintegration, higher drug
solubilization, and better stability in conditions of high relative humidity storage.

Nevertheless, the extrusion conditions, as well as the qualitative and quantitative composition,
play a crucial role in the viability of this technology. In this sense, the use of quality-by-design tools as
experimental mixture designs can accurately identify the concentration ranges and combinations of
excipients that can lead to optimal pharmaceutical product performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/8/779/s1,
Figure S1: Optical microscopy photomicrographs of the longitudinal and transversal view of the filaments at a
30x magnification, Figure S2: DSC curve of paracetamol as supplied and the fresh extrudates. Dark blue dotted
lines show citric acid degradation and light blue dotted lines show sodium bicarbonate degradation.
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