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Abstract: Despite recent advances in bioinformatics, systems biology, and machine learning,
the accurate prediction of drug properties remains an open problem. Indeed, because the biological
environment is a complex system, the traditional approach—based on knowledge about the chemical
structures—can not fully explain the nature of interactions between drugs and biological targets.
Consequently, in this paper, we propose an unsupervised machine learning approach that uses
the information we know about drug-target interactions to infer drug properties. To this end,
we define drug similarity based on drug-target interactions and build a weighted Drug-Drug
Similarity Network according to the drug—drug similarity relationships. Using an energy-model
network layout, we generate drug communities associated with specific, dominant drug properties.
DrugBank confirms the properties of 59.52% of the drugs in these communities, and 26.98% are
existing drug repositioning hints we reconstruct with our DDSN approach. The remaining 13.49% of
the drugs seem not to match the dominant pharmacologic property; thus, we consider them potential
drug repurposing hints. The resources required to test all these repurposing hints are considerable.
Therefore we introduce a mechanism of prioritization based on the betweenness/degree node
centrality. Using betweenness/degree as an indicator of drug repurposing potential, we select Azelaic
acid and Meprobamate as a possible antineoplastic and antifungal, respectively. Finally, we use a test
procedure based on molecular docking to analyze Azelaic acid and Meprobamate’s repurposing.

Keywords: drug repurposing; drug-target interactions; drug—drug similarity network; network
clustering; network centrality; molecular docking

1. Introduction

Conventional drug design has become expensive and cumbersome, as it requires large amounts
of resources and faces serious challenges [1,2]. Consequently, although the number of new FDA
drug applications (NDAs) has significantly increased during the last decade—due to a spectacular
accumulation of multi-omics data and the appearance of increasingly complex bioinformatics

Pharmaceutics 2020, 12, 879; doi:10.3390/ pharmaceutics12090879 www.mdpi.com/journal/pharmaceutics


http://www.mdpi.com/journal/pharmaceutics
http://www.mdpi.com
https://orcid.org/0000-0002-3084-6301
https://orcid.org/0000-0003-2118-0816
https://orcid.org/0000-0003-1618-9656
https://orcid.org/0000-0001-7244-0732
https://orcid.org/0000-0002-2845-8609
https://orcid.org/0000-0002-7607-9240
http://dx.doi.org/10.3390/pharmaceutics12090879
http://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/1999-4923/12/9/879?type=check_update&version=2

Pharmaceutics 2020, 12, 879 2 of 27

tools—the number of approved drugs has only marginally grown (see Figure 1) [3,4], calling for
more robust alternative strategies [5].
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Figure 1. The evolution of New Drug Applications (NDAs) and New Molecular Entities (NME) during
1940-2017. We used the FDA’s annual reports data [6] and removed local oscillations by plotting a
polynomial data fitting.

One of the most effective alternative strategies is drug repositioning (or drug repurposing) [7,8],
namely finding new pharmaceutical functions for already used drugs. The extensive medical and
pharmaceutical experience reveals a surprising propensity towards multiple indications for many
drugs [9], and the examples of successful drug repositioning are steadily accumulating. Out of the
90 newly approved drugs in 2016 (a 10% decrease from 2015), 25% are repositionings in formulations,
combinations, and indications [4]. Furthermore, drug repositioning reduces the incurred research and
development (R&D) time and costs and medication risks [9,10].

The recent developments confirm computational methods as powerful tools for drug repositioning:

e  The trivialization/spread of omics analytical approaches have generated significant volumes of
useful multi-omics data (genomics, proteomics, metabolomics, and others) [11,12].

e The ubiquity of digitalization in everyday life, including social media, has tremendously
expanded the amplitude of the process of gathering data on drug—drug interactions and drug
side-effects [13,14].

e  The recent developments in physics, computer science, and computer engineering have created
efficient methods and technologies for data exploration and mining, such as complex network
analysis, machine learning, or deep learning [12,15-19].

Complex network analysis has proven to be a useful tool for predicting unaccounted
drug-target interactions. Indeed, several state-of-the-art network-based computational drug repurposing
approaches use data on confirmed drug—target interactions to predict new such interactions, thus leading
to new repositioning hints [20,21]. Some approaches build drug—drug similarity networks, where the
similarity is defined based on transcriptional responses [22,23]. These repositioning approaches analyze
the network parameters and the node centrality distributions in either drug-drug or drug-target networks,
using statistical analysis [11,12,24,25] and machine learning (i.e., graph convolutional networks) [26-29] to
link certain drugs to new pharmacological properties. However, conventional statistics can be misleading
when used to predict extreme centrality values, such as degree and betweenness (which particularly indicate
nodes/drugs with a high potential for repositioning) [30]. Nonetheless, other previous network-related
approaches introduce useful repositioning pipelines [31,32], but they are mostly based on multi-partite and
multilayered unweighted networks, challenging to process and interpret.
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To overcome these challenges, we developed a novel, network-based, computational approach
to drug repositioning. To this end, we build a weighted drug-drug network, i.e., a complex
network where the nodes are drugs, and the weighted links represent relationships between drugs,
using information from the accurate DrugBank [33]. In our drug—drug similarity network (DDSN),
a link is placed between two drugs if their interaction with at least one target is of the same type
(either agonistic or antagonistic). The link weight represents the number of biological targets that
interact in the same way with the two drugs.

Our methodology for analyzing the drug-drug similarity network (DDSN) consists of the
following steps:

1.  Generate (using the Force Atlas 2 layout and modularity classes) [34,35] both topological clusters
and network communities.

2. Relate each cluster and each community to a pharmacological property or pharmacological action
(i.e., label communities and clusters according to the dominant property or pharmacological
action), using expert analysis.

3. Identify and select (by betweenness divided by degree, b/d) within each topological
cluster/modularity class community, the top drugs not compliant with the cluster/community
label. Network analysis uses centralities to rank nodes (i.e., drugs); we opt for the b/d centrality
to find this centrality’s distribution more stable in the DDSN.

4. Validate the hinted repositionings by searching the new versions of DrugBank, the electronic
records containing the relevant scientific literature (for merely reconstructed repositionings),
and by analyzing molecular docking parameters [36] for previously unaccounted repositionings.

This way, we assessed our method’s ability to uncover new repositionings by confronting the
results with the latest (version 5.1.4) Drug Bank and data compiled from interrogating scientific
literature databases.

2. Materials and Methods

2.1. Building the DDSN

We built our DDSN as a weighted graph G = (V, E), where V is the vertex (or node) set, and E is
the edge (or link) set; the vertices (nodes) represent drugs and the edges (links) represent drug—drug
similarity relationships based on drug-target interactions. G has |V| vertices v; € V and |E| edges
ejx € E,withi, jk € {1,2,...]V|} and j # k. Each edge ¢; is characterized by a weight w(e;x) # 0
(in an unweighted network, w(ejx) = 1, Vejx € E). In our weighted DDSN, the weight represents the
degree of target action similarity between drugs v; and v, and it is equal with the number of common
biological targets for v; and vy. Consequently, w(e;x) € N*, Ve € E. If ¢j; = 0, then there is no target
similarity between v; and v, therefore no edge between these nodes. A common biological target
is a target t;y € T (T is the set of targets) on which drugs v; and vy act in the same way, either both
agonistically or both antagonistically. Figure 2 illustrates the building of the DDSN with information
on drug-target interactions.

For the DDSN graph G, we use the drug—target interaction information from Drug Bank 4.2 [33].
We base our analysis on the largest connected component of the DDSN, consisting of |V| = 1008
drugs/nodes and |E| = 17963 links resulted from the analysis of the drug-target interactions with
|T| = 516 targets. We opted for the older Drug Bank version 4.2 [33], to be able to use the latest Drug
Bank 5.1.4 [37] for testing the accuracy of our drug property prediction.
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Figure 2. An illustrative example of using drug-target interaction information to build a weighted
drug-drug similarity network. In panel (a), we consider the drug-target interactions between four
drugs (i.e., round nodes labeled 1 to 4) and three targets (i.e., square nodes labeled 1 to 3). The dashed
red links represent agonist drug-target interactions, whereas the solid blue links represent antagonist
drug-target interactions. In panel (b), we show the DDSN corresponding to the interactions in (a).
For instance, a link of weight 3 connects the nodes 1 and 2 because Drug 1 and Drug 2 interact
in the same way for the three targets, i.e., agonist on Target 2 and antagonist on Targets 1 and 3.
Furthermore, a link with weight 2 connects Drug 2 and Drug 4 because they both interact agonistically
on Target 2 and antagonistically on Target 1, but they do not interact in the same way with Target
3. In panel (c), we show a DDSN sub-network example, according to drug-target interactions from
DrugBank 4.2, containing drugs Dextromethorphan, Felbamate, Tapentadol, Tramadol, and Memantine.
We shape the link thickness according to the weight and specify the list of common targets for each
link. The weight equals the number of targets in the list, where ¢; = Glutamate receptor ionotropic
NMDA 3A, t; = Glutamate receptor ionotropic NMDA 2A, t3 = Glutamate receptor ionotropic NMDA
2B, t4 = Alpha-7 nicotinic cholinergic receptor subunit, {5 = Mu-type opioid receptor, t; = Kappa-type
opioid receptor, t; = Delta-type opioid receptor, tg = Sodium-dependent noradrenaline transporter,
and t9 = Sodium-dependent serotonin transporter.

2.2. Network Analysis

This paper uses complex network analysis tools to uncover new drug properties from the
drug-target data. We employ network clustering (i.e., network community detection) to associate drugs
with previously unaccounted drug properties and network centralities to prioritize the uncovered
drug repurposing hints.
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2.2.1. Network Clustering

The network clustering classifies each node v; € V in one of the disjoint sets of nodes (cluster
C;cV,withi=1.m,CUGCy...UCy = V). In [35], the authors use modularity to define the node
membership to one of the clusters. To this end, the modularity of a clustering C;, = {C1,Cy,...Cp } is

_ |Ec,|  3dc?

Ci eCm

where |E| is the total number of edges in G, |Ec,] is the total number of edges between nodes in cluster

Ec,
C;, d is the total degree of nodes in G, and d, is the total degree of nodes in cluster C;. Thus, “TC"‘
1492
24¢;

T is the

represents the edge density of cluster C; relative to the entire network G density, whereas

Ci’s expected relative density.

We perform clustering using the software package Gephi [38], by maximizing the modularity
from Equation (1) with the method introduced and analyzed in references [39,40]. The approach is to
divide a graph into two communities, such that we get maximum modularity. The binary method can
then be applied recursively on each resulted community, thus dividing them further; the entire process
comes to an end when we cannot further increase the overall modularity. To describe the division
algorithm, we write the graph modularity as

In Equation (2), A;; is the graph’s adjacency matrix, d; and d; are respectively the degrees of
vertices/nodes v; and v;, and k is the total number of edges in the network (k = |E| = % Y d; for
an unweighted network). Furthermore, s; = 1 if v; is classified in community 1 and s; = —1 if v; is

classified in community 2 [41]. Therefore, we have
1 1 if v; and v; are in the same community

—(s;si+1) = ! ! . 3
2 (sis+1) { 0 otherwise ©)

For a detailed description of the clustering algorithm, please refer to the pdf Supplementary
Information, Section S1.

Because our network is weighted, each edge has a weight w(e; ;) = w;; € R*, and we rewrite
Equation (1) as

1.,.2

ch. Ewc
Mm:2<w’—12’. 4)

Ci€Cpi E 2wy

In Equation (4), wg is the total edge weight of edges E in G, wg._is the total edge weight of edges
in cluster C;, wy is the total edge weight of all vertices V in G, and wg, is the total edge weight of
vertices in cluster C;.

A network layout algorithm places each vertex v; in a 2D space R x R = R?. Therefore, each node
v; € V has its 2D coordinates y; = (x;,y;) € R?, and each edge ¢;; € E has a Euclidian distance
dij = |7i — |- Inan energy-model, force-directed layout, we have a force of attraction between any two
adjacent nodes v; and v;, and a repulsion force between any two non-adjacent nodes. The expression

of these forces is |y; — ’yj|f i}, where f = a for attraction and f = r for repulsion. The attraction
force between adjacent nodes (v; and v; such that Je; ; € E) decreases, whereas the repulsion force
between non-adjacent nodes (v;, v; such that Jle; ; € E) increases with the Euclidian distance. Therefore,
we must havea > 0and r < 0.
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In this paper, we use the energy-model force-directed layout Force Atlas 2 [34] to assign node
positions in the 2D (i.e., R2) space, based on interactions between attraction and repulsion forces,
such that we attain minimal energy in the network layout,

. lvi—vl" =l
£ = min (U_UZ):Z-#< P . ®)
l’] ’

The energy-based layouts generate topological communities because specific regions in the
network have larger than average link densities. Noack [41] demonstrated that the energy-based
topological communities are equivalent to the network clusters based on modularity classes [35],
when a > —1 and r > —1. Furthermore, given that our DDSN is a weighted network, we rewrite
Equation (5) accordingly, to maintain equivalency with Equation (4),

o vl vl
irYj )s

where w; and w; represent the total weight of edges incident to nodes v; and v; (i.e., the weighted
degree of vertices v; and v;), respectively, while w; ; is the weight of edge ¢; ;.

2.2.2. Network Centralities

Node centralities are complex network parameters that characterize the vertex/node’s importance
in a graph [42]. In our analysis, we considered the weighted degree, degree, betweenness,
and betweenness/degree node centralities, to find that betweenness/degree is appropriate for the
prioritizing of drug repositioning hint tests. Reference [43] shows that the betweenness/degree
centrality is a crucial driver of complex network dynamics.

The weighted degree of a node v; is the sum of the weights characterizing the links/edges incident
to v;,

d (Ui) = 2 w (Ei/]') . (7)
j€{x|e,‘,x€E,vx,vi€V}

We compute the degree of a node v; with Equation (7), assuming that w (e;;) = 1, Ve; ; € E.

To compute the node betweenness, we must find the shortest paths between all node pairs (vj, k)
in graph G, namely 0. As such, the betweenness of node v; is the number of minimal paths in graph
G that cross node v;, divided by the total number of minimal paths in G,

b(v;) = )y L(Ul) ®)

. (o
(],k)e{(x,y)\vx#vy#v,;vx,vy,viev} G

where the total number of shortest paths in G is the combinations of 2 vertices from V,

o= (13) ©

The betweenness/degree of node v; is the ratio

b/d (v;) = b(vf), (10)

where Equation (7) computes d (v;) in the unweighted version (i.e., considering w (e; ;) = 1, Ve; ; € E).



Pharmaceutics 2020, 12, 879 7 of 27

2.3. Molecular Docking for Repurposing Testing

The effectiveness of out network-based drug repurposing prediction method is emphasized by
the fact that DrugBank 4.2 confirms the properties we predict for 59.52% of the drugs, and 26.98% are
existing drug repositioning hints we reconstruct with our DDSN approach (confirmed by the later
DrugBank 5.1.4 and recent scientific literature). The remaining 13.49% of the drugs seem not to match
the predicted pharmacologic property; therefore, we consider them potential drug repurposing hints
that need to be tested in silico, in vitro, and in vivo. Here, we propose a preliminary testing method
based on molecular docking simulations.

2.3.1. Testing Procedure

To verify the predicted properties of any repurposing hint, we perform molecular docking not
only for the hint but also for the reference drugs (typical drugs having the predicted property) and
some drugs with little probability of having the predicted property. To this end, we formalize the
following testing procedure.

1.  We define the drug sets to enter the docking process, consisting of drugs hinted as having the
pharmacological property ¢ (DZ)), well-documented drugs with property ¢ (reference drugs

DY), and drugs with little probability of having property ¢ (D,‘f ). Our goal is to explore the
similarity (in terms of relevant target activity) between the reference drugs DY and the tested
drugs Df = DZ’ U Df .

(a) DZ consists of the drugs hinted as repurposed for property/properties ¢.

(b) Df consists of two subsets, reference drugs in the DDSN’s community Cy (’fo) and
reference drugs not in C, (D;Cf), with DY = Df U D;Cf.

() DY contains typical drugs for other pharmacological properties, with little probability of
having property ¢.

2. We establish the target sets. Specifically, for pharmacological property ¢, we take into
consideration the targets from DrugBank that interact with the drugs in the hinted drug df
community Cy, having property ¢ (T), and the targets from DrugBank that interact with the
drugs with property ¢ not included in DDSN’s Cy (7}4)).

3. For the set of tested drugs Df, we use molecular docking to check the interactions between
all possible drug-target pairs, defined as the Cartesian product of sets Df and T7? (with

T = TIUT),
DY < T = {(di, b) d; € DYt e TO, Vi, j e N*,i < |Df,j < |T¢|}. (11)
4. For the set of reference drugs, we apply molecular docking on separately designed drug-target
pairs for reference drugs in Cy (DY), and reference drugs not in Cy (Dg) respectively, such that
any drug-target pair is well-documented in the literature,
{(di,tj) cdi e DLt e T, Vi, j € N%,i < |DY),j < [TE|1(i,)) = 1} (12)

and

{(dit)) ;e DLty e TS Wi je Ni < DL < (TS0 G j) =1} (13)
In Equations (12) and (13), Boolean function [ is defined as

1(i,]) = { 1 if the interaction between drug d; and target ¢; is listed in DrugBank (14)

0 otherwise
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2.3.2. Ligands and Targets Preparation

We generate all ligands’ three-dimensional coordinates using the Gaussian program suite with
the DFT/B3LYP/6-311G optimization procedure.

We get the X-ray crystal structure of the targets as target.pdb files from the major protein databases
Protein Data Bank [44] and optimize them with the ModRefiner software [45]. The targets and
their corresponding codes are Lanosterol 14-alpha demethylase (4LX], resolution 1.9 A), Intermediate
conductance calcium-activated potassium channel protein 4 (6D42, resolution 1.75 A), Lanosterol synthase
(IW6K, resolution 2.1 A), Squalene monooxygenase (6C6N, resolution 2.3 A), Ergosterol (2AIB, resolution
1.1 A), Sodium /potassium-transporting ATPase subunit alpha (2ZXE, resolution 2.4 A), Tubulin (4U3J,
resolution 2.81 A), Progesterone receptor (1A28, resolution 1.8 A), Androgen receptor (5]JM, resolution
2.15 A), Estrogen receptor beta (30LL, resolution 1.5 A), Estrogen receptor alpha (1A52, resolution 2.8 A),
Steroid 17-alpha-hydroxylase/17,20 lyase (4NKV, resolution 2.646 A), and Mineralocorticoid receptor
(20AX, resolution 2.29 A). The preparation of targets also requires adding all polar hydrogens, removing
the water, and computing the Gasteiger charge.

2.3.3. Docking Protocol

We perform the molecular docking analysis using Autodock 4.2.6 with the molecular viewer and
graphical support AutoDockTools [46].

In the docking protocol, for the protein targets, we create the grid box using Autogrid 4 with
120 A x 120 A x 120 A in x, y, and z directions, and 1 A spacing from the target molecule’s center.
For steroidal target Ergosterol, the grid box is 30 A x 30 A x 30 A in x, y, and z directions, with 0.375 A
spacing from the target molecule’s center.

For the docking process, we chose the Lamarckian genetic algorithm (Genetic Algorithm combined
with a local search), with a population size of 150, a maximum of 2.5 x 10° energy evaluations, a gene
mutation rate of 0.02, and 50 runs. We adopted the default settings for the other docking parameters
and performed all the calculations in vacuum conditions. We then exported all AutoDock results in
the PyYMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC, New York, NY,
USA) and the Discovery Studio (Biovia) molecular visualization system (BIOVIA, Dassault Systemes,
BIOVIA Workbook, Release 2017; BIOVIA Pipeline Pilot, Release 2017, San Diego: Dassault Systemes,
2019, San Diego, CA, USA).

We evaluate the performance of Autodock 4.2.6 by redocking and then expressing the results as
root-mean-square deviation (RMSD) in A. We perform all the calculations in duplicate and express the
results as averages. The redocking involves the overlapping of the ligands for calculating the RMSD
with the Discovery Studio software. We also run a comparative RMSD analysis between Autodock
4.2.6 and AutoDock Vina to assess the docking method’s repeatability and reproducibility.

3. Results

3.1. DDSN Analysis

Figure 3 illustrates the resulted DDSN, built according to our method, where the node colors
identify the distinct modularity clusters.

To mine the DDSN topological complexity, we identified the drug clusters (or communities) using
both the modularity [35] and the force-directed, energy-based layout Force Atlas 2 [34] algorithms.
The two clustering techniques are compatible [41]; however, the energy-based force-directed layout
clustering offers more information about the relationship between clusters and acts as an efficient
classifier [47]. In the case of DDSN, the clusters correspond to drug communities Cy, x € N¥, such that
VvV =U",Cs.

Using the constructed DDSN from Drug Bank 4.2 and expert analysis, we label each cluster according
to its dominant property (i.e., the property that better describes the majority of drugs in the cluster—see
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Supplementary file SupplementaryDDSN for detailed proof), which may represent a specific mechanism
of pharmacologic action, a specifically targeted disease, or a targeted organ. We also confirm the clustering
consistency across multiple DrugBank versions in pdf Supplementary Information, Section S2, Figure C1.

When using network clustering, if a drug does not comply with the community / cluster label, then
this indicates a possible repurposing [48]. We labeled the clusters using the drug properties listed by
DrugBank or reported in the literature, such that the dominant property or properties (i.e., properties
found in more than 50% of the drugs in the community) give the name of the community, as indicated
in Tables 1 and 2.

According to Tables 1 and 2 (column Literature [%]), our DDSN computational approach
recovers/reconstructs a significant number of drug repurposings reported in the literature (see the
Supplementary file SupplementaryDDSN for detailed confirmation literature lists, including some
recent repurposing confirmations), namely 26.98% of the 1008 drugs in DDSN (the last line in Table 2,
summarizing the confirmation results).

Table 1. Confirmation of drug community properties and drug repurposing hints. Each table line
corresponds to a topological community Cy (with x = 1..15), by specifying the dominant property
(or properties) resulted from the pharmacological analysis (column Properties), the number of
nodes/drugs in community Cy (column Nodes [#]) , the percentage of drugs with the properties
confirmed by DrugBank (column DrugBank [%]), the percentage of drugs with the predicted properties
confirmed by the literature (column Literature [%]), the percentage of drugs with not yet confirmed
predicted properties (column Not confirmed [%]), and the drugs we propose for repositioning,
representing predictions not confirmed yet but with non-zero betweenness/degree in the DDSN
(b/d > 0, in column Hints).

. Not
Cx Properties Nodes ?rugBank Lolterature Confirmed Hints
[#] [%] [%] o
[%]
Besifloxacin
Antineoplastic (mitotic inhibitors Pefloxacin
! and DNA-damaging) 37 40-54 3784 2162 Norfloxacin
Ofloxacin
2 Antihypertensive (sartans) 10 100 0 0 -
3 Anti-inflammatory 84 65.48 28.57 5.95 Glipizide
4  Antibacterial tetracyclines 20 9500 0 5.00 Plerixafor
and Aminoglycosides
5  Platelet aggregation inhibitor 29 10.34 82.76 6.90 -
6 nterfering with 9B 2688 65.59 7.53 Azelaic ac.
hormone-dependent cancers
Suramin
Anticancer Acetohydroxamic ac.
7 (molecularly targeted) 92 23.91 50.00 26.09 Glyburide
y targ Gliquidone
Tolbutamide
8  Anti-allergic 51 86.27 11.76 1.96 Butriptyline
9  Acting on muscles 25 72.00 16.00 12.00 -
Tofisopam
Mefloquine
10 Vasodilator 37 4865 2432 27.03 Oxtriphylline
Enprofylline
Roflumilast

Aminophylline
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Table 1. Cont.

. Not
Cy Properties Nodes lzrugBank Lolterature Confirmed Hints
[#] [%] [%] o
[%]
1 Antiepileptic, hypnotic, 19 84.21 1053 5.26 Barbituric ac. deriv.
and sedative
Analgesic and used in
12 opiate withdrawal & side-effects 46 89.13 870 217 -
Antihypertensive, anti-arrhythmic,
13 anti-angina (mostly beta-blockers) 26 9231 385 385
14  Anticholinergic 53 100 0 0 -
Doxazosin
Terazosin
Prazosin
Paliperidone
Aripiprazole
. . . Fenoldopam
Interfering with Parasympathetic 97 097 007 15.46 Dapiprazole
Nervous System .
Alfuzosin
Tamsulosin
Silodosin
Amisulpiride
Carphenazine
Acetophenazine

1 - Antineoplastic drugs
(Mitotic inhibitors & DNA-damaging anticancer drugs)
2 - Antihypertensive agents
3 — Antiinflammatory drugs
4 — Antibacterial drugs
5 — Platelet aggregation inhibitors
6 — Drugs interfering with hormone
dependent cancers
7 — Anticancer drugs
(Molecularly targeted antineoplastic drugs)
8 — Antiallergic drugs
9 — Drugs acting on muscles
10 - Vasodilator drugs
11 - Antiepileptic, hypnotic & sedative drugs
12 - Analgesic drugs
13 — Cardiovascular drugs (mostly beta-blockers)
14 — Anticholinergic drugs
15 — Drugs interfering with
Parasympathetic Nervous System
16 — Antidepressants and CNS stimulants
17 — Sympathetic Nervous System acting drugs
18 — Antimigraine & antiemetic drugs
19 — Antiarrhythmics, Anticonvulsants
20 — Antidepressants, Anti-Parkinson
21 - Drugs interfering with epilepsy
and blood pressure
22 - Antihypertensive and anticonvulsant agents
23 — Miscellaneous Central Nervous System Agents
(anesthetic/analgesic/muscle relaxant drugs)
24 - Drugs interfering with the potassium,
sodium & calcium homeostasis
25 — Antifungal agents
26 — Hypnotic & sedative drugs

Figure 3. The drug-drug similarity network, where nodes represent drugs and links represent
drug-drug similarity relationships based on drug-target interaction behavior. The layout is Force
Atlas 2 [34], and the distinct node colors identify the modularity classes that define the drug clusters.
We identify the 26 topological clusters with rounded rectangles and provide the functional descriptions
for each of them.
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Table 2. Confirmation of drug community properties and drug repurposing hints. Each table

line corresponds to a topological community C, (with x = 16..26), as well as the last line for the

entire DDSN, by specifying the dominant property (or properties) resulted from the pharmacological

expert analysis (column Properties), the number of nodes/drugs in community Cy (column Nodes

[#]) , the percentage of drugs with the properties confirmed by DrugBank (column DrugBank [%]),

the percentage of drugs with the predicted properties confirmed by the literature (column Literature

[%]), the percentage of drugs with not yet confirmed predicted properties (column Not confirmed

[%]), and the drugs we propose for repositioning, representing predictions not confirmed yet but with

non-zero betweenness/degree in the DDSN (b/d > 0, in column Hints).

. Not
Cy Properties Nodes lzrugBank I:terature Confirmed Hints
[#] [%] [%] 0
[%]
16 Antidepressant anc.1 Central % 9031 7 69 0 B
Nervous System stimulant
17 Syrppathehc Nervous System 61 85.25 8.0 6.56 B
acting
Captodiame
Ropinirole
18  Antimigraine and antiemetic 26 42.31 26.92 30.77 MDM.A.
Dofetilide
Rotigotine
L-DOPA
19 An’Flarrhythmlc and o 66.67 12.50 20.83 Acarbos.e
anticonvulsant Hexylcaine
Quinidine
. Propafenone
20 Aifiliepi?ssam and 21 57.14 14.29 28.57 Cinchocaine
anti-Parkinson MMDA
Aprindine
Interfering with epilepsy Miconazole
21 and blood pressure 12 41.67 25.00 33.33 Quinidine barbiturate
pp  Antihypertensive and 20 80.00 15.00 5.00 -
anticonvulsant
. . Halofantrine
g3  Anesthetic, analgesic, 19 73.68 5.26 21.05 Tbutilide
and muscle relaxant ..
Pentolinium
Progabide
Interfering with Bethanidine
24 & . 51 50.98 13.73 35.29 Ellagic ac.
K, Na, Ca homeostasis . .
Vigabatrin
Ethinamate
Meprobamate
25  Antifungal 22 59.09 9.09 31.82 Enflurane
Sevoflurane
Desflurane
26 Hypnotic and sedative 7 100 0 0 -
All - 1008 59.52 26.98 13.49 -

3.2. lllustrative Examples of Reconstructed Drug Repositionings

Here, we present a few illustrative examples of reconstructed drug repositionings, as confirmed
by recent literature. We provide the entire list of drug repositionings we recovered with the DDSN
method and the references that prove them as such in the Supplementary file SupplementaryDDSN.
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3.2.1. Reconstructed Repurposings as Antineoplastic Agents

The topological community 1 (i.e., Cj) consists of antineoplastic drugs, mostly mitotic
inhibitors (e.g., Etoposide, Teniposide, Vincristine, Vinorelbine) and DNA-damaging anticancer drugs
(e.g., Doxorubicin, Valrubicin, Mitoxantrone). This community also contains fluoroquinolone antibiotics
(targeting the alpha subunits of two types of bacterial topoisomerase II enzymes, namely DNA gyrase
and DNA topoisomerase 4) and a few other drugs. However, DrugBank does not confirm some
drugs’ anticancer effects within topological C;, yet the literature confirms them as such. For example,
Colchicine, which is currently used based on its anti-inflammatory effects as an antigout drug,
exhibits anticancer effects [49]; Podofilox, a drug for topical treatment of external genital warts,
is a potent cytotoxic agent in chronic lymphocytic leukemia (CLL) [50]; for some fluoroquinolone
drugs, the literature reports anticancer effects (e.g., Enoxacin [51], Ciprofloxacin [52], Moxifloxacin [53],
Gatifloxacin [54]). In Figure 4, we show a zoomed detail from our DDSN, by highlighting the presence
of Colchicine, Podofilox, Enoxacin, Ciprofloxacin, Moxifloxacin, Gatifloxacin in Cy; such topological
placement suggests their antineoplastic effect.

The topological community Cg consists of anticancer drugs that target hormone-dependent
organs (i.e., ovary, endometrium, vagina, cervix, and prostate). In this community, Progesterone
has the highest value of betweenness/degree ratio, and the DrugBank database does not indicate its
anticancer property. Although there are extensive epidemiological studies that link the long-term
Progesterone use in oral contraceptives to breast cancer risk, this link is strengthened or weakened
by various parameters, such as body weight, age, duration of use [55], parity, age at first birth,
breastfeeding, and age at menarche [56]. However, ].C. Leo et al. determined the whole genomic effect
of Progesterone in PR-transfected MDA-MB-231 cells and found that Progesterone suppressed the
expression of genes involved in cell proliferation and metastasis, concluding that Progesterone can
exert a strong anticancer effect in hormone-independent breast cancer following Progesterone receptor
(PR) reactivation [57].
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Figure 4. Zoomed DDSN detail of Community 1 (C;, Antineoplastic drugs-—Mitotic inhibitors &
DNA-damaging anticancer drugs). The red arrows indicate the reconstructed drug repositionings:
Colchicine (antigout drug), Podofilox (topical antiviral), and Enoxacin, Ciprofloxacin, Moxifloxacin,
Gatifloxacin (fluoroquinolone antibiotics).
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Quinacrine is an antiprotozoal drug that exhibits an anticancer effect in breast cancer because it
produces apoptosis by blocking cells in S-phase, induces DNA damage, and inhibits topoisomerase
activity [58]; indeed, reference [59] recommends the clinical trial test of Quinacrine for the treatment of
patients with androgen-independent prostate cancer. The antineoplastic drug Mimosine attenuates cell
proliferation of prostate carcinoma cells in vitro [60]. Figure 5 provides a zoomed detail (i.e., focused
view) of the DDSN that highlights Mimosine’s presence (an experimental antineoplastic which inhibits
DNA replication) in C; this indicates that Mimosine has effects in hormone-dependent cancers.
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Figure 5. Zoomed DDSN detail of community Cg (Drugs interfering with hormone-dependent cancers).
The red arrow indicates the reconstructed drug repositioning: Mimosine—an experimental antineoplastic
that inhibits DNA replication—also has effects in cancers affecting hormone-dependent organs.

3.2.2. Reconstructed Repurposings as Anti-Inflammatory Drugs

According to the properties listed in DrugBank, the topological community Cs includes drugs
that exert anti-inflammatory effects via different mechanisms: non-steroidal anti-inflammatory drugs
(e.g., Diclofenac, Ibuprofen, and Acetylsalicylic acid), the antirheumatic agent Auranofin, hypoglycemic
drugs (e.g., Rosiglitazone, Troglitazone), and the antihypertensive drug Telmisartan. Moreover,
the literature confirms that 28.57% of drugs within this community also present anti-inflammatory
effects, even if they are not listed as anti-inflammatories in DrugBank. Here, we present the example of
the versatile molecule of Fenofibrate, which reduces the systemic inflammation independent of its lipid
regulation effects, with cardiovascular benefits in high-risk [61] and rheumatoid arthritis patients [62].
Another illustrative example is that of Amiloride, which inhibits the activation of the dendritic cells
and ameliorates the inflammation besides its diuretic effects, thus having benefits for hypertensive
patients [63]. Figure 6 shows a zoomed DDSN detail, highlighting the presence of Fenofibrate and
Amiloride in Cs; this may indicate that the highlighted drugs also have anti-inflammatory effects.
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Figure 6. Zoomed DDSN detail of community C3 (Anti-inflammatory drugs). The red arrows indicate
the reconstructed drug repositionings as anti-inflammatory drugs: Fenofibrate (a lipid modifying drug)
and Amiloride (a diuretic).

3.2.3. Reconstructed Repurposings as Antifungal Drugs

The topological community Cps includes 22 drugs. According to DrugBank, 13 out of these
22 drugs have antifungal properties, and 9 drugs act on the central nervous system (i.e., general
anesthetics, sedative-hypnotics, and antiepileptics). DrugBank lists Isoflurane and Methoxyflurane
as general anesthetic drugs. However, A. Giorgi et al. performed in vitro tests to investigate the
antibacterial and antifungal effects of common anesthetic gases, and they found that Methoxyflurane
and Isoflurane have excellent inhibitory effects on cultures of Klebsiella pneumoniae and Candida
albicans [64]. Using in vitro experiments, V.M. Barodka et al. also found that Isoflurane’s liquid
formulation has better anti-Candida activity than the antifungal Amphotericin B [65]. Figure 7 shows a
zoomed DDSN detail highlighting the presence of Isoflurane and Methoxyflurane in Cps; this indicates
that the highlighted drugs may also have antifungal effects.
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Figure 7. Zoomed DDSN detail of community Cps5 (Antifungal agents). The red arrows indicate the

reconstructed drug repositionings: Isoflurane and Methoxyflurane (known as general anesthetic drugs)
also have antifungal effects.

3.3. Repositioning Hints Prioritization

A high degree node represents a drug with already documented multiple properties in our
characterization of drug-drug similarity networks. Furthermore, a high betweenness (i.e., the ability to
connect network communities) indicates the drug’s propensity for multiple pharmacological functions.
By this logic, the high-betweenness, high-degree nodes may have reached their full repositioning
potential, whereas the high betweenness, low degree nodes (characterized by high betweenness/degree
value g) may indicate a significant repositioning potential. However, predicting such high-value cases
of degree d, weighted degree d,,, betweenness b, and betweenness/degree 2 is difficult because the
corresponding distributions are fat-tailed [66]. Although all the estimated DDSN centralities follow a
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power-law distribution (see Figure 8), the betweenness/degree g is the most stable parameter and,
hence, the most reliable indicator of multiple drug properties.

1000F |
500
500 -
‘S‘ 100¢ = 100
o 50f 3 50
O o
101
10
st
5t L L L L L \
50 100 200 100 200 500
Degree Weighted Degree
(a) | (b)
1000 F T T T T 1000 F
500 [ 1 500 |
100} | o 100}
< c
c s0f
8 50 8
O (@]
10} 10l
5F 5
002 004 006 008 0.0 0.10 015 020 025 030 035
Betweenness Betweenness/Degree
(c) (d)

Figure 8. Power-law distributions of centrality parameters in the drug—drug similarity network (DDSN):
(a) degree d; (b) weighted degree dy; (c) betweenness b, and (d) betweenness/degree % According to
the guidelines in [67], we represent the distributions using 8 linearly spaced bins for each centrality.
The fitting analysis using the Powerlaw package in Python [67] indicates the following values for the
distribution slope a and cutoff point x,,;,,, respectively: 3.436 and 53 for d, 2.598 and 64 for d,, 2.201 and
0.008 for b, 3.093 and 0.088 for %. The graphical representations of these centrality distributions show
that the betweenness/degree g is the most stable parameter; therefore, it is the most reliable indicator
of multiple drug properties.

To explore the capability of g to predict the multiple drug properties, we exploit the community
structure of DDSN by following a two-step approach.

1. We uncover the relevant drug properties by generating network communities Cy with x = 1,m
(m = 26 in our DDSN). Then, using expert analysis, we assign a dominant property to each
community. Figure 3 illustrates the 26 DDSN communities as well as their dominant functionality.
The dominant community property can be a pharmacological mechanism, a targeted disease, or a
targeted organ. For instance, the community 1 (C;) consists of antineoplastic drugs which act as
mitotic inhibitors and DNA damaging agents; Community 13 (C;3) consists of cardiovascular
drugs (antihypertensive, anti-arrhythmic, and anti-angina drugs), mostly beta-blockers.

2. Ineach cluster Cy, we identify the top ¢ drugs according to their % values. From these selected
drugs, Bl C Cy, some stand out by not sharing the community property or properties, and thus,
can be repositioned as such. To this end, for x = 1,m eliminated from B! the drugs whose
repurposings were already confirmed (i.e., performed by others and found in the recent literature),
thus producing m = 26 lists of repurposing hints yet to be confirmed by in silico, in vitro,
and in vivo experiments, B! = B.\ BS. Table 3 presents the lists of B drugs for t = 5 and
x = 26 (i.e., the top 5 % drugs in each community). We chose t = 5 to provide a reasonable
amount of eloquent information in Table 3; we provide the entire By sets in the Supplementary
file SupplementaryDDSN.
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To facilitate the visual identification of the repositioning hints, in Figure 9, we shape the size
of the nodes of our DDSN representation according to the magnitude of the % values. By arrows,
we also identify the top g nodes (i.e., drugs) in their respective communities, by indicating their
community id. Table 3 shows that Bl = @ for all x except 19 and 25 (B}, = {Acarbose} and
Bl. = {Meprobamate}), therefore—besides the corresponding community number—we expressly
point Acarbose and Meprobamate in Figure 9.

25-Meprobamate
19-Acarbose

Figure 9. Drug—drug similarity network (DDSN), based on drug-target interactions, where node sizes
represent their % values. The arrows indicate the top g node in each community (for community
2, there is no top node because all drugs have g = 0). The community index identifies each top %
node, excepting Meprobamate (top % in community 25) and Acarbose (community 19), because these
drugs (apparently) do not have their community’s property; this indicates Meprobamate as antifungal
(i.e., the property of community 25) and Acarbose as antiarrhythmic, anticonvulsant (i.e., the properties
of community 19).

The high percentage of database and literature confirmations of our pharmacological properties
predictions highlight the robustness of our repurposing method. In the Supplementary file
SupplementaryDDSN, we show that the confirmation rate ), BS/ )., Cy = 86.51%. Table 3 presents
a similar situation, with only a few unconfirmed drug properties (these repurposing hints € B are
in bold).
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Table 3. Top 5 drugs (B3 with x =

17 of 27

1,26) according to their g values, for each of the 26 DDSN

communities/clusters (Cy). The properties of drugs written in regular fonts match the properties of

their respective communities (according to the DrugBank). The properties of italicized drugs do not

match all their respective communities” properties, but the latest literature confirms them (drugs in

regular fonts and italics pertain to B}'). The properties of the drugs written in bold do not match the

community properties, and the literature did not confirm them yet; this situation leads to new drug

repositioning hints (i.e., the Bfé drugs). The positions marked with ‘~’ correspond to drugs with % =0.

B
1 2 3 4 5
Cx
1 Amsacrine Colchicine Podofilox Lucanthone Besifloxacin
2 _ _ _ _ _
3 Amiloride Marimastat Diclofenac Thalidomide Telmisartan
Amikacin Doxycycline
4 Minocycline  Framycetin Tobramycin Clomocycline -
Netilmicin Oxytetracycline
5 Treprostinil Tloprost Captopril Bimatoprost Candoxatril
6 Progesterone ~ Mimosine Fluticasone propionate ~ Danazol Spironolactone
7 Vandetanib Dalteparin Dehydroepiandrosterone  Amlexanox Atorvastatin
8 Olopatadine Terfenadine Flunarizine Astemizole Epinastine
9 Succinylcholine Carbachol Decamethonium Pilocarpine Cevimeline
10 Nicotine Melatonin Amrinone Dipyridamole Naloxone
Phenobarbital Barbital
11 Quinine Secobarbital Hexobarbital - -
Pentobarbital Aprobarbital
12 Nimodipine Adenosine Drotaverine Pentazocine Loperamide
13 Ketotifen Amiodarone Sotalol Bevantolol Penbutolol
14 Disopyramide Scopolamine Ethopropazine Paroxetine Rocuronium
15 Minaprine Amitriptyline Agomelatine Orphenadrine Imipramine
16 Cocaine Chloroprocaine Procaine Phenermine Milnacipran
17 Epinephrine 4-Methoxyamphetamine Pseudoephedrine Ephedra Methamphetamine
Ginkgo . . . s
18 biloba Captodiame Cisapride Bromocriptine Carteolol
19 Acarbose Lidocaine Mexiletine Etomidate Flecainide
20 Phenelzine Agmatine Quinidine Ephedrine Amphetamine
Propafenone
21 Zonisamide Miconazole Ethanol Qum.ldme -
barbiturate
22 Felodipine Bepridil Verapamil Dextromethorphan Amlodipine
23 Halothane Halofantrine Tramadol Ibutilide Tubocurarine
24 Thiamylal Valproic Acid Progabide Bethanidine Topiramate
Methoxyflurane
25 Meprobamate Enflurane Tioconazole Clotrimazole Isoflurane
Sevoflurane
26 Flunitrazepam Eszopiclone - - -

Our data indicate two top g drugs: Meprobamate, in the Cp5 antifungal drugs community,
and Acarbose, in the Cj9 (Antiarrhythmics and Anticonvulsants) community. Both repositionings refer
to properties currently unaccounted in the DrugBank version 5.1.4 and the scientific literature we
have screened (Table 3 and Figure 9). Meprobamate is a hypnotic, sedative, and mild muscle-relaxing
drug, with no reported activities on the antifungal drug targets; thus, the antifungal activities of
Meprobamate are not yet investigated in silico (with molecular docking), in vitro, or in vivo. Acarbose is
a hypoglycemic drug, with no reported nor investigated antiarrhythmic and anticonvulsant properties.
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At the same time, one should also consider repurposing hints for drugs with high £, when the highest g
values correspond to drugs already confirmed with the community property. For example, Azelaic acid
has the highest % across not confirmed drugs in Ce.

3.4. Repurposing Hints Testing

Molecular docking uses the target and ligand structures to predict the lead compound or
repurpose drugs for different therapeutic purposes. The molecular docking tools predict the binding
affinities, the preferred poses, and the ligand-receptor complex’s interactions with minimum free
energy. In this paper, we use the AutoDock 4.2.6 software suite [46], which consists of automated
docking tools for predicting the binding of small ligands (i.e., drugs) to a macromolecule with an
established 3D structure (i.e., target). The AutoDock semi-empirical free energy force field predicts the
binding energy by considering complex energetic evaluations of bound and unbound forms of the
ligand and the target, as well as an estimate of the conformational entropy lost upon binding.

According to the methodology in Section 2 (Section 2.3), we verify the predicted properties of
repurposing hints by performing molecular docking not only for the hinted drugs but also for the
reference drugs (typical drugs having the predicted property) and for some drugs with little probability
of having the expected property. This way, we facilitate the comparison between the interaction of the
hinted drug with the biological targets—relevant for the tested property—and the interactions of the
reference drugs with the same targets.

Following the methodology in Section 2 (Section 2.3), we first consider the property ¢ as the
anticancer effect with x = 6 (corresponding to community Cg), and second ¢ as the antifungal effect
with x = 25 (community Cp5). As such, we test the repurposing hints ’Df; = Dinticancer — { Azelaic acid }
and D;f = Dznﬁﬁmgal = {Meprobamate}.

Accordingly, we define the anticancer reference drug from C4 as Dg““cancer = {Progesterone,
Abiraterone}, no anticancer reference drug outside Cq (i.e., D%“ﬁca“cer = ), and two reference
drugs with a low probability of anticancer effects Danticancer — [Foginopril, Furosemide} (Fosinopril
is an antihypertensive and Furosemide is a diuretic). Here, we test the interaction between the
hinted and reference drugs with the targets from DrugBank associated with anticancer drugs in
Ce, namely T2nticancer = {Progesterone receptor, Androgen receptor, Estrogen receptor beta, Steroid
17-alpha-hydroxylase /17,20 lyase, Mineralocorticoid receptor, Estrogen receptor alpha}.

antifungal

Similarly, we consider the antifungal references in Cp5 as D25 = {Clotrimazole, Oxiconazole},
and outside Cy5 as D%nﬁmgal = {Naftifine, Tolnaftate, Nystatin, Natamycin, Ciclopirox, Griseofulvin}.
antifungal

The reference drugs with little probability of having antifungal properties are D),
{Fosinopril, Furosemide}. We test the interactions between the hinted and reference drugs with
DrugBank antifungal-related targets linked to drugs in Cp; and drugs not in Cps, respectively
Tatnedl — (L anosterol 14-alpha demethylase, Lanosterol synthase, Intermediate conductance
calcium-activated potassium channel protein 4}, and Tzi; tfungal _ {Squalene monooxygenase, Ergosterol,
Sodium/potassium-transporting ATPase subunit alpha, Tubulin}.

Figure 10 shows the summary of interactions resulted from the molecular docking analysis of the
drug-target pairs generated with Equations (11)—(13) (Section 2, Section 2.3.1) for the hint Dznﬁcamer =
{Azelaic acid}. For the hint and the reference drugs Danticancer e represent the interactions with the
targets 7 nticancer a5 the number of amino acids from the target interacting with the drug molecule
(the maximum is 21). We provide the details related to the molecular docking simulations in the pdf
Supplementary Information—Tables S1-56 and Figures S1-56.

Figure 11 presents the summary of interactions resulted from the molecular docking analysis
of the drug-target pairs generated with Equations (11)—(13) (see Section 2, Section 2.3.1), for the
hint Df = D™ — (Meprobamate}. For the reference drugs D" = {Clotrimazole,
Oxiconazole, Naftifine, Tolnaftate, Nystatin, Natamycin, Ciclopirox, Griseofulvin} the interaction
is represented as the number of amino acids in the target interacting with the drug molecule (the
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tifungal .
7'2%“ TN has a steroidal

maximum in our molecular docking experiments is 24). Because Ergosterol €
chemical structure, instead of the number of amino acids, we represent interaction strength as the
number of hydrophobic alkyl/alkyl interactions. For the tested drugs Danhfungal {Meprobamate,
Fosinopril, Furosemide}, we represent the interaction as the number of amino acids from the target
(or hydrophobic alkyl/alkyl interactions for Ergosterol) interacting in the same way with both the
tested drug (€ Danhfungal) and at least one reference drug (€ Damlﬁmgal) We provide a detailed
description of the molecular docking simulations for Meprobamate in the pdf Supplementary
Information—Tables 57-513 and Figures 57-513. The results confirm the interactions between d;""""&"

(i.e., Meprobamate) and almost all the targets from both Tamfu“gal nd Tamfungal Conversely, for the

tify 1 . . . . tif 1 tify 1
drugs in D8, there is no relevant interaction with any target from 7, an ety Tan funea
20
Progesterone receptor
Androgen receptor 16
Estrogen receptor beta 12
Steroid 17-alpha-hydroxylase/17,20 lyase g
Mineralocorticoid receptor
-4
Estrogen receptor alpha
-0

Progesterone
Abiraterone -
Azelaic acid -

Fosinopril -
Furosemide -

Figure 10. Synthesis of interactions resulted from running molecular docking on the drug-target pairs
for Df = Dznﬁcamer = {Azelaic acid}. In the left part of the heatmap, we present the interactions
between the relevant targets Janticancer _ {Progesterone receptor, Androgen receptor, Estrogen receptor
beta, Steroid 17-alpha-hydroxylase /17,20 lyase, Mineralocorticoid receptor, Estrogen receptor alphaj},
and the reference drugs Danticancer — {Progesterone, Abiraterone}. In the right part of the heatmap,
we present the interactions between the relevant targets 720¢ancer and the tested drugs Danticancer —
{Azelaic acid, Fosinopril, Furosemide}). We summarize the interactions with the targets Jranticancer ;g
the number of amino acids from the target interacting with the drug molecule (from 0 to the maximum
number in our experiments, namely 21). The heatmap representation indicates interactions between
dznﬁcancer = {Azelaic acid} and almost all the targets from 72ntencer  For the drugs in Panticancer,

namely Fosinopril and Furosemide, there is no interaction with the targets from 7 2anticancer,

After Autodock 4.2.6 and AutoDock Vina redocking according to the procedure in Section 2.3.3,
we calculate RMSD in both cases. We obtain low RMSD values (i.e., all of them are < 1.016 A), suggesting
that our preliminary docking methodology is robust [68] (details in SuplementaryInformation.pdf file,
Section S6).
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Figure 11. Synthesis of interactions resulted from running molecular docking on the drug-target pairs
for DZ) = Dzntiﬁmgal = {Meprobamate}. In the left part of the heatmap, we present the interactions
between the relevant targets 72"tifungal — (T anosterol 14-alpha demethylase, Lanosterol synthase,
Intermediate conductance calcium-activated potassium channel protein 4, Squalene monooxygenase,
Ergosterol, Sodium/potassium-transporting ATPase subunit alpha, Tubulin} and the reference drugs
Dfnﬁfungal = {Clotrimazole, Oxiconazole, Naftifine, Tolnaftate, Nystatin, Natamycin, Ciclopirox,
Griseofulvin}. We only test the reference drugs and targets pairs that interact according to DrugBank;
all the other pairs are white in our representation because they are not tested. In the right part of the

heatmap, we present the interactions between the relevant targets 72"tifungal and the tested drugs
Dantifungal
t

Tantifungal a5 the number of amino acids from the target interacting with the drug molecule (from 0 to

= {Meprobamate, Fosinopril, Furosemide}). We summarize the interactions with the targets

the maximum number in our experiments, namely 24). In the case of Ergosterol € %nﬁfungal, instead of
the number of amino acids, we count the number of hydrophobic alkyl/alkyl interactions because this
target has a steroidal chemical structure. The heatmap representation indicates interactions between

dzntlfungal (i.e., Meprobamate) and almost all the targets from both Ezntlfungal and E%ntlfungal. For the

. if 1 . . . . if 1 if 1
drugs in D8 there is no relevant interaction with any target from ’7;;““ EY Tgm e

4. Discussion

Drug repurposing represents a promising strategy to accelerate drug discovery in sensitive areas
of nowadays medicine, such as antibacterial resistance, complex life-threatening diseases (e.g., cancer),
or rare diseases. In this paper, we describe a novel weighted drug—drug similarity network whose
weights encode the existing known relationships among drugs (i.e., quantifies the number of biological
targets shared by two drugs irrespective of the agonist or antagonist effect).

We then demonstrate that the ratio between node betweenness and node degree (i.e., a criterion
of combined network metrics) can indicate the drug repositioning candidates better than considering
simple network metrics (e.g., degree, weighted degree, betweenness). Indeed, the power-law
distributions in Figure 8 suggest that our DDSN is a complex system; thus, the conventional
statistical analysis of the DDSN can be misleading. Consequently, we introduce a different approach
to deciphering the emerging hidden higher-order functional interactions (i.e., interactions that
span multiple orders of magnitude and involve multiple nodes) by visualizing and analyzing the
community structure in DDSN and determining the culprits (for such unknown functionalities)
through combined network metrics criterion. We use the force-directed energy layout Force Atlas 2 to
generate network clusters of drugs [34] because it emulates the emerging processes of a complex
system. More precisely, the force-directed based network layouts use micro-scale interactions
(i.e., adjacent nodes attract and non-adjacent nodes repulse) to generate an emergent behavior at
the macro-scale (i.e., topological clusters). Once we identify communities, the combined network
metrics criterion selects the drug repositioning most likely candidates. Specifically, our weighted
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drug-drug network analysis encodes not only information about how pairs of drugs interact with
biological targets but also reveals the unknown functional relationship between drugs, such as
the unknown effects on the activation/inhibition of a chemical pathway or cellular behavior.
We used a similar methodology—underpinned by force-directed layout clustering—to analyze the
fundamentally different structures represented by the drug—drug interaction networks (i.e., the DDIN
interactome [48,69]).

4.1. Complex Network Perspective

When analyzing networks built with drug data, one must be aware and carefully deal with data
incompleteness. Mestres et al. acknowledged this problem for networks built with data from the
2006 DrugBank version, where drug—-target data scarcity was indeed a problem [70]. However, in this
paper, we worked on a much more comprehensive database, with a much larger and denser number of
nodes/drugs and connections. Still, even if recent years’ research alleviated the data scarcity problem,
any network analysis has to consider a degree of entailed uncertainty.

Another important aspect of our method’s data processing is the interpretation of b/d ranking.
We chose this composite centrality because its distribution in DDSN is more stable than other
centralities; therefore, as also suggested by [71,72], it should produce more robust rankings. However,
reliable confirmation of b/d as an efficient priority indicator requires retrospective in vivo, in vitro,
and in silico (i.e., molecular docking) experiments, and we encourage future research in this way.

We select Azelaic acid (saturated dicarboxylic acid) and Meprobamate (carbamate derivative)
as possible antineoplastic and antifungal from our repurposing hints list, respectively. Even so,
one may find a posteriori confirmation clues for such repositioning hints. For instance, in [73],
the authors discuss the antitumoral effects of Azelaic acid in the case of melanoma and only
hypothesize that it may be tested in hormone-related cancers. Furthermore, the Meprobamate
molecule contains a moiety that can be associated with antifungal effects [74]. However, these
associations only make sense because our DDSN analysis orients this process. Moreover, in the
docking experiments, the two hints are not structurally similar to the respective reference drugs
(i.e., Progesterone and Abiraterone for antineoplastic, and Clotrimazole, Oxiconazole, Naftifine,
Tolnaftate, Nystatin, Natamycin, Ciclopirox, Griseofulvin for antifungal). Indeed, Progesterone
and Abiraterone are steroid derivatives, Clotrimazole and Oxiconazole are imidazole derivatives,
Ergosterol has a steroidal structure, Terbinafine and Naftifine are allylamine compounds, Griseofulvin
is a 3-coumaranone derivative.

4.2. Molecular Docking Perspective

Molecular docking represents an alternative, in silico simulation approach to drug discovery,
which models the physical interaction between a ligand (i.e., small drug molecule) and a macromolecule
(e.g., synthetic host macromolecule, biological target) [75]; it is also a valuable repurposing tool [68,76].
We estimate the free energy values of the molecular interactions with molecular docking to offer
a good approximation for the ligand’s conformation and orientation into the protein cavity [77].
DOCK [78] is a dedicated software tool used in drug repurposing along with many available molecular
docking models. For example, R. L. Des Jarlais et al. used the Dock computer algorithm to find
that haloperidol inhibits HIV-1 and HIV-2 proteases [79]. However, molecular docking can not work
unless we have some strong repositioning hints; otherwise, the search space for drug repositionings
would be exponentially big. To this end, the methodology proposed in this paper provides strong
drug-target interaction hints, such that we can build large-scale drug-target interaction profiles [8,80].
Our approach integrates the molecular docking with complex networks to hint new pharmacological
properties by identifying new sets of biological targets on which the drug acts. However, in this
paper, we performed only a preliminary docking testing, as our primary focus is the network-based
repurposing approach. As such, we recommend that future, more focused, research continue
our docking simulations by including target baits (to reflect the limitations of false-positive and
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false-negative results), considering solvent effects, flexible docking, and comparing multiple docking
tools. To this end, we indicate the robust docking methodologies employed in [68,81-83].

As Yvonne Martin et al. indicated [84], the paradigm of chemical similarity—which holds
that structurally similar drug molecules exert similar biological effects—cannot fully explain drugs
biological behavior. They found that only 30% of compounds similar to a particular active compound
are themselves active (the compounds are structurally similar if the Tanimoto coefficient is >0.85 in the
Daylight fingerprints). Therefore, behavioral approaches can successfully complement the structural
paradigm. To this end, similar interaction profiles are valuable resources in drug repurposing, as drugs
with similar target binding patterns may exhibit a similar pharmacologic activity [80,85,86]. As the

7

chemical similarity is not necessarily a reliable predictor of biological similarity [84,87], we analyze
the binding modes of Azelaic acid and Meprobamate compared to the other known reference drugs
(see Sections S3-S5 in the pdf Supplementary Information).

We highlight the docking simulation results for the interaction between Azelaic acid
and Steroid 17-alpha-hydroxylase/17,20 lyase, highly similar to Progesterone and Abiraterone
interactions with this target (see pdf Supplementary Information, Table S4). Abiraterone is a
potent 17-alpha-hydroxylase/17,20-lyase inhibitor used for the treatment of androgen-dependent
prostate cancer [37]. Therefore, discovering new drugs that inhibit this enzyme is a logical
strategy. However, because steroidal drugs—such as Abiraterone—have multiple steroid-related
side effects, Hille et al. decided to synthesize non-steroidal compounds that mimic the natural
17-alpha-hydroxylase/17,20-lyase substrates (i.e., pregnenolone and progesterone) [88]. Our docking
simulation results are in line with references [89,90], which report the covalent bonding of Abiraterone
to Steroid 17-alpha-hydroxylase/17,20 lyase (a cysteinato-heme enzyme from the cytochrome P450
superfamily). Precisely, Abiraterone forms a coordinate covalent bond of the pyridine nitrogen
at C17 with this target’s heme iron [90]. Furthermore, our docking simulation of the interaction
between Abiraterone and 17-alpha-hydroxylase/17,20-lyase confirms that Abiraterone establishes a
hydrogen-bond between the -OH group and the target’s Asn202; our results also confirm that amino acid
residues of Phel14, Ile206, Leu209, Arg239, Gly301, and Val482 represent the hydrophobic environment
for the reference Abiraterone [91]. According to our docking simulation results, Azelaic acid does not
establish a hydrogen bond with Asn202; however, not all the inhibitors tested by Chun-Zhi Ai et al. form
a hydrogen bond with Asn202. (Instead, they bond to other amino acid residues than Abiraterone [91].)
In a recent paper, Gabriele Micheletti et al. reported results of biological and docking evaluations of
some hybrid aza-heterocycles compounds, which bound azelayl moiety through an amide bond that
act as histone deacetylase inhibitors; this suggests the anticancer potential for three of their Azelaic acid
derivatives in osteosarcoma among the five tumor cell lines tested [92].

Meprobamate has similar binding modes to that of Clotrimazole with Lanosterol 14
alpha-demethylase, Oxiconazole with Lanosterol synthase, and Griseofulvin with Tubulin. Indeed,
we find the carbamate moiety in a wide range of drugs, such as Felbamate (anticonvulsant),
Disulfiram (the treatment of chronic alcoholism), Rivastigmine (anti-dementia), Darunavir (antiviral
for the treatment of HIV infections), or Physostigmine (antiglaucoma). Furthermore, carbamates are
reversible acetylcholinesterase inhibitors that act as effective fungicides, insecticides, and herbicides
in agriculture [74]. Indeed, a recent reference reports the synthesis, in vitro, and in vivo antifungal
evaluation of 36 novel threoninamide carbamate derivatives using the pharmacophore model [93].

5. Conclusions

The overarching conclusion is that our network-based computational drug repurposing method
is robust, as it recovers a wide array of previous drug repositionings. We prove such robustness by
employing our approach on an older database, to validate the results with a new DrugBank version.
Nonetheless, in drug repositioning, we deal with unknown unknowns; thus, we need to consider the
seemingly unconfirmed drug properties as potential repurposing hints. Testing all these hints is a
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daunting task that requires vast resources; thus, we propose a testing prioritization method based on
network centralities.

In this paper, we started a preliminary validation of previously unaccounted drug properties
using molecular docking. As such, we find that the Azelaic acid represents a promising candidate for
further in silico (e.g., molecular dynamics), in vitro, and in vivo investigations of its potential anticancer
effects. Although the molecular docking results are not as strong as for Azelaic acid, Meprobamate’s
antifungal properties cannot be disregarded or rejected. Meprobamate is a known oral drug; however,
we cannot exclude the topical administration route as an antifungal. To this end, we need further
investigations on biopharmaceutical properties to test various pharmaceutical topical formulations
with Meprobamate as an active ingredient. The same discussion on the biopharmaceutical properties
is valid for Azelaic acid, knowing that its administration route may change as an anticancer drug.

Our findings pave the way for further employing the target-based drug-drug similarity networks
with the latest available drug-target interaction data, as well as for in vitro and in silico experiments
that will eventually establish useful drug repositionings.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1999-4923/12/9/879/s1,
SupplementaryInformation.pdf, SupplementaryDDSN.xlsx, DDSN.gephi.
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