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Abstract: This study tested 15 direct compaction grades to identify the contribution of different
grades of mannitol to the storage stability of the resulting tablets. After preparing the model
tablets with different values of hardness, they were stored at 25 ◦C, 75% relative humidity for
1 week. Then, measurement of the tablet properties was conducted on both pre- and post-storage
tablets. The tablet properties were tensile strength (TS), friability, and disintegration time (DT).
The experimental data were analyzed using a Kohonen self-organizing map (SOM). The SOM analysis
successfully classified the test grades into three distinct clusters having different changes in the
behavior of the tablet properties accompanying storage. Cluster 1 showed an obvious rise in DT
induced by storage, while cluster 3 showed a substantial change in mechanical strength of the tablet
including a reduction in the TS and a rise in friability. Furthermore, the data were analyzed using
an Elastic net regression technique to investigate the general relationships between the powder
properties of mannitol and the change behavior of the tablet properties. Consequently, we succeeded
in identifying the crucial powder properties for the storage stability of the resulting tablets. This study
provides advanced technical knowledge to characterize the effect of different direct compaction
grades of mannitol on the storage stability of tablet properties.

Keywords: excipient; storage stability; tablet; mannitol; Kohonen self-organizing map; Elastic
net regression

1. Introduction

In manufacturing tablet products, a wide range of excipients are incorporated into the dosage form
as well as the active pharmaceutical ingredients (APIs). The role of excipients is diverse (e.g., fillers,
disintegrants, binders, and lubricants) [1]. Fillers are excipients to increase dosage form, volume,
or weight, and then they are added to tablet formulations for the manufacture of properly sized
products for easy handling. They also play an important role in improving tablet processability.
Most fillers exhibit good compactability and increase the mechanical strength of tablets. Lactose is
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the most common substance used as a filler [1,2]. Recently, in the development of tablet products,
the use of mannitol as a filler has increased. Although mannitol is more costly than lactose, it has
numerous attractive properties as a filler [2,3]. For one thing, mannitol possesses high water solubility.
In addition, mannitol provides patients with a pleasant cool feeling when it dissolves in the mouth.
These properties are advantageous for a tablet filler, especially orally disintegrating tablets (ODTs).
Furthermore, mannitol is more chemically inert than lactose, because mannitol is not accompanied by
the Maillard reaction, which can occur between lactose and amine functional groups, in APIs, which
leads to their degradation [4,5]. Thus, it can be used as an alternative filler to lactose.

To date, numerous commercial grades of mannitol have been produced by different manufacturers
to deal with various demands in the manufacturing of tablets. As far as direct compression (DC)
grade is concerned, there are various commercial grades. Each grade possesses different powder
properties [4,6,7], which substantially affects the production and quality of the tablet products in a
complex manner. Therefore, a comprehensive understanding of the effects of the different commercial
grades on the properties of the resulting tablet has been very important for designing tablet formulations.
Several researchers have investigated different mannitol grades in terms of the characterization of
powder properties and the effect on tablet properties [4,6,8]. For example, Paul et al. examined 11
different grades of mannitol in terms of relationships between the powder properties (e.g., particle size,
surface area, plasticity) and tableting performance (e.g., tensile strength of the resulting tablets) [4,6].
Similarly, Wagner et al. investigated the compactability of five different spray-dried mannitol grades [8].
Recently, we also investigated the powder properties of 15 different commercial DC grades of
mannitol [9]. In the course of our study, a wide range of powder and tablet properties concerning the
different grades were examined: the variables to be examined were the powder properties representing
flowability, size, shape, and manufacturing properties, and tablet properties including disintegration
time (DT), friability, and tensile strength (TS). Data analysis using a Kohonen self-organizing map
(SOM) let us successfully characterize the test mannitol grades in terms of powder properties and thus
identify the crucial powder properties for the resulting tablet properties.

In all likelihood, these differences in powder properties substantially affect not only the tablets’
initial properties but also their storage stability. However, no systematic comparative research of the
different DC grades to investigate the change behavior of tablet properties provoked by storage has
been performed to date. Against this background, this study focused on the effect of different mannitol
grades on the storage stability of their tablet properties to gain further advanced technical knowledge
about DC mannitol grades. This study tested the same 15 commercial mannitol grades as those in
our previous study. The model tablets consisting of the different grades were stored under humid
conditions. Then, the tablet properties (i.e., TS, friability, and DT) were measured pre- and post-storage.
After that, the change in behaviors of the tablet properties induced by storage was characterized using
the Kohonen SOM. In addition to the SOM analysis, general relationships of powder properties of the
mannitol with the change in behaviors were investigated using the Elastic net (ENET) method. Using
the ENET regression model, we identified the crucial powder properties for the storage stability of the
tablet properties. The outcome of this study offers a comprehensive understanding of the effect of
different DC grades of mannitol on the storage stability of tablet properties.

2. Materials and Methods

2.1. Materials

Fifteen different commercial DC grades of mannitol (Table 1) were used as purchased from the
following suppliers: Mannit Q (MQ) from Mitsubishi Life Science Institute (Tokyo, Japan); Pearlitol
100SD (100SD), Pearlitol 200SD (200SD), Pearlitol 300DC (300DC), Pearlitol 400DC (400DC), and Pearlitol
500DC (500DC) from Roquette Japan (Tokyo, Japan); Parteck M100 (M100) and Parteck M200 (M200)
from Merck Millipore (Billerica, MA, USA); Granutol F (GF), Granutol S (GS), and Granutol R (GR)
from Freund (Tokyo, Japan); Mannogem EZ Spray Dried (EZ), Mannogem XL (XL), Mannogem
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2080 Granular (2080), and Mannogem AG Granular (AG) from SPI Pharma (Wilmington, DE, USA).
Microcrystalline cellulose (MCC) (Ceolus PH-302) was obtained from Asahi Kasei Chemicals (Tokyo,
Japan). Low-substituted hydroxypropyl celluloses (L-HPC) (NBD-021) were provided by Shin-Etsu
Chemical (Tokyo, Japan). Magnesium stearate (MgSt) was purchased from Fujifilm Wako Pure
Chemicals (Osaka, Japan).

Table 1. Direct compaction grades of mannitol tested in this study.

Mannitol Grades Abbreviation Manufacturing Method Crystalline Form

Mannit Q MQ Spray-drying β

Pearlitol 100SD 100SD Spray-drying α, β
Pearlitol 200SD 200SD Spray-drying α, β
Pearlitol 300DC 300DC Granulation β

Pearlitol 400DC 400DC Granulation β

Pearlitol 500DC 500DC Granulation β

Parteck M100 M100 Spray-drying β

Parteck M200 M200 Spray-drying β

Granutol F GF Granulation β

Granutol S GS Granulation β

Granutol R GR Granulation β

Mannogem EZ Spray Dried EZ Spray-drying α, β
Mannogem XL XL Spray-drying α, β

Mannogem 2080 2080 Granulation β

Mannogem AG AG Granulation β

2.2. Preparation of Model Tablets

Model tablets containing different mannitol grades were prepared using the DC method.
The formulation of the model tablets was as follows: 74% mannitol, 20% MCC, 5% L-HPC, and 1%
MgSt. After sieving through a 20-mesh screen, designated amounts of ingredients were accurately
weighed. These ingredient powders, except for the lubricant (MgSt), were placed in a polyethylene bag
and then mixed for 3 min. After that, the MgSt was added to the mixture and then it was mixed again
for 1 min. Three hundred grams of the powder blend were prepared for manufacturing each model
tablet. The final blend (200 mg) was compressed into a flat round tablet, 8 mm in diameter, using a
rotary tableting machine (VELA5; Kikusui, Kyoto, Japan). The model tablets for use in the storage
experiment were prepared to have 55, 65, and 75 N of hardness by adjusting the compression force.
In addition, model tablets were prepared with a compression force of 5 kN to evaluate the compression
formability of the mannitol grades. The freshly prepared model tablets (pre-storage tablets) and those
stored at 25 ◦C, 75% RH for 1 week (post-storage tablets) were used for the measurement of tablet
properties described below. This storage condition was adopted based on our previous study [10].

2.3. Tensile Strength

The hardness of the tablets was determined using a tablet hardness tester (Ogawa Seiki, Tokyo,
Japan). The TS was calculated as

Tensile strength (MPa) =
2F
πdt

(1)

where F is the hardness (the maximum diametric crushing force), and d and t are the diameter and
thickness of the tablet, respectively.

2.4. Friability

The friability of tablets was determined using a friability tester (TFT-1200; Toyama Sangyo, Osaka,
Japan). For each measurement, ca 4.0 g of the tablets was weighed and then placed in a friability tester.
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Afterward, the drum of the friability tester was rotated at 25 rpm for 10 min. The tablet powder was
collected and then sieved through a 16-mesh screen (aperture size: 1 mm). The friability was calculated
as the weight ratio of the tablets before and after rotation.

2.5. Disintegration Time

For the measurement of the DT of the model tablets, this study employed an ODT testing apparatus
(ODT-101; Toyama Sangyo). Purified water at 37 ± 0.5 ◦C was employed as the test medium. A detailed
explanation of this apparatus has been given elsewhere [9]. In short, a test tablet was placed on a
stainless-steel plate having many small holes in a regular pattern and the bottom surface of the plate
was faced with the test medium filled in the vessel. To start the measurement, the tablet was pressed
with a column-shaped metallic weight (20 g) whose bottom surface was covered with a soft sponge.
The metallic weight was connected to a rotation shaft and then it was rotated at a speed of 100 rpm
during the measurement. Depending on the rotational stress, degradation of the tablet gradually
developed. The disintegrated portions were removed from the tablet by passing through the small
holes of the stainless-steel plate. The time required for the tablet to disappear completely on the plate
was defined as DT. The measurement of DT was precisely carried out by detecting the change in
electrical resistance of the bottom surface of the metallic weight and the stainless-steel plate.

2.6. Data Analysis

Viscovery SOMine® (Version 7; Eudaptics Software GmbH, Vienna, Austria) was employed for
the Kohonen SOM clustering. The Kohonen SOM is a feedforward-type neural network model [11].
This analysis allows multidimensional data to be turned into a two-dimensional map. This is considered
to be a powerful tool for characterizing multidimensional data, especially clustering data. The typical
structure of a SOM is composed of one input layer and one output layer. Nodes containing parametric
reference vectors are arranged in a regular pattern in the output layer. The SOM is constructed via
an unsupervised competitive learning approach. As a result of competitive learning, the array of the
output nodes ultimately reflects the patterns of learning data sets. The adjacent nodes possess closer
reference vectors to each other; thus, the distance between the nodes can be regarded as the degree
of similarity between them. To conduct the SOM clustering, the number of nodes was set at 300 and
the following nine combinations of tablet properties were used as the training variables: % retentions
in TS, friability, and DT of the model tablets using 55, 65, and 75 N of hardness. The competitive
learning process was iterated to generate the SOM. The number of iterations of competitive learning is
automatically optimized by the software. For this SOM clustering, the learning of the data set was
iterated 17 times.

ENET regression was carried out using JMP® Pro 14 statistical software (SAS Institute, Cary,
NC, USA). ENET is the latest sparse modeling method, which is similar to the Lasso and ridge
regressions [12,13]. Sparse modeling methods feature regularized or penalized regression techniques.
Better regression models are constructed by shrinking the model coefficients toward zero. The validity
of the estimated regression models was tested using Bayesian information criterion. These models
have a great capacity to identify the crucial factors for characteristics from data sets consisting of a
large number of variables. Additionally, the analysis is robust against confounding bias compared
with conventional regression methods. Recently, sparse modeling methods including ENET have
attracted great attention as being powerful tools for the characterization of multidimensional data.
Some technical reports have applied ENET in pharmaceutical research [14,15].
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3. Results and Discussion

3.1. SOM Analysis to Characterize the Change Behaviors of Tablet Properties of the Model Tablets Induced by
Storage for One Week

The DC grades of mannitol tested in this study are summarized in Table 1. The spray-dried
mannitol grades correspond to MQ, 100SD, 200SD, EZ, XL, M100, and M200, while granulated grades
were 300DC, 400DC, 500DC, 2080, AG, GF, GS, and GR [4,6,7]. In addition, they are different in terms
of crystalline forms: namely, 100SD, 200SD, EZ, and XL were a mixture of α and β crystalline forms,
while the other grades consisted of the β form only. The microscopic images of these powders were
shown in supplemental material (see Figure S1).

The model tablets consisting of each grade were prepared to adjust their tablet hardness to 55,
65, and 75 N. Afterward, the tablet properties were measured pre- and post-1-week storage at 25 ◦C,
75% RH. All components of the model tablets are stable against humid storage conditions. We thought
the values of the tested tablet properties mainly fluctuated according to the moisture content of the
tablets. In other words, these values should be constant as long as the moisture content reaches a
level of saturation after storage under humid conditions [16–18]. For example, Yamazaki et al. [18]
studied the storage stability of original brand name and generic famotidine tablets after storage under
humid conditions (27 ◦C, 55% RH) for 8 weeks. The hardness and DT dropped immediately after
storage, but these variables appeared to be constant afterwards until the end of the experimental
period. Sakamoto et al. [16] monitored time-dependent change in tablet properties of magnesium oxide
ODTs following an accelerated stress test (40 ◦C, 75% RH). They also reported that TS dropped sharply
shortly after beginning the accelerated storage test, and afterwards the values remained constant for
4 weeks [16]. Regarding our model tablets, we previously confirmed that the moisture content reached
a level of saturation within the first week of storage under humid conditions [10]. Thus, the change in
the tablet properties after 1 week of storage was used to evaluate its storage stability.

As we predicted, overall TS values were reduced by storage (Figure 1A). The degree of decrease
in the TS substantially changed according to the mannitol grades and hardness. In particular, 300DC-,
400DC-, 500DC-, 2080-, and AG-containing tablets showed obvious reductions. Figure 1B represents
the deltas of variables between pre- and post-storage tablets as a function of tablet hardness. The mean
value, expressed as × in the box plots, decreased significantly with higher hardness, while the variances
between the first quartile and third quartile were hardly changed even though the hardness was
changed. The changes in friability behavior showed a significant negative correlation with those of
TS: a more substantial reduction in TS after 1 week of storage, and a more substantial rise in friability.
The 400DC-containing tablets showed the most significant changes in friability and TS after storage.
The delta values of friability as a function of hardness were different from those of TS: The mean and
variance obtained from the tablets with different hardness were very close to each other. As for DT,
on the whole, the values were increased with higher tablet hardness. Most of the model tablets resulted
in an increase in DT on storage, while some test tablets (e.g., 400DC-containing tablets with 65 and
75 N) showed a decrease in DT. Thus, the change in behavior of DT seemed more complicated than
those of TS and friability. In addition, tablet hardness appeared to affect the change behavior of DT.
That is because, although the mean values of the delta of DT (Figure 1B) were almost the same, their
variances gradually increased with higher tablet hardness.



Pharmaceutics 2020, 12, 886 6 of 14
Pharmaceutics 2020, 12, x FOR PEER REVIEW 6 of 14 

 

(A) (B) 
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Box plots of the delta of variables between pre- and post-storage tablets. The lower and upper ends 
of the rectangular box represent the first and third quartiles of the variables, a horizontal line and “×” 
in the interior of the box express the median and mean, and the lower and upper ends of the whiskers 
indicate the minimum and maximum of the variables, respectively. ** p < 0.01. 
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especially TS and DT, were changed proportionally according to the tablet hardness. Since the % 
retention is a parameter that removes the influence of absolute values of tablet properties from the 
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mannitol grades on the storage stability of tablet properties. 
  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
0S

D
20

0S
D

30
0D

C
40

0D
C

50
0D

C
20

80 AG EZ GF GR GS
M

10
0

M
20

0
M

Q XL

Fr
ia

bi
lit

y 
(%

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
0S

D
20

0S
D

30
0D

C
40

0D
C

50
0D

C
20

80 AG EZ GF GR GS
M

10
0

M
20

0
M

Q XL

Fr
ia

bi
lit

y (
%

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
0S

D
20

0S
D

30
0D

C
40

0D
C

50
0D

C
20

80 AG EZ GF GR GS
M

10
0

M
20

0
M

Q XL

Fr
ia

bi
lit

y (
%

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
10

0S
D

20
0S

D
30

0D
C

40
0D

C
50

0D
C

20
80 AG EZ GF GR GS

M
10

0
M

20
0

M
Q XL

TS
 (M

Pa
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
0S

D
20

0S
D

30
0D

C
40

0D
C

50
0D

C
20

80 AG EZ GF GR GS
M

10
0

M
20

0
M

Q XL

TS
 (P

a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
0S

D
20

0S
D

30
0D

C
40

0D
C

50
0D

C
20

80 AG EZ GF GR GS
M

10
0

M
20

0
M

Q XL

TS
 (P

a)

0
20
40
60
80

100
120
140
160
180
200

10
0S

D
20

0S
D

30
0D

C
40

0D
C

50
0D

C
20

80 AG EZ GF GR GS
M

10
0

M
20

0
M

Q XL

DT
 (s

)

0
20
40
60
80

100
120
140
160
180
200

10
0S

D
20

0S
D

30
0D

C
40

0D
C

50
0D

C
20

80 AG EZ GF GR GS
M

10
0

M
20

0
M

Q XL

DT
 (s

)

0
20
40
60
80

100
120
140
160
180
200

10
0S

D
20

0S
D

30
0D

C
40

0D
C

50
0D

C
20

80 AG EZ GF GR GS
M

10
0

M
20

0
M

Q XL

DT
 (s

)

55 N 65 N 75 N
TS

Fr
ia

bi
lit

y
DT

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

10
0S

D
20

0S
D GR

M
20

0
M

Q XLEZ GF GS
M

10
0

30
0D

C
40

0D
C

50
0D

C
20

80 AG

Figure 1. Tablet properties of pre- and post-storage tablets consisting of different mannitol grades.
Model tablets having 55, 65, and 75 N of hardness were tested. (A) White and black bars represent
the variables of pre- and post-storage tablets, respectively. Each bar represents the mean ± SD (n = 3).
(B) Box plots of the delta of variables between pre- and post-storage tablets. The lower and upper ends
of the rectangular box represent the first and third quartiles of the variables, a horizontal line and “×”
in the interior of the box express the median and mean, and the lower and upper ends of the whiskers
indicate the minimum and maximum of the variables, respectively. ** p < 0.01.

Subsequently, we characterize the changes in the tablet properties of each model tablet after
storage. We calculated the % retention of the tablet properties from the pre-storage level as an indicator
to evaluate the storage stability of each tablet. As shown in Figure 1, tablet properties, especially TS and
DT, were changed proportionally according to the tablet hardness. Since the % retention is a parameter
that removes the influence of absolute values of tablet properties from the raw data, we assumed that
the all data can be evaluated regardless of the tablet hardness by using this parameter. The calculation
of the % retention of the tablet properties from the pre-storage level was performed as follows:

% retension o f tablet properties f rom the prestorage level =
x1week
xpre

× 100 (2)

where x1week is the value for the variables of the post-storage tablets, while xpre is that of the pre-storage
tablets. The xpre corresponds to the mean value of each grade of mannitol tablet for the variable
measurement, which was repeated three times. A higher % retention means that the value of the tablet
property is increased more significantly due to storage for 1 week. As shown in Figure 2A, a similar
change in behavior as a function of mannitol grades was observed from tablets with different levels of
hardness. In accordance with this, the statistics of % retention as a function of hardness were almost
the same in terms of mean and variance (Figure 2B). We conclude that, as far as this study is concerned,
% retention from the pre-storage level enables us to extract the essence of the effect of mannitol grades
on the storage stability of tablet properties.
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Figure 2. Change in tablet properties induced by storage for 1 week at 25 ◦C, 75% RH. (A) % retention
of tablet properties measured pre- and post-1-week storage. The model tablets consisting of 74%
individual mannitol grades were prepared to have 55, 65, and 75 N of hardness. Each bar represents
the mean ± SD (n = 3). (B) Box plots of the % retention of the tablet properties as a function of hardness.
The lower and upper ends of the rectangular box represent the first and third quartiles of the variables,
a horizontal line and “×” in the interior of the box express the median and mean, and the lower and
upper ends of the whiskers indicate the minimum and maximum of the variables, respectively.

The calculated % retention values were analyzed using Kohonen SOM to characterize the change
behaviors in tablet properties following storage. Kohonen SOM enables to express multidimensional
data as a two-dimensional map, which is a powerful tool for clustering data. SOM analyses have been
applied in the pharmaceutical and medical fields [19–21]. The present study tried to classify the test
mannitol grades into several clusters in terms of change behavior of tablet properties accompanying
the storage. The following nine variables were employed as training variables of the SOM clustering:
% retentions from the pre-storage levels in TS, friability, and DT of the model tablets having 55, 65,
and 75 N of hardness. The SOM algorithm is based on competitive learning [11]. The SOM shown
in Figure 3A was obtained as a result of the competitive learning. The constituent unit of SOM is
called a “node.” Numerous nodes are arranged in a regular pattern in the SOM. Each node possesses
parameter information, which is the same data size as the input data. In SOM, the adjacent nodes are
supposed to have similar properties; thus, the distance between the nodes expresses the degree of
similarity. As a result of SOM clustering, the model tablets containing different mannitol grades were
classified into three distinct clusters (Figure 3A). Each experimental datum used for the SOM clustering
was labeled on the nodes of the resulting SOM: 100SD-, 200SD-, GR-, M200-, MQ-, and XL-containing
tablets were assigned to cluster 1; EZ-, GF-, GS-, and M100-containing tablets were assigned to cluster
2; and 300DC-, 400DC-, 500DC-, 2080-, and AG-containing tablets were assigned to cluster 3. Figure 3B
shows a representative result of the SOM feature maps. They correspond to the % retention of tablet
properties measured from the model tablets formed at 65 N. As shown in this figure, the SOM feature
maps display the regions distributing higher and lower values of the variables in red and blue. From
the SOM feature maps, one can easily see the latent relationships among the variables. This study also
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summarized the % retention of tablet properties for each grade of the clusters to characterize their
different storage stabilities (Figure 4). Regarding TS, a substantially low % retention was observed for
cluster 3, while the values of clusters 1 and 2 showed less decrease. This indicates that TS of cluster 3
was substantially decreased due to storage, while those of clusters 1 and 2 showed less change. The
change behavior of friability appeared to be strongly associated with that of TS. That is because a
substantially high % retention of friability was observed for cluster 3, while those of clusters 1 and
2 were hardly changed after storage. It is worth noting that % retention in TS of the entire data had
a highly negative correlation with that of friability (r = −0.906) (see supplemental material, Figure
S2A). As for DT, the change behavior induced by storage was independent of TS and friability: The
correlation coefficients (r) of % retention of DT compared with those in TS and friability were very
low, 0.501 and −0.418, respectively (Figure S2B and C). Unlike TS and friability, cluster 1 showed
an obvious rise in DT after storage. By contrast, the data for DT in clusters 2 and 3 were mainly
distributed around 100% (close to the prestorage level); thus, these clusters showed less change in terms
of DT. From these findings, we succeeded in characterizing the change behaviors of tablet properties
accompanying storage.
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Figure 3. (A) SOM and (B) SOM feature maps to classify test grades of mannitol according to the
storage stability of tablet properties. The SOM clustering was performed using % retention of TS,
friability, and DT of tablets having 55, 65, and 75 N of hardness as training variables. Each experimental
data set was labeled on the nodes of the map to express the data distribution (A). The properties of the
tablets having 65 N of hardness are shown in the SOM feature maps as a representative variable (B).

3.2. Relationships of Powder Properties of Mannitol Grades with the Storage Stability of the Tablet Properties
Using an ENET Regression Model

We further characterized the powder and tablet properties of the clusters. We have previously
measured various powder properties of the test mannitol grades [9]. This study used the following
six powder properties: bulk density (Vbulk), compressibility index (CI), angle of repose (AR), median
diameter of particle size (D50), specific surface area (SSA), and ejection stress (ES). ES is a manufacturing
property measured using a powder compaction analysis system (GTP-2; Gamlen Instruments, London,
UK) [22–24]. As for friability and DT, the values of the model tablets with a hardness of 65N were
employed as representative data. Additionally, the compression force was recorded in preparing
the model tablets; thus, the compression force values were also used for this experiment. As for TS,
we prepared the model tablets under the same compression force of 5 kN and then used their TS values
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for this experiment. To compare variables between the clusters, the standardized differences were
calculated as follows (Figure 5A):

Standardized di f f erence =

(
Xcluster −X

)
SD

(3)

where Xcluster is the mean value of the variables of mannitol grade assigned in each cluster. X and SD
are the mean and standard deviation of the entire data set, respectively. We further compared the data
for each cluster with the entire data using the Student t test, and then determined significant differences
in the variables for each cluster. From this analysis, the features of the powder and tablet properties of
each cluster are fully understood. Cluster 1 contains 300DC, 400DC, 500DC, 2080, and AG. They are
granulated mannitol grades (Table 1). The unique properties were observed as follows: higher TS,
shorter DT, lower compression force, and lower Vbulk and D50. Cluster 2, which was the most stable
against storage, showed higher TS, lower compression force, higher CI, lower D50, and higher ES.
The mode of action of the variables of cluster 2 was very similar to that of cluster 1, but the variables
were distinguishable in terms of the significant differences in DT, Vbulk, CI, and ES. Cluster 3 showed a
distinct mode of action compared with the other clusters: lower TS, higher friability, shorter DT, higher
compression force, higher Vbulk, D50, and lower CI, SSA, and ES. In addition, the SOM feature maps of
the powder and tablet properties are presented in Figure 5B. Since the input data for the SOM clustering
contained not only training variables (% retention values), but also powder and tablet properties, their
SOM feature maps could be created from the SOM constructed before. Based on the SOM feature maps,
we can visually understand the relationships between powder and tablet properties. For example,
the SOM feature maps clearly show that mannitol grads of cluster 3 possess higher D50 and lower
CI and SSA. Furthermore, cluster 3 appeared to have less compactability because they require higher
compression force to prepare the tablets than the other clusters. These relationships are consistent with
relevant comparative studies [6,8]. Paul et al. [6] reported that granulated mannitol (i.e., 300DC, 400DC
and 500DC) exhibited poorer compactability than those of spray-dried mannitol (i.e., M100, M200,
100SD and 200SD). The authors mentioned that the granulated mannitol has powder properties of
larger particle size, smaller SA and lower plasticity, and then these powder properties lead to a smaller
bonding area of particles during compression, resulting in poor compactability. Wagner et al. [8] also
tested compactability of five different spray-dried grades of mannitol, and then reported that mannitol
grades having higher SA are prone to produce tablets having higher TS.

We further investigated the general effect of the powder properties of mannitol on the storage
stability of the resulting tablets. The analysis was performed using ENET regression modeling.
According to the analysis, we tried to identify the crucial powder properties for the % retention from the
pre-storage level in the tablet properties. It is worth noting that ENET is robust against the confounding
effect of factors. Since some powder properties of mannitol were highly correlated, we considered
it to be suitable for the analysis. Before conducting the ENET analysis, the powder properties were
standardized so that a relative comparison of their effects could be performed.

Figure 6 shows scatterplots of experimental versus predicted values for tablet properties calculated
using the constructed regression models. The obtained ENET regression models for tablet properties
are listed in Tables 2–4. The predicted values in the scatterplots (Figure 6) were estimated from the
obtained ENET regression models. The correlation coefficients (r) of the regression models concerning
TS and friability were extremely high: The coefficients for % changes in TS and friability were 0.923 and
0.911. The crucial powder properties were identified by the regression models (Tables 2–4). We note
the same factors (i.e., Vbulk, D50, and SSA) were proved to have a significant effect on % retention of
TS and friability (Tables 2 and 3). Based on the result that a lower % retention of TS and a higher %
retention of friability represent a more significant change according to the storage (Figure 4), mannitol,
having larger Vbulk and D50 and smaller SSA, is prone to produce tablets whose TS and friability are
susceptible to storage. We further note that a higher χ2 value of the explanatory variable represents
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a more significant effect. Thus, D50 has by far the most significant impact on changes in TS and
friability. As mentioned in Figure 5B, mannitol grades with larger D50 and smaller SSA required higher
compression force to prepare tablets: thus, such a low compactability might contribute to significant
changes in the mechanical strength of the tablets after storage. As for the change behavior of DT, Vbulk,
CI, and D50 were found to be significant factors (Table 4). In particular, the effect of Vbulk was the
most significant. Namely, smaller Vbulk, CI, and D50 of the mannitol are prone to lead to a significant
prolongation of DT due to storage. From these findings, we successfully characterized the effect of
different mannitol grades on the change behaviors of tablet properties induced by storage.Pharmaceutics 2020, 12, x FOR PEER REVIEW 9 of 14 
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Figure 5. Powder and tablet characteristics of the SOM clusters. (A) Profiling analysis of SOM clusters.
Each value represents the standardized differences in the means of variables between each cluster and
the entire data set calculated according to Equation (3). The TS data were acquired from the model
tablets prepared at a compression force of 5 kN, while those of friability and DT, compression force
(kN) were from the model tablets with 65 N of hardness. The data of powder properties including
Vbulk, CI, AR, D50, SSA, DS, and ES are quoted from the previous study [9]. ** p < 0.01 and * p < 0.05 vs.
the entire data. (B) SOM feature maps were created by arranging the data according to the constructed
SOM shown in Figure 3.
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Figure 6. Scatterplots of experimental vs. predicted values. The predicted variables were obtained
from the regression models estimated using the ENET regression technique.
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Table 2. Crucial powder properties affecting % retention of TS estimated using the ENET technique.

Factor Estimate 1 Standard Error 1 χ2 Value p Value

Bulk density −55.4 11.3 23.9 <0.01
D50 −162.6 11.4 201.6 <0.01

Specific surface area 26.0 9.3 7.7 <0.01
1 Estimates of standardized regression coefficients and standard errors of the regression model.

Table 3. Crucial powder properties affecting % retention of friability estimated using the
ENET technique.

Factor Estimate 1 Standard Error 1 χ2 Value p Value

Bulk density 178.9 42.9 17.4 <0.01
D50 792.7 41.7 360.9 <0.01

Specific surface area −65.1 27.0 5.8 0.016
1 Estimates of standardized regression coefficients and standard errors of the regression model.

Table 4. Crucial powder properties affecting % retention of DT estimated using the ENET technique.

Factor Estimate 1 Standard Error 1 χ2 Value p Value

Bulk density −185.6 26.1 50.4 <0.01
Compressibility index −167.8 42.2 15.8 <0.01

D50 −99.9 49.2 4.1 0.042
1 Estimates of standardized regression coefficients and standard errors of the regression model.

4. Conclusions

The present study focused on the effect of different commercial DC grades of mannitol on the
storage stability of tablet properties. SOM clustering successfully classified the 15 different mannitol
grades into three distinct clusters according to the change behaviors of the tablet properties. Cluster
1 contained 100SD, 200SD, GR, M200, MQ, and XL. Their tablets showed a significant increase in
DT after 1 week of storage. Cluster 2, containing EZ, GF, GS, and M100, was the most stable for all
variables among the test mannitol grades. Cluster 3 contained 300DC, 400DC, 500DC, 2080, and AG.
These tablets showed a significant change in mechanical strength including a significant reduction in
TS and a significant rise in friability on storage. This study proceeded with an investigation of the
general relationships of the powder properties to the change behavior of the tablet properties using
the ENET technique. In consequence, we identified the crucial powder properties for the storage
stability of tablet properties. In conclusion, this study provided improved knowledge of the effect of
different mannitol grades on the stability of the resultant tablet properties. This knowledge is valuable
information for designing tablet formulations.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/9/886/s1,
Figure S1: Microscopic images of direct compaction grades of mannitol. Particles of each mannitol grade were
observed using a digital microscope (VHX-6000; Keyence, Tokyo, Japan). These images were acquired at 200× or
500×. Figure S2: Relationships between tablet properties. (A) % retention of TS vs. % retention of friability, (B) %
retention of TS vs. % retention of DT, (C) % retention of friability vs. % retention of DT.
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