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Abstract: Mycophenolic acid (MPA) is commonly used for organ rejection prophylaxis via oral
administration in the clinic. Recent studies have shown that MPA also has anticancer activities. To
explore new therapeutic options for oral precancerous/cancerous lesions, MPA was designed to
release topically on the dorsal tongue surface via a mucoadhesive patch. The objective of this study
was to establish the pharmacokinetic (PK) and tongue tissue distribution of mucoadhesive MPA
patch formulation after supralingual administration in rats and also compare the PK differences
between oral, intravenous, and supralingual administration of MPA. Blood samples were collected
from Sprague Dawley rats before and after a single intravenous bolus injection, a single oral dose,
or a mucoadhesive patch administration on the dorsal tongue surface for 4 h, all with a dose of
0.5 mg/kg of MPA. Plots of MPA plasma concentration versus time were obtained. As multiple peaks
were found in all three curves, the enterohepatic recycling (EHR) model in the Phoenix software
was adapted to describe their PK parameters with an individual PK analysis method. The mean
half-lives of intravenous and oral administrations were 10.5 h and 7.4 h, respectively. The estimated
bioavailability after oral and supralingual administration was 72.4% and 7.6%, respectively. There
was a 0.5 h lag-time presented after supralingual administration. The results suggest that the systemic
plasma MPA concentrations were much lower in rats receiving supralingual administration compared
to those receiving doses from the other two routes, and the amount of MPA accumulated in the
tongue after patch application showed a sustained drug release pattern. Studies on the dynamic of
drug retention in the tongue after supralingual administration showed that ~3.8% of the dose was
accumulated inside of tongue right after the patch removal, ~0.11% of the dose remained after 20 h,
and ~20.6% of MPA was not released from the patches 4 h after application. The data demonstrate
that supralingual application of an MPA patch can deliver a high amount of drug at the site of
administration with little systemic circulation exposure, hence lowering the potential gastrointestinal
side effects associated with oral administration. Thus, supralingual administration is a potential
alternative route for treating oral lesions.

Keywords: mycophenolic acid; supralingual; pharmacokinetic modeling; intravenous; oral; transmu-
cosal drug delivery; enterohepatic recycling

1. Introduction

Oral cancer occurred in 355,000 people globally in 2018 and resulted in nearly 50%
death in patients diagnosed with this disease [1]. Oral squamous cell carcinoma (OSCC)
constitutes the majority (>90%) of oral cancers. Evidence has suggested that OSCC may
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have developed from precancerous lesions, such as leukoplakia and lichen planus [2].
Current oral cancer treatment modalities include surgery, radiation, and chemotherapy,
depending on tumor location and stage [3]. However, serious side effects are often seen
with systemic chemotherapy and surgical intervention, presenting major challenges to
clinical practice [4]. A reasonable strategy to reduce cancer-related mortality and morbidity
is to develop non-invasive methods to treat precancerous lesions or early-stage cancers [5].

Oral mucosa overlining the tongue and the buccal surface is a route for drug adminis-
tration that bypasses the first-pass effect, avoids pre-systemic metabolism, and offers rapid
drug absorption [6,7]. Many topical dosage forms, such as solutions, tablets/lozenges,
chewing gums, sprays, patches, films, hydrogels, hollow fibers, and microspheres, have
been developed for oral mucosal delivery [8]. Among those, a mucoadhesive patch offers
several unique advantages, such as direct and rapid onset, long retention time, sustained
release, accurate dosing, and minimal unwanted side effects [4,9,10]. There are published
studies reporting the in vivo application of mucoadhesive patches of certain drugs as a
site-specific therapy to minimize systemic exposure [11–13]. In addition to the common
buccal and sublingual routes, the supralingual (top of the tongue) route has also been
investigated as a potential administration approach [14]. However, none of them has
evaluated and compared the pharmacokinetic (PK) behaviors of drugs delivered via the
supralingual route with the conventional intravenous (IV) and oral routes.

Mycophenolic acid (MPA) is a potent, selective, and reversible inhibitor of inosine
monophosphate dehydrogenase (IMPDH) used in the prevention and treatment of organ
transplant rejection in the clinic [15]. Recent studies showed that MPA also exerts a
potent anticancer activity by inhibiting DNA synthesis and arresting the cell cycle in the
S phase [16,17]. Interestingly, MPA-treated patients in the clinic seem to have a relatively
lower risk of developing skin cancer, lymphoma, or lymphoproliferative malignancy
compared to patients treated with other immunosuppressant agents [18,19]. Recently, Tsai
et al. [20] found that MPA acts synergistically with different chemotherapeutic agents in
killing various types of cancer cells, suggesting that MPA might be a potent chemo-adjuvant
for the treatment of oral premalignant lesions. Currently, there are two oral forms of MPA
available on the market, mycophenolate mofetil (MMF, CellCept®) and mycophenolate
sodium (EC-MPS, Myfortic®) [21]. Oral administration of MPA is associated with several
disadvantages, including adverse gastrointestinal effects and tolerability problems [22,23]
and low drug levels at the targeted tissue due to limited blood supply around solid
tumors [4]. To overcome these challenges, we explored the possibility of topical application
of MPA via mucoadhesive patches.

There have been clinical PK studies of MPA conducted in patients with renal trans-
plant [24,25], hematopoietic stem cell transplantation [26], childhood-onset systemic lupus
erythematosus (cSLE) [27], and in a healthy Chinese population [28]. Chantal et al. de-
scribed MPA plasma PK in renal transplant patients after twice-daily oral administration
in a two-compartment model with zero-order absorption [24]. Payen et al. described MPA
plasma PK in kidney transplant pediatric and adolescent patients using a two-compartment
model with first-order absorption with a lag time [25]. Sherwin et al. and Zheng et al.
described MPA and MPAG population PK using an enterohepatic recycling (EHR) model
with different absorption compartments [26,27]. Colom et al. reported that the PK profile
of orally administered MPA showed secondary/multiple peaks due to EHR through its
inactive metabolite mycophenolic glucuronide (MPAG) [29]. Despite the fact that rich
information can be found in the literature for establishing PK models and describing the
EHR effect of MPA in humans, there is limited literature describing the compartmental PK
for MPA in rats. Similar to human subjects, EHR also occurs in rats. However, different
pharmacokinetics between humans and rats were found to be caused by the affinities of
multidrug resistance-associated protein 2 (MRP2) for MPAG. Due to the affinity of rats
MRP2 to MPAG being around 3.6 times more than human MRP2, MPAG is majorly excreted
into the urine in humans and majorly excreted into bile in rats [30]. There were several
pre-clinical PK studies of MPA in healthy rats [31–33] and Nagase analbuminemic rats [34].
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Feturi et al. developed a semisolid topical formulation which was applied on the hind limb
of rats, which resulted in 6% of bioavailability compared to IV administration and highly
skin and muscle MPA accumulations [32]. Dridi et al. found circadian (light onset time) can
largely influence the Cmax and total exposure during MPA administration [33]. The half-life
after 90 mg/kg single oral administration in rats was around 12.9 h [31]. Multiple peaks in
PK profile after MPA administration were also observed in rats. However, no transmucosal
delivery of MPA has been done yet. Therefore, PK evaluation of the supralingual route
is needed.

Mucoadhesive patches applied directly on the lesion site can deliver drugs more
effectively to the affected tissue compared to traditional oral administration. The incidence
of the gastrointestinal side effect of MPA is associated with maximum plasma concentra-
tion (Cmax) after oral administration, and the relatively high fluctuation of the plasma
concentration can increase the uncertainty of the amount of drug accumulated in the oral
mucosa [35,36]. Supralingual administration of MPA may provide a continuous release
of drug from the oral mucosa, which not only lowers the Cmax, but also reduces plasma
concentration fluctuations. In this paper, we report and compare the PK and tongue tissue
distribution studies of MPA in rats after IV, oral, and supralingual administration. The ab-
solute bioavailability of oral and supralingual administration was calculated by comparing
their mean areas under the curve (AUC0–48) to that of the IV administration. Different PK
models were used to analyze different administration routes, and the most appropriate
ones were selected for each of them. Multiple peaks were observed in the PK profiles of all
three administration routes, and phase II metabolite MPA glucuronide was identified by
LC-MS/MS in the plasma, which was usually responsible for EHR. The EHR model has
been previously established for oral administration but never for transmucosal drug deliv-
ery of MPA. Our study reports a EHR model for supralingual PK analysis by an individual
analysis method. The PK parameters indicate that the drug within the patch formulation
had a sustained release from the dorsal tongue, resulting in low drug concentrations in the
plasma and a high amount of the drug accumulated in the tongue tissue. This new route
of supralingual administration has great potential as a valuable alternative approach for
treating oral lesions.

2. Materials and Methods
2.1. Chemicals, Animals, and Instruments

MPA, griseofulvin (as an internal standard, IS), and formic acid were purchased
from Sigma Aldrich (St. Louis, MO, USA). Mycophenolate sodium (MPA’s salt form) was
purchased from USP (Rockville, MD, USA) and used for injection. Mucoadhesive patches
containing MPA (3.6 µg/mm2) were designed and synthesized by Dr. Liu at the Baylor
College of Dentistry, Dallas, TX, USA. Male Sprague Dawley (SD) rats were purchased from
Envigo RMS (Indianapolis, IN, USA). An AB Sciex 4000 QTRAP® UPLC-MS/MS system
(Redwood City, CA, USA) was used to analyze all biological samples. LC-MS/MS grade
water and acetonitrile purchased from VWRTM Chemcial BDH® (Chicago, IL, USA) were
used as mobile phase for the quantification of MPA. Formic acid purchased from Sigma-
Aldrich (St. Louis, MO, USA) was used to improve peak shapes of the UPLC-MS/MS
method. Centrifuge Eppendorf 5417C tubes (Hauppauge, NY, USA) were used to separate
plasma from whole blood and extract plasma from the organic solvent. Tissue homogenizer
purchased from BioSpec Products, Inc. (Bartlesville, OK, USA) was used to get tongue
homogenates. Phoenix WinNonlin Software (version 8.2.0.4383; Pharsight Corporation,
Sunnyvale, CA, USA) was used to analyzing plasma PK parameters.

2.2. PK Studies and Tongue Tissue Distribution

Adult male Sprague-Dawley (SD) rats were used in all the animal studies. The animal
experiments were approved by the Institutional Animal Care and Use Committee (IACUC)
at Texas Southern University (TSU protocol #9080 approved on 30 May 2019) and were
conducted according to the National Institute of Health “Guide for the Care and Use of
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Laboratory Animals, 8th Edition”. Rats were individually identified by tail markings and
were acclimatized in the TSU vivarium for at least 7 days before animal experiments. Three
groups of male SD rats (total n = 11, average weight of 379.8 ± 44.3 g) were used for PK
studies of IV bolus injection, single oral administration, and supralingual patch application,
respectively. Blood samples were taken at various times and centrifuged at 3000 rpm for
20 min to obtain plasma samples, which were then immediately stored at −80 ◦C until
analysis. Two more groups of SD rats (total = 7, average weight 384.1 ± 64.9 g) were used
for tongue tissue distribution studies with the same 4 h supralingual patch application
time. No noticeable signs of discomfort were observed in any of the rats. Details of the
experiments are described below.

2.2.1. IV PK Study

Dosing solution was prepared by dissolving 1 mg of sodium MPA in 1 mL of normal
saline and then filtered through a 0.22 µm filter (VWRTM, Chicago, IL, USA) before admin-
istration. The dosing solution was administered to the rat (n = 5) via the jugular vein as a
bolus dose of 0.5 mg/kg of MPA. Blood samples (approximately 0.15 mL) were collected
from the jugular vein before dosing (pre-dose) and at 2, 5, 15, 30 min, 1, 2, 3, 4, 6, 8, 10, 24,
28, 32, and 48 h post-dose.

2.2.2. Oral PK Study

The same dosing solution as above was administered (0.5 mg/kg) to the rat (n = 3)
by oral gavage with a 16-gauge feeding needle. Blood samples (~0.15 mL) were collected
from the jugular vein at pre-dose, 5, 10, 15, 30 min 1, 2, 3, 4, 6, 8, 10, 12, 24, 28, 32 and
48 h post-dose.

2.2.3. Patch PK Study

Polymeric mucoadhesive MPA patches (3.6 µg/mm2) were stored at −20 ◦C until use.
In this study, a single dose patch (0.5 mg/kg, size around 50 mm2) was applied on the
dorsal surface of the tongue while the rats were under light anesthesia, then was removed
after 4 h (n = 3). The surface of the dorsal tongue was thoroughly washed with pure water
for 5 min to remove the drug residual on the surface. Animals had free access to water and
food after removing the patch. Blood samples (~0.15 mL) were collected from the jugular
vein into heparinized centrifuge tubes at pre-dose, dose application period of 1, 2, 3, and
4 h (patch removed at this time point), and continued at 4.5, 5, 6, 7, 8, 9, 10, 24, 28, 32, and
48 h after the initiation of patch application.

2.2.4. Tongue Tissue Distribution

Two groups of SD rats received patch application supralingually for 4 h the same way
described in Section 2.2.3. The first group (n = 4) was sacrificed immediately (0 h), and
tongues were thoroughly washed for 5 min and then removed for analysis. The second
group (n = 3) was subjected to thorough tongue wash for 5 min at 0 h after patch removal
and then sacrificed 20 h later, and tongues were removed for analysis.

2.3. Sample Preparation and Analysis
2.3.1. Plasma Samples

Fifty (50) µL of rat plasma were extracted by adding 200 µL of acetonitrile containing
10 ng/mL of griseofulvin as the internal standard (IS) in a 1.5 mL centrifuge tube. The
mixture was vortexed for 15 s and centrifuged at 14,000 rpm for 20 min at 4 ◦C. The
supernatant was then injected into the LC-MS/MS instrument for quantitative analysis.

2.3.2. Tongue Samples

Tongues collected from rats were washed 3 times with 1 mL of HPLC water, followed
by adding 6 mL of water for every mass gram of tongue tissue and homogenization for
3 min. Tongue homogenates of 50 µL were extracted by adding 200 µL of acetonitrile with
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IS in a 1.5 mL centrifuge tube. The mixture was then vortexed for 15 sec and centrifuged
at 14,000 rpm for 20 min at 4 ◦C. Five microliters of supernatant was then analyzed by
the LC-MS/MS.

2.3.3. LC-MS/MS Analysis

A sensitive and fast LC-MS/MS method previously developed and validated by our
group [37,38] was used to measure the MPA amount. Both intra- and inter-day were
within ±15% by calculation their coefficient of variation in rat plasma and tongue quality
control samples [37]. Briefly, MPA separation was carried out on an ACE Excel 2 Super C18
column (50 × 2.1 mm, 2 µm) with a mobile phase run in the gradient elution of 0.1% formic
acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B) at a flow rate of
0.4 mL/min. Griseofulvin was used as IS. LC-MS/MS analysis was carried out on a 4000
QTRAP LC-MS/MS system with a Turbo Ion Spray ion source. Tandem mass spectrometry
was employed under positive electrospray ionization to detect the specific precursor to
product ion transitions m/z 321.2→ 207.2 for MPA and m/z 353.2→ 285.1 for the IS. The
linear response ranged from 0.5 ng/mL to 1000 ng/mL (r2 > 0.999) for both the plasma and
the tongue.

2.4. PK Model and Statistical Analyses

Phoenix WinNonlin Software and Phoenix® NLMETM Software (version 8.2; Certara
L.P. Pharsight, St. Louis, MO, USA) were used to determine the PK parameters in the EHR
model analysis. Preparation, exploration, and visualization of the data were performed
using the Phoenix and GraphPad Prism (version 6.02; GraphPad Software, Inc., San Diego,
CA, USA).

Various compartmental PK models were constructed to assess the PK of MPA for
IV, oral and supralingual administration, respectively. To determine the most suitable
compartmental model, we fitted data for MPA three- or four-compartment EHR model,
with different combinations of the absorption description. The best and final model was
chosen based on the lowest Akaike Information Criterion (AIC) values, best fitted predictive
plasma concentrations, and least bias of the other diagnostic plots. Finally, all three types
of administration were described by EHR PK models. A best-fit EHR model including
central, peripheral, bile (Abile), and intestinal (Agut) compartments was used to describe the
MPA plasma PK after IV (Figure 1a) and oral administrations (Figure 1b). A best-fit EHR
model containing central, bile, and intestinal compartments were used for supralingual
administration (Figure 1c). First-order kinetics was assumed for all PK processes other than
absorption and bile excretion. Excretion from bile to the gut was described by zero-order
kinetics. The rate of zero-order kinetics from the bile to gut was defined using Equation (1):

GBr = 1/Tau, (1)

where Tau is the time interval for the bile emptying. GBr is the zero-order input from bile
to gut.

Various compartmental PK models were constructed to assess the PK of MPA for IV,
oral and supralingual administration, respectively. To determine the most suitable compart-
mental model, we fitted MPA data using three- or four-compartment EHR models. In the
meantime, various absorption parameters were evaluated to find the one that best fit the
absorption behavior of MPA. We first tried using first-order absorption but failed because
of near-zero clearance estimates. A transit absorption model had a large bias on diagnostic
plots and higher AIC. Finally, we used a combined transit and first-order absorption model
to describe the absorption process, which gave the best fitting profile for our data. The
chain of transition compartments (ktr) were used to describe the gradual and variable
onset of drug absorption between the depot compartment and the central compartment,
while ka1 and ka2 describe the fast and slow transition from the depot compartment to
the central compartment and transition compartment, respectively. The number of transit
compartments was optimized to 5 for both oral and supralingual absorption. ktr is the
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transit rate constant from the first compartment to the fifth compartment (Figure 1b). The
naïve pool estimate method was used for the PK model development and data fitting. For
intra-individual variability, a proportional error model was used (Equation (2)):

Cobserved,ij = Cpred,ij × (1 + εij), (2)

where Cobserved,ij is the observed plasma concentration in the ith individual at the jth time
point, Cpred,ij is the predicted concentration, and εij is the proportional residual error term
under the assumption that ε ~ N(0,σ2), where the error term with mean of 0 and σ2 is the
variance assumed.
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Figure 1. Structural models developed to analyze mycophenolic acid in rat plasma after three different routes of admin-
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See Table 1 for the meaning of the different pharmacokinetic parameters. 
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Mean 
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Kcb 1/h 1.37 ± 1.02 10.3 ± 0.832 **,*** 2.28 ± 3.62 
Kgc 1/h 1.97 ± 2.02 7.78 ± 8.52 32.4 ± 52.3 

V/Fabs mL/kg 110 ± 10.8 29.3 ± 9.82 3090 ± 49.1 ***,**** 
V2/Fabs mL/kg 1740 ± 508 3000 ± 1690 NA 

Ka1 1/h NA 0.997 ± 0.313 21.6 ± 14.6 
Ka2 1/h NA 1.53 ± 0.366 37.3 ± 22.7 
Ktr 1/h NA 1.25 ± 0.118 0.193 ± 0.040 *** 

AUC0–48 Ng × h/mL 2170 ± 355 1570 ± 218 ** 165 ± 21.0 ***,**** 
Fabs % NA 72.4  7.60  

EHR % 54.1 ± 10.3 69.2 ± 9.56 96.6 ± 49.5 
Tau: duration of time goes from bile to gut using by zero-order input; CL/Fabs: apparent clearance; 
CL2/Fabs: apparent intercompartmental clearance; Kcb: first-order rate constant from central com-
partment to bile compartment; Kgc: re-absorption rate constant from gut to the central compart-
ment; Vd/Fabs: volume of distribution of the central compartment; V2/Fabs: volume of distribution of 
peripheral compartment; Ka1: fast-release depot that was readily absorbed into the plasma using a 
first-order rate constant; Ka2: slow-release depot that was readily absorbed into the plasma using a 
first-order rate constant; Ktr: identical transfer rate constant of the transit compartment model us-
ing the first-order rate constant; AUC0–48: the area under the plasma drug concentration-time 

Figure 1. Structural models developed to analyze mycophenolic acid in rat plasma after three
different routes of administration: (a) IV; (b) Oral; (c) supralingual administration. Abile: Amount
in bile; Agut: Amount in the intestinal compartment. See Table 1 for the meaning of the different
pharmacokinetic parameters.

Table 1. Mean PK parameters after IV, oral, and supralingual administrations of MPA.

Parameter Unit IV (n = 5) Mean Oral (n = 3) Mean Supralingual (n = 3) Mean

Dose mg/kg 0.5 0.5 0.5

Tau hr 1.46 ± 0.535 4.54 ± 4.69 31.5 ± 11.6 ***,****

Half-life hr 10.5 ± 1.20 7.40 ± 2.07 11.5 ± 2.98

CL/Fabs mL/(kg × h) 117 ± 92.2 132 ± 73.2 250 ± 333

CL2/Fabs mL/(kg × h) 224 ± 65.5 274 ± 162 NA

Kcb 1/h 1.37 ± 1.02 10.3 ± 0.832 **,*** 2.28 ± 3.62

Kgc 1/h 1.97 ± 2.02 7.78 ± 8.52 32.4 ± 52.3

V/Fabs mL/kg 110 ± 10.8 29.3 ± 9.82 3090 ± 49.1 ***,****

V2/Fabs mL/kg 1740 ± 508 3000 ± 1690 NA

Ka1 1/h NA 0.997 ± 0.313 21.6 ± 14.6

Ka2 1/h NA 1.53 ± 0.366 37.3 ± 22.7

Ktr 1/h NA 1.25 ± 0.118 0.193 ± 0.040 ***

AUC0–48 ng × h/mL 2170 ± 355 1570 ± 218 ** 165 ± 21.0 ***,****

Fabs % NA 72.4 7.60

EHR % 54.1 ± 10.3 69.2 ± 9.56 96.6 ± 49.5

Tau: duration of time goes from bile to gut using by zero-order input; CL/Fabs: apparent clearance; CL2/Fabs: apparent intercompartmental
clearance; Kcb: first-order rate constant from central compartment to bile compartment; Kgc: re-absorption rate constant from gut to the central
compartment; Vd/Fabs: volume of distribution of the central compartment; V2/Fabs: volume of distribution of peripheral compartment; Ka1:
fast-release depot that was readily absorbed into the plasma using a first-order rate constant; Ka2: slow-release depot that was readily absorbed
into the plasma using a first-order rate constant; Ktr: identical transfer rate constant of the transit compartment model using the first-order rate
constant; AUC0–48: the area under the plasma drug concentration-time curve; Fabs: absolute bioavailability. The EHR% was calculated according
to the following equation: EHR% (IV and Oral) = Kcb/(Kcb + CL/V +CL2/V2); EHR% (Supralingual) = Kcb/(Kcb + CL/V). Fabs for supralingual
administration was calculated based on the original dose subtract MPA patch residue (Table 2). ** Significant differences between IV and oral
group. *** Significant differences between oral and supralingual group. **** Significant difference between the IV and supralingual groups.
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AIC is an extension of the minus twice the log-likelihood (-2LL) and the visual in-
spection of goodness-of-fit diagnostic plots. The reduction of AIC ≥ 2 was regarded
as significant.

The area under the curve (AUC0–48) was calculated based on the trapezoidal rule
manually. The mean estimated absolute bioavailability (Fab%) of the supralingual and oral
administrations to the IV administration was calculated using Equation (3):

Fabs (%) = [Mean AUC(po/supralingual) × Doseiv]/[Mean AUCiv × Dose(po/suprealingual)] × 100%, (3)

One-way analysis of variance (ANOVA) with post-hoc Turkey HSD (honestly sig-
nificant difference) was used to determine the statistical significance of PK parameters
among IV, oral and supralingual administrations by R Studio. Differences of p < 0.05 were
considered significant for all statistical analyses.

Table 2. MPA concentrations stored in tongue tissue and remaining in patches.

MPA Concentration in Tongue
Tissue after Patch Removal * MPA Concentration Percentage

to Dose

0 h (n = 4) 42.8 ± 10.0 (µg/g) 3.8 ± 0.6%
20 h (n = 3) 0.8 ± 0.6 (µg/g) 0.11 ± 0.09%

Patch MPA residue ** (n = 7) 34.4 ± 5.2 µg 20.6 ± 2.8%

* Patches (0.5 mg/kg) were supralingually applied to both groups of rats for 4 h, then removed. The first group of rats (n = 4) were sacrificed
immediately (0 h), and tongues were thoroughly washed for 5 min and then removed for analysis. The second group of rats (n = 3) were
sacrificed 20 h later, and tongues were thoroughly washed for 5 min before removal for analysis. ** Patches collected from the two groups of
rats above after 4 h of supralingual application were subject to analysis. This number was also used for supralingual Fabs calculation in Table 1.

3. Results

There have been limited studies on the potential use of a patch formulation for
supralingual administration. This study described the PK and tongue distribution of
MPA through a novel supralingual delivery route. The primary objectives of the current
study were to develop PK models, to estimate the PK parameters and bioavailability
of the patch formulation in rats compared to IV and oral administrations, as well as to
evaluate the tongue tissue distribution after supralingual drug application. The results are
presented below.

3.1. Estimated PK Parameters

The plots of the mean plasma concentration versus time profiles following IV, oral and
supralingual administrations of MPA are shown in Figure 2. All plots display second/multiple
peaks. Following IV administration, plasma MPA concentration showed an extra peak
at ~3 h post-dose. For oral administration, MPA plasma concentration reached its first
peak rapidly after 5 min, followed by a second peak also at ~3 h post-dose. For patch
administration, trace concentration of MPA in plasma became detectable at 1 h and reached
its first peak at ~4.5 h post-dose, and another broad peak was shown around 24–32 h. The
plasma concentrations of MPA via IV and oral administrations declined quickly, while those
via supralingual administration remained stable over time. The plasma concentration of
MPA via the supralingual route remained very low but consistent, suggesting a limited and
sustained drug release from the tongue tissue to the systemic circulation. The plasma AUC0–48
of MPA calculated by trapezoidal rule were 2170 ± 355 ng × h/mL, 1570 ± 218 ng × h/mL,
and 165 ± 21.0 ng × h/mL, oral and supralingual administrations, respectively. The mean
MPA elimination half-life value after IV and oral administration were 10.5 and 7.4 h. The
half-life was derived from the last three time points of observation using WinNonlin by NCA
analysis. Terminal half-life directly from the last three time points are not an appropriate
indicator to describe MPA’s PK behavior due to the EHR of MPA; the real half-life will be
longer than what we measured by NCA [39]. The values of absolute bioavailability of MPA
were approximately 72.4 and 7.6% for the oral and supralingual doses, respectively. The mean
central compartment clearance value after IV, oral and supralingual administration were 117
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and 132, and 250 mg/kg×h, respectively. The mean inter-compartment apparent clearance
value after IV and oral were 224 and 274 mg/kg × h, respectively. The EHR% decreased
from supralingual administration (96.6%) to oral administration (69.2%) to IV administration
(54.1%). Final parameters (mean ± standard deviation) are summarized in Table 1. There
were no significant changes among half-lives, central compartment clearance, re-absorption
rate constant from gut to the central compartment (Kgc) for the three groups. As expected, the
duration time from bile to gut (Tau) after supralingual administration showed significantly
longer than those from oral and IV administration. The central compartment volume of
distribution (V/F) of MPA was also significantly larger than those from the other two groups,
and the plasma-time area under the curve (AUC0–48) was significantly smaller than those from
the other two groups. Even though the Ka1 and Ka2 of supralingual administration were larger
than those from the oral administration, no statistical significance was established. Ktr (transit
compartment absorption rate constant) of supralingual administration was significantly
slower than that from an oral administration. The oral administration group also showed a
faster rate constant from central to bile compartments.
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3.2. Individual EHR PK Modeling Analysis

The graphic models that best described the plasma PK of MPA after IV, oral, and
supralingual administration are shown in Figure 1. All of them recapitulated the multiple
peak phenomenon of MPA in the plasma. It was assumed that MPA is metabolized to MPA
glucuronide (MPAG) in the liver before excretion into the bile [40]. Excreted MPAG is then
reconverted into the parent MPA by β-glucuronidase in the GI tract and re-absorbed into
the systemic circulation. Therefore, four-compartment EHR models containing the central
(MPA), peripheral (MPA), bile (Abile), and intestinal (Agut) compartment were used to de-
scribe the plasma PK of MPA after IV and oral administrations. A three-compartment EHR
model containing the central, bile, and intestinal compartments was used for supralingual
administration. Since the plasma concentration has less fluctuation after the absorption
phase, adding the peripheral compartment to the model did not improve the fitting of
the supralingual PK profile. Different approaches have been evaluated to describe the
absorption process for the oral and supralingual administration, including first-order ab-
sorption without transit compartment, transit compartment only, and combinations of
transit compartment and first-order absorption with lag time or without lag time. Based on
the goodness-of-fit of plot and mean AIC values, the combined first-order absorption with
transit compartment model without lag time was chosen to best describe oral administra-
tion absorption, and the combined first-order absorption with transit compartment model
with a 0.5 h lag time was chosen to describe the supralingual absorption.

3.3. Model Evaluation

Diagnostic scatter plots from the Phoenix NLME program show the performance
of the final EHR PK models by comparing observed concentrations versus individual
predicted concentrations (Figure 3); individual weighted residuals versus individual pre-
dicted concentration and time after dose (Figure 4); observed concentrations and individual
predicted concentration versus time after dose (Figure 5).

Figure 3 shows the comparison between the observed concentration versus individual
predicted concentration for IV, oral and supralingual administration. The scatter plot
shows that data are aligned on the line of unity across the entire range, indicating a good
correlation between the observed and model-fitted values. Figure 4 shows the plots of
the individual weighted residuals versus the individual predicted concentration (a, b,
and c) or time after dose (d, e, and f) model for the three administration routes. The
overall blue trend line lies around the line Y = 0, and the distribution is relatively flat
across all time points along the horizontal red lines. All weighted residuals fell within
the range of −2 to 2 of individual weighted residuals, suggesting that the proportional
error model was appropriate and there was no major bias in the structural model. Figure 5
shows the goodness-of-fit relationship between the individual predicted concentration and
observed concentration versus time after dose. Residuals are also uniformly distributed
with time and MPA concentrations, and individuals fit well for the most part. The AIC were
−80.5 ± 8.9, −112.3 ± 37.4, and −195.7 ± 4.9 for the IV, oral, and supralingual PK models,
respectively. The mean AIC values were −173.3 ± 9.7 for supralingual administration if
an additional peripheral compartment was added, −67.2 ± 10.4 for oral administration if
using first-order absorption followed by two-compartment analysis, and −50.5 ± 26.2 for
IV administration without describing the EHR. Since lower AIC means a better choice of
model, we finalized the model based on both AIC values and goodness-of-fit of the plots.
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3.4. Tongue Distribution

MPA’s tongue tissue distributions and patch residue are shown in Table 2. Compared
to Figure 1, these data indicate that the concentration of MPA in the tongue tissue (42.8 µg/g
at the 0 h and 0.8 µg/g after 20 h of removal the patch) was much higher than the highest
concentration (<10 ng/mL) of MPA in the plasma. The result also shows that around 20.6%
of the MPA still remained in the patch after 4 h of adhesion. Therefore, the actual dose
was estimated to be around 0.4 mg/kg (79.4% of the original 0.5 mg/kg dose) and, the
dose-adjusted absolute bioavailability was 7.6%.

4. Discussion
4.1. PK Parameters and EHR Phenomenon

In this study, we collected data after IV, oral, and supralingual administrations of MPA
and analyzed the PK behavior in rats using the Phoenix NLME program. The bioavail-
ability of oral and supralingual administration was manually calculated by trapezoidal
rule for MPA plasma concentration vs. time area under the curve (AUC). The mean ab-
solute bioavailability after oral administration was 72.4% by comparing AUC from 0 to
48 hr after IV administration, which was comparable to a previously published study
(72–93%) [41]. The mean bioavailability after supralingual administration was estimated
to be 7.6% (with dose adjustment), which was slightly higher than semisolid lipoderm
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formulation for topical hind limb administration in rats (6%) [32]. The mean half-lives after
non-compartment analysis were 10.5 and 7.4 h after IV and oral administrations, respec-
tively. The last three points for supralingual administration still fluctuated, so the half-life
had a bias, and the non-compartmental analysis (NCA) could not catch the real half-life for
supralingual administration. It may be due to the flip-flop phenomena that occurred in
supralingual administration, and the MPA entered the systemic circulation at a rate slower
than its elimination rate from the body. The half-life of oral administration (7.4 h) was
shorter than the previously published number (12.9 h). Reasons for this could be that the
previous publication did not capture the real terminal half-life with only a maximum of 35 h
sampling time (less than three times of half-life), or they used a different formulation [31].
The transition rate constant (ktr) for the supralingual administration (0.193/h, Table 1) was
much lower than that for the oral administration (1.25/h, Table 1), which may be caused
by the slow diffusion rate of MPA released from the mucosal membrane into the systemic
circulation. The chain of transition compartments (ktr) were used to describe the gradual
and variable onset of drug absorption between the depot compartment and the central
compartment, while ka1 and ka2 describe the fast and slow transition from the depot
compartment to the central compartment and the transition compartment, respectively. In
this study, five transition compartments were adequate to describe the PK model after oral
and supralingual administration. The ka1 and ka2 of supralingual administration were
higher than those of oral administration, maybe because part of MPA was quickly absorbed
into the systemic circulation. On the other hand, the ktr of supralingual administration was
lower than that of oral administration, maybe because the tongue was acting as a reservoir
for the rest of the drug for further sustained release.

4.2. EHR and PK Model Development

Secondary or multiple peaks have been reported in several pre-clinical and clinical
PK studies of MPA [27,31,33,42], which showed that MPA is metabolized to inactive MPA
glucuronide (MPAG) and pharmacologically active MPA acyl glucuronide (AcMPAG) by
UGT1A9 and 2B7 in the liver, respectively [43] and that the concentration of MPAG is
20- to 100-fold higher than that of MPA in the plasma. MPAG is excreted into the bile
by MRP2 and deconjugated back to MPA by gut bacteria and re-absorbed mainly in the
proximal colon as MPA [44,45]. EHR can increase the area under the plasma concentration-
time curve (AUC) of MPA by approximately 40% [29]. The exposure (AUC) inter-subject
variability (>40%) after oral administration of MPA was also high, especially in early
post-transplant patients [46,47]. Due to the affinity of MRP2 in rats being higher than in
humans, more MPAG excreted through bile in rats while more MPAG excreted through
urine in humans [30]. Evidently, our study also found that the PK of MPA was considerably
affected by the EHR process. Therefore, we integrated the EHR into the PK models
for the IV and oral administration of MPA first and then created the PK model for the
supralingual administration. After establishing and comparing different combinations
of PK models, we found that it was the best fitting to apply the four-compartment EHR
model (central, peripheral, bile, and gut compartment) to describe the PK of IV and
oral MPA administration (central, peripheral, bile, and gut compartment), whereas the
PK of supralingual MPA administration was best described by the three-compartment
EHR model (central, bile and gut compartment). The inter-compartment clearance (CL2)
after IV and oral administration was higher than the central compartment clearance (CL),
indicating that the peripheral compartment may not be a rate-limiting compartment as
compared to the central compartment (Table 1). Thus, the peripheral compartment may
be combined with the central compartment when fitting the PK model for supralingual
administration. The EHR% via supralingual administration is higher than the other two
routes of administration, causing the drug to stay longer in the system and take longer to
get eliminated. The high EHR% also makes the PK profile more flat compared to those of
IV and oral administrations.
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Previously, several studies have been reported using different models to fit absorption
phase after oral administration [28,29,40,48], including the transit compartment model
with first-order absorption [49], short lag-time combined with long lag-time first-order
absorption [50], first-order absorption [51], time-lagged first-order absorption [52], gamma
distribution for absorption [44], and zero-order absorption [53]. After our evaluation of all
those models, we found the transition compartment model with first-order absorption was
the best one to describe our oral administration PK, and this method can also be used to fit
supralingual PK absorption by adding a lag-time parameter with modification. Because
the patch was applied on the dorsal tongue for 4 h, a model of infusion input with 0.5 h
lag-time following transition compartment (first-order absorption) was selected to describe
the supralingual absorption. The lag-time was 0.5 h since the plasma concentration was
unable to be detected until 0.5 h after patch application, and the peak plasma concentration
occurred at 0.5 h after the patch was removed. The transit model is an erlang/gamma-
distributed delay approach for modeling delayed outcomes in PK [54,55], which can also
be used for drugs with EHR or large molecules with absorption delay. We developed
the two-process absorption model and used the transit compartment model combined
with first-order absorption to pursue more mechanistic (semi-mechanistic) PK modeling
approaches compared with typical absorption models. Usually, the transit compartment
describes drug transit through a chain of identical compartments that are linked to the
central compartment by a first-order absorption process [56]. In our study, the number of
transit compartments was tested from one to ten and was then fixed at five based on the
fittings of the PK profile.

The final EHR models had lower AIC values and better PK profile fitting compared
to other types of PK models. Our PK results indicate that supralingual administration
of MPA had lower exposure and less plasma concentration than oral and IV administra-
tion. It is critical to have a lower maximum plasma concentration after administration to
reduce systemic side effects. Even though the plasma concentration was very low after
supralingual administration, EHR phenomena occurred with multiple peaks shown in PK
profiles. The chance of gastrointestinal toxicity by EHR after supralingual administration
was lower compared to oral and IV administration due to its less fluctuation and lower
plasma concentration. In summary, the PK models that we developed to describe the
MPA disposition after IV, oral, and supralingual administrations support MPA exposure
and EHR phenomena, which may be associated with some toxicity issues observed with
other MPA formulations. Our PK-EHR models fitted well after IV, oral, or sublingual
administrations of MPA, a drug that exhibits significant enterohepatic recirculation. The
EHR model may be suitable for other drugs with EHR nature. Our PK-EHR model is
also unique in demonstrating a good prediction capability for the prolonged release of
MPA from the tongue after the patch application. Future studies are warranted to test the
suitability of our PK-EHR model in other novel drug delivery systems and/or sustained
release dosage formulations

4.3. Tongue Tissue Distribution after Supralingal Application

Despite the similar histology of oral mucosa and skin, oral mucosa is always moist by
saliva, making it more permeable than skin, which is covered by a dry surface coated with
sebaceous lipid [57]. The rank order of permeability in different parts of the oral mucosa in
the oral cavity is determined by their relative thickness and degree of keratinization [58].
Buccal and sublingual are the most common routes for oral mucosa administration due to
the absence of keratin, whereas the dorsal tongue surface is covered by a special mucosa
consisting of both keratinized and nonkeratinized epithelium. Thus, supralingual drug
delivery is expected to show a slower absorption and a lower plasma concentration com-
pared to the sublingual and buccal administrations [59–61]. In addition, we found around
20.6% of MPA still remained in the patch after 4 h of adhesion, which means only less than
80% of the dose was released from the patch over the application period. The distribution
equilibrium and contact time can influence bioavailability, especially when the doses are
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above the saturation solubility in the mucosa [6]. Those reasons above might lead to the
low bioavailability of supralingual delivery of MPA.

The tongue biodistribution study showed that the amount of MPA in the tongue tissue
is much higher than that in the blood at the same post-dose time points. It may be due to the
mucosal membrane acting as a storage compartment for the drug once the drug is absorbed.
The drug is stored in the mucosal membrane then slowly diffuses out into the systemic
circulation [6], resulting in a sustained drug release, which is beneficial for controlling the
therapeutic window. The accumulation of MPA at the site of the administration indicates
that the supralingual patch may be a good approach for site-specific drug delivery for oral
lesions. In the absence of measured MAP concentrations in tongue tissues following IV or
oral administration, one cannot make a direct comparison with that of supralingual treatment.
However, the observed higher MAP concentrations in tongue tissue over a prolonged period
after patch removal is an indication of a good treatment outcome. It was reported that
MPA concentrations in the skin, muscle, and draining lymph nodes (DLN) were much
lower than that of in plasma after an IV administration. The skin-plasma ratio, muscle-
plasma ratio, and DLN-plasma ratio were 0.085, 0.4, and 0.37 at 24 h after 10 mg/kg IV
administration, respectively [32]. Thus, we assume that IV and oral administration would
have minimum MAP accumulation in the tongue, and further studies are warranted to
confirm the assumption. Studies of different dosing and various sites in the oral cavity, as well
as the proof-of-concept anticancer efficacy of the novel MPA patch, are currently undergoing
in our labs to provide further important information for future clinical application.

5. Conclusions

In summary, our study has established the PK parameters of MPA administered
via supralingual mucoadhesive patch, IV injection, and oral administration. Our PK
models were developed to describe their drug distribution profiles with multiple peaks
of plasma concentration. Compared to IV and oral administration, the supralingual PK
of MPA exhibited an atypical absorption profile, where MPA accumulated mostly inside
of the mucosal membrane long after the removal of the patch. In addition, supralingual
administration displayed much lower plasma concentrations of MPA compared to IV and
oral dosing and showed slow partition from mucosal membrane to systemic circulation
that may alleviate the peak concentration-related gastrointestinal side effects compared to
oral administration. The results suggest the potential merits of higher accumulation of the
drug at the site of administration by supralingual administration and a lower chance of
gastrointestinal side effect. Further evaluation of its efficacy in pre-clinical animal models
and humans is required.
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