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Abstract: We encapsulated MSZ in zein nanoparticles (NP-ZN) using a desolvation method followed
by drying in a mini spray dryer. These nanoparticles exhibited a size of 266.6 ± 52 nm, IPD of
0.14 ± 1.1 and zeta potential of −36.4 ± 1.5 mV, suggesting colloidal stability. Quantification using
HPLC showed a drug-loaded of 43.8 µg/mg. SEM demonstrated a spherical morphology with a size
variation from 220 to 400 nm. A FTIR analysis did not show drug spectra in the NPs in relation to the
physical mixture, which suggests drug encapsulation without changing its chemical structure. A TGA
analysis showed thermal stability up to 300 ◦C. In vitro release studies demonstrated gastroresistance
and a sustained drug release at pH 7.4 (97.67 ± 0.32%) in 120 h. The kinetic model used for the release
of MSZ from the NP-ZN in a pH 1.2 medium was the Fickian diffusion, in a pH 6.8 medium it was the
Peppas–Sahlin model with the polymeric relaxation mechanism and in a pH 7.4 medium it was the
Korsmeyer–Peppas model with the Fickian release mechanism, or “Case I”. An in vitro cytotoxicity
study in the CT26.WT cell line showed no basal cytotoxicity up to 500 µg/mL. The NP-ZN showed to
be a promising vector for the sustained release of MSZ in the colon by oral route.

Keywords: natural polymer; zein; 5-ASA; nanoparticles; colon

1. Introduction

Mesalazine (MSZ), also known as mesalamine or 5-aminosalicylic acid (5-ASA)
(Figure 1A), is an aminosalicylate widely used in IBD to induce remission and mainte-
nance, especially in mild to moderate ulcerative colitis. Its mechanism of action is not fully
understood, but it involves the suppression of NF-kB, protection of the epithelial barrier of
T84 cells against peroxynitrites, reduction in free radicals and inhibition of leukotrienes,
prostaglandins and proinflammatory cytokines [1,2].

In addition to its high cost, this drug has the following limiting factors to its use: the
dosage regimen reaches 4.8 g/day, low absorptivity in the inflamed colon and greater
systemic absorption, which favors adverse effects and makes the patient’s adherence to the
treatment difficult [3,4].

The size of the formulation is inversely proportional to the specificity for the inflamed
tissue [5]. Polymeric nanoparticles (NPPs) offer a greater selectivity of the drug to the target
organ, resulting in higher, more effective and longer-lasting concentrations compared to
conventional delivery systems. In addition, these nanoparticles protect against degradation,
and possess a high encapsulation capacity and greater stability when in contact with
biological fluids [6,7].

Pharmaceutics 2022, 14, 2830. https://doi.org/10.3390/pharmaceutics14122830 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14122830
https://doi.org/10.3390/pharmaceutics14122830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-3851-3963
https://orcid.org/0000-0002-4370-0803
https://orcid.org/0000-0003-4469-6858
https://doi.org/10.3390/pharmaceutics14122830
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14122830?type=check_update&version=2


Pharmaceutics 2022, 14, 2830 2 of 14
Pharmaceutics 2022, 14, x FOR PEER REVIEW 2 of 15 
 

 

  

(A) (B) 

Figure 1. Chemical structure of mesalazine (A) and zein (B). 

The size of the formulation is inversely proportional to the specificity for the inflamed 

tissue [5]. Polymeric nanoparticles (NPPs) offer a greater selectivity of the drug to the tar-

get organ, resulting in higher, more effective and longer-lasting concentrations compared 

to conventional delivery systems. In addition, these nanoparticles protect against degra-

dation, and possess a high encapsulation capacity and greater stability when in contact 

with biological fluids [6,7]. 

Zein is a natural protein polymer, the main storage protein of corn seeds (Zea mays 

L.), classified as prolamin (Figure 1B); it is rich in nonpolar amino acids (e.g., leucine, ala-

nine and proline) and also contains some polar amino acid residues (e.g., glutamine), re-

sulting in its high solubility in aqueous ethanol solutions (90%) and low solubility in water 

only [8,9]. 

Due to being obtained naturally, it has advantages such as biodegradability, biocom-

patibility and ability to develop mucoadhesive interactions, which remain in contact with 

the absorptive surface of enterocytes for a longer time, promoting the controlled release 

of drugs [10]. In addition, this natural polymer has been approved by the Food and Drug 

Administration (FDA) as one of the safest biomaterials [11]. 

Due to its unique amphiphilic character, zein can easily self-assemble to form nano-

particles for the release of hydrophobic bioactive ingredients. Zein NPs can significantly 

improve drug solubility and stability, as well as extend drug action time, promoting tar-

geted drug delivery, improving efficacy and reducing toxicity and adverse reactions 

[12,13]. 

Its nanoparticles have already been studied to carry several drugs: quercetin [10,14], 

paclitaxel [15], beta carotene [16], eugenol [17], terpinen-4-ol [18], α-tocopherol [19], 5-

fluorouracil [11], cannabidiol [20], vitamin D3 [21], curcumin [8,22], lutein [23], mint oil 

[24], thymol [25], daidzin [26], pterostilbene [9], among others. The present work aims to 

develop and characterize nanoparticles from zein for the oral delivery of mesalazine. 

2. Materials and Methods 

2.1. Materials 

Zein, lysine and mannitol were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Mesalazine was purchased from Henri-farma, Teresina, Brazil, lot number 10100025. Eth-

anol was obtained from Merck (Darmstadt, Germany). All reagents and chemicals used 

were of analytical grade. 

2.2. Preparation of Zein-Nanoparticle-Loaded Mesalazine (NP-ZN-MSZ) 

Zein nanoparticles (NP-ZN) were prepared using a desolvation method with subse-

quent spray drying [10]. Initially, 600 mg of zein and 60 mg of lysine were dissolved in 63 

mL of a 70% ethanol solution. Lysine was used to improve the colloidal stability and re-

dispersibility [27]. In parallel, 30 mg of mesalazine (MSZ) was solubilized in 25 mL of a 

70% ethanol solution (totaling 88 mL of the 70% ethanol solution) under stirring at 37 °C 
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Zein is a natural protein polymer, the main storage protein of corn seeds (Zea mays L.),
classified as prolamin (Figure 1B); it is rich in nonpolar amino acids (e.g., leucine, alanine
and proline) and also contains some polar amino acid residues (e.g., glutamine), resulting in
its high solubility in aqueous ethanol solutions (90%) and low solubility in water only [8,9].

Due to being obtained naturally, it has advantages such as biodegradability, biocom-
patibility and ability to develop mucoadhesive interactions, which remain in contact with
the absorptive surface of enterocytes for a longer time, promoting the controlled release
of drugs [10]. In addition, this natural polymer has been approved by the Food and Drug
Administration (FDA) as one of the safest biomaterials [11].

Due to its unique amphiphilic character, zein can easily self-assemble to form nanopar-
ticles for the release of hydrophobic bioactive ingredients. Zein NPs can significantly
improve drug solubility and stability, as well as extend drug action time, promoting tar-
geted drug delivery, improving efficacy and reducing toxicity and adverse reactions [12,13].

Its nanoparticles have already been studied to carry several drugs: quercetin [10,14],
paclitaxel [15], beta carotene [16], eugenol [17], terpinen-4-ol [18], α-tocopherol [19], 5-
fluorouracil [11], cannabidiol [20], vitamin D3 [21], curcumin [8,22], lutein [23], mint
oil [24], thymol [25], daidzin [26], pterostilbene [9], among others. The present work aims
to develop and characterize nanoparticles from zein for the oral delivery of mesalazine.

2. Materials and Methods
2.1. Materials

Zein, lysine and mannitol were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Mesalazine was purchased from Henri-farma, Teresina, Brazil, lot number 10100025.
Ethanol was obtained from Merck (Darmstadt, Germany). All reagents and chemicals
used were of analytical grade.

2.2. Preparation of Zein-Nanoparticle-Loaded Mesalazine (NP-ZN-MSZ)

Zein nanoparticles (NP-ZN) were prepared using a desolvation method with subse-
quent spray drying [10]. Initially, 600 mg of zein and 60 mg of lysine were dissolved in
63 mL of a 70% ethanol solution. Lysine was used to improve the colloidal stability and
redispersibility [27]. In parallel, 30 mg of mesalazine (MSZ) was solubilized in 25 mL of a
70% ethanol solution (totaling 88 mL of the 70% ethanol solution) under stirring at 37 ◦C
for 30 min and added to the lysine–zein solution under magnetic stirring. After 30 min of
incubation, nanoparticles were formed by adding 88 mL of purified water. Then, 12 mL of a
10% aqueous mannitol solution was added. The summarized representation is in Figure 2.

The nanoparticle suspension was dried in a spray dryer (Buchi Mini Spray Dryer
B-290, Buchi Labortechnik AG, Flawil, Switzerland) under the following experimental
conditions: (i) inlet temperature, 90 ◦C; (ii) outlet temperature, 45–50 ◦C; (iii) air pressure,
2–5 bar; (iv) pumping rate, 5 mL/min; (v) aspirator, 100%; and (vi) air flow, 900 L/h.
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Figure 2. Schematic representation of the preparation of NP-ZN-MSZ.

2.3. Size, Particle Distribution and Polydispersion Index

The mean diameter and particle distribution were determined using dynamic light
scattering (DLS) using a laser particle counter calibrated with standard particle size latex
suspensions. The sample was diluted with ultrapure water and the reading was performed
at room temperature (20 ± 1 ◦C) and at a fixed angle of 90◦ using a Zeta-Sizer SZ90
(Malvern® Instruments, Malvern, UK).

2.4. Zeta Potential

To determine the surface charge of the nanoparticles, the samples were diluted (1:10) in
ultrapure water and analyzed using laser Doppler anemometry on a Zetamaster SZ90 elec-
trophoretic scattering analyzer (Malvern® Instruments, Malvern, UK). The zeta potential
was expressed in millivolts (mV).

2.5. Dosing of the Drug in the Nanoparticles

For the dosage of the encapsulated drug, the NPs were centrifuged at 5000 rpm for
20 min, forming a supernatant (free drug) and a precipitate (encapsulated drug). The
supernatant was quantified using HPLC. For a total quantification of the drug in the
formulation, the NPs were lysed with ethanol PA, making them clear, and then quantified
using HPLC.

2.6. Quantification of Mesalazine using HPLC

The quantification of mesalazine was performed according to [28] using HPLC (Shi-
madzu A20, Kyoto, Japan). A C18 column (4.6 × 250 mm, 5 µm Shim-pack particle)
was used for chromatographic separation and drug determination. Ultrapure water
(pH 5.5 modified with 0.1 M citrate buffer) and acetonitrile (HPLC grade) 85:15 (v/v)
indicated the mobile phase that was previously filtered, at a flow of 1 mL/min, fraction of
injection 20 µL and working pressure of 200 gf. The UV/Vis detector was set at 300 nm. The
mesalazine showed a retention time of 3.4 min. The standard curve was used to quantify
mesalazine in a different medium, according to the following equations:

y = 15,067x + 48,855 (R2 = 0.9986) in HCl 0.1M pH 1.2 (1)
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y = 6174.5x + 10,430 (R2 = 0.992) in buffer pH 6.8 (2)

y = 13,657x − 49,653 (R2 = 0.9965) in buffer pH 7.4 (3)

where x is the MSZ concentration (µg/mL) and y is the peak area. A linear correlation
was observed in the concentration range between 4 and 256 µg/mL. Mesalazine standard
solutions (400 µg/mL) in different media (HCl 0.1M pH 1.2), a buffer solution of pH 6.8
and a buffer solution of pH 7.4 [29], were used for the standard curve.

2.7. Encapsulation Efficiency (EE%)

To calculate the EE%, the following equations were used:

Qtotal = Qsupernatant + Qencapsulated (4)

EE (%) = (Qencapsulated/Qtotal) × 100 (5)

Qtotal is the total amount of drug incorporated into the formulation;
Qencapsulated is the amount of drug encapsulated in the nanoparticles;
Qsupernatant is the amount of free drug that was not encapsulated in the nanoparticles.

2.8. Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) was performed to determine the morphology
and characteristics of the polymeric surface using the FEI field emission electron source
equipment (SEM-EC), model FEG-250. Polymers are sensitive to the electron beam, so the
samples were previously metallized with aluminum [30]. The NPs were placed in a stub
wrapped with aluminum foil and metallized with gold. The equipment was configured for
15 KV and spot 3.

2.9. Fourier Transform Infrared Spectroscopy (FTIR)

The Fourier transform infrared spectroscopy (FTIR) of the powdered nanoparticles
was obtained using the Perkin Elmer Spectrum 100 GTX spectrophotometer on KBr pellets.
The analysis was performed in the 4000 to 400 cm−1 region with a resolution of 4 cm −1

and 16 scans in transmittance mode.

2.10. Thermogravimetric Analysis (TGA)

The thermogravimetric analysis was performed with the SDT Q600 equipment from
TA Instruments. For each test, 6.00 ± 1.00 mg of the sample was heated at room temperature
to 700 ◦C at a heating rate of 10 ◦C/min, under an argon atmosphere, with a flow rate of
50.00 mL/min and aluminum-treated samples.

2.11. In Vitro Release Kinetics Study

The drug release profile from zein nanoparticles (NP-ZN-MSZ) was evaluated us-
ing the dynamic dialysis method [31]. Briefly, cassette®-type cellulose acetate dialysis
membranes were used under sink conditions, where the drug concentration was <20% of
its solubility in a 0.1M HCl solution pH 1.2 (>18 mg/mL), phosphate-buffered solution
pH 6.8 (~3.5 mg/mL) and phosphate-buffered solution pH 7.4 (~5.5 mg/mL) at 37 ◦C to
avoid the saturation of the medium [32].

The NP-ZN-MSZ sample (1.5 mL at 262µg/mL of the drug) was introduced into the
cellulose acetate membrane with 10,000 Da molecular exclusion pores and dialyzed against
250 mL of gastric medium (pH 1.2), intestinal (pH 6.8) and simulated the ileocolonic region
(pH 7.4) [29] at 37 ◦C in orbital agitation for 120 h. An amount of 1.5 mL of aliquots was
removed from the medium at set times and the MSZ concentration was quantified using
HPLC, as described above. The buffer was replenished to keep the volume constant.

Quantifications at 300 nm were converted into the percentage of drug released ac-
cording to the standard curve of each previously established medium for which linearity
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was confirmed. The experiment was performed in triplicate and drug concentrations were
corrected considering the dilution factor.

The parameters to determine the release kinetics of the nanoparticles were statistically
analyzed using the Excel DDSolver supplement. The model was selected according to the
adjusted correlation coefficient (R2adj).

2.12. In Vitro Cytotoxicity Study

The MTT ([3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium] bromide) assay pro-
ceeded as described by [33]. Initially, the cell line used (CT26.WT, murine colon carcinoma)
was incubated with the usual varying concentrations of NP-ZN, and NP-ZN-MSZ was
tested at a density of 5 × 103 cells/well in 96-well plates for 72 h at 37 ◦C and 5% CO2.
The positive control was performed with doxorubicin (10 µM). After the incubation period,
20 mL of the MTT solution (5 mg/mL) was added to the cultures and the plates were
reincubated for 4 h in an oven at 37 ◦C and 5% CO2. After this period, the supernatant
was discarded with the culture medium and the precipitate was resuspended with 100 mL
DMSO for 5 min under agitation. Then, the plates were read in an ELISA spectrophotometer
at 560 nm.

2.13. Statistical Analysis

Statistical analyses were performed using ANOVA and Tukey’s test. All data were
obtained from tests in triplicate and expressed as mean ± standard deviation. Statistical
significance for this study was considered when p < 0.05.

3. Results and Discussion
3.1. NP Preparation and Characterization

Initially, the polymer–drug ratios (1:10; 1:12, 1:15 and 1:20) were tested; however, there
was precipitation due to the saturation of the drug in relation to the polymer, with no
formation of nanoparticles. Therefore, the best drug–polymer ratio was 1:20 (30 mg of drug
and 600 mg of zein). The formation of nanoparticles was confirmed by the presence of the
Tyndall effect [31], characterized by the visualization of an opalescent suspension with a
milky appearance (Figure 3A).
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Through the dynamic light scattering method (DLS), the NP-ZN-MSZ showed a size
of 266.6 ± 52 nm, and the empty nanoparticle (NP-ZN) was of a smaller size (218 ± 23 nm)
due to the nonincorporation of the drug to the nanoparticles. NP-ZN-MSZ had sizes that
were major determinants of the ability of particles to passively reach inflamed intestinal
mucosa and achieve maximum tissue retention times due to a greater surface area as a
result of greater reactivity [5,34]. The polydispersity index that provided information on
the homogeneity of the size distribution was 0.14 ± 0.1. The NPs presented negative
charges with zeta potential values of −42.4 ± 5.31 mV (Table 1; Figure 4). Values less
than 0.2 for the polydispersity and above 30 mV for the zeta potential (in the module)
indicated a good colloidal stability in the solution, preventing the aggregation of NPs [35].
These data corroborated the findings of [10,14] that synthesized zein nanoparticles (ZNP)
to encapsulate quercetin. The encapsulation efficiency (EE%) was 45%; [36] synthesized
the NP-ZN using the phase separation method to encapsulate beta carotene, and obtained
55% EE.

Table 1. Characterization of zein nanoparticles with and without the drug.

Formulation NP-ZN NP-ZN-MSZ

Size 218 ± 23 nm 266.6 ± 52 nm

Polydispersity index 0.20 ± 0.1 0.14 ± 0.1

ζ Potential −39.3 ± 2 mV −42.4 ± 5.31 mV

Drug loaded - 43.8 µg/mg de NP

Encapsulation efficiency - 45%

Yield 70% 65%

An inflamed colon produces positively charged proteins (e.g., transferrin, eosinophilic
cationic protein) [36–39]. The positive charges accumulated on the surface of the damaged
epithelium offer a target for drug delivery vehicles with a negative surface charge, such
as NP-ZN-MSZ. Negatively charged nanoparticles selectively target inflamed sites in the
gut and gradually release the drug in response to the inflamed gut microenvironment
through their electrostatic attractions [39]. The polymeric nanoparticles are biodegradable
and nontoxic, and there is no organic solvent residue generated during the production
process, as the 70% ethanol used for the synthesis is evaporated in the spray dryer [8].

3.2. Scanning Electron Microscopy (SEM)

Figure 5 shows the morphology and shape of the zein nanoparticles loaded with
mesalazine, where homogeneous populations of spherical nanoparticles with a smooth
surface and a size variation from 240 to 400 nm were observed, apparently similar to that
calculated using DLS (Table 1). Penalva et al. (2017) synthesized zein nanoparticles as
nanocarriers to improve the oral bioavailability of quercetin and demonstrated an average
size of 300 nm [14].

3.3. Fourier Transform Infrared Spectroscopy (FTIR)

In the infrared spectrum of mesalazine (MSZ), the presence of bands that identify
its functional groups was observed: 3471 cm−1 (N-H stretching), 2557 cm−1 (NH2 de-
formation), 1620–1590 cm−1 (N-H primary deformation and C-N stretch), 1246 cm−1

(C-N stretch), 3085 and 2978 cm−1 (C-H aromatic stretch), 2784 cm−1 (carboxylic acid OH
stretch), 1647 cm−1 (C=O stretch of carboxylic acid), 1192 cm−1 (C-O stretch phenol), 810,
773 and 686 cm−1 (out-of-plane deformation of C-H in aromatic rings). These data cor-
roborated the literature [40–44]. NP-ZN bands were observed at 3381 cm−1 (N-H stretch),
2935 cm−1 (C-H stretch), 1660 cm−1 (C=O stretch), 1530 cm−1 (N-H stretch) and 1259 (C-
N stretch) [45–48]. In the physical mixture, an N-H deformation band was observed at
2557 cm−1, indicative of the amino group of mesalazine [44], and bands at 810, 773 and
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686 cm−1, referring to out-of-plane C-H strains also belonging to mesalazine [40]; these
bands appeared at low intensity due to the low drug:polymer ratio (1:20), and were not
identified in the NP-ZN-MSZ, which showed no significant difference from the NP-ZN,
indicating drug encapsulation by the nucleus prolamin without structural changes and
impurities (Figure 6).
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3.4. Thermogravimetric Analysis (TGA) and Differential Exploratory Calorimetry (DSC)

The thermogram provided information on the thermal stability of the synthesized
nanoparticles, which is an important aspect for in vivo drug delivery applications and for
the identification of changes in the conformation of polymer chains as a function of the
chemical changes undergone during the polymerization process, the synthesis of NPs or
encapsulation of active ingredients [30]. In this test, the thermal stability was observed, as
there was only a loss of mass from 250 ◦C to 350 ◦C (Figure 7A,B,E,F), which was consistent
with the data of [45] that showed that nanocarriers could remain thermally stable at a
human body temperature (37 ◦C) [49,50].

Differential scanning calorimetry (DSC) is commonly used to study the physicochem-
ical state and possible interactions of the drug load in nanosystems. DSC is capable of
detecting phase transitions, such as the glass transition, crystallization and melting. En-
dothermic melting peaks were observed [50] at 170 ◦C and 320 ◦C (Figure 7C,D) [11]. The
incorporation of the drug maintained the thermal stability of the polymer, providing a
satisfactory polymer–drug interaction.

3.5. Study of the In Vitro Release Profile

In vitro release studies were performed at pH 1.2, pH 6.8 and pH 7.4 at 37 ◦C to
simulate physiological conditions when administered orally (Figure 8). At pH 1.2, in the
first 2 h of the test, there was a slight release of MSZ from the nanoparticles (5.24 ± 1.39%),
which suggested gastroresistance. The change to pH 6.8 during 4 h increased the release
profile to 54.83 ± 1.30%, remaining at pH 7.4, where a sustained release of 97.67 ± 0.32%
was observed.

In [16], the authors also observed a profile of a slow and sustained release of beta
carotene from zein nanoparticles for four days (96 h); [51] also observed a sustained release
profile for eight days (480 h) by encapsulating hyperoside in NP-ZN. This release profile
of NP-ZN was interesting, as it may allow the drug to reach the colon rather than being
released in the upper gastrointestinal tract [52].
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3.6. Kinetics and Mechanism of In Vitro Drug Release

The study of release kinetics allowed us to understand how the drug was released
from the polymer matrix [53]. For each medium, data were applied to zero-order, first-order,
Higuchi, Korsmeyer–Peppas and Peppas–Sahlin mathematical models. For pH 1.2 and
pH 6.8 media, the Peppas–Sahlin model (Equation (6)) showed the highest correlation
coefficient (R2adj), and for the pH 7.4 medium, the Korsmeyer–Peppas model (Equation (7))
was the best fit (Table 2) [54].

F = K1t0.5 + K2t (6)

K1: the constant representing the contribution of the Fickian diffusion.
K2: the constant representing the contribution of the polymeric relaxation.

F = KKP·tn (7)

K: kinetic constant.
n: release exponent.

Table 2. Representation of experimental data from the kinetic models that best fit the different
release media.

Peppas–Sahlin Model

Medium R2adj K1 K2

pH 1.2 0.99 1.62 0.36

pH 6.8 0.92 −5.72 6.12

Korsmeyer–Peppas Model

Medium R2adj K n

pH 7.4 0.82 99.3 −0.79

The Peppas–Sahlin model assumes that it is possible to calculate the diffusion mech-
anisms and the relaxation mechanism, as seen in Equation (6) [55]. At pH 1.2, it was
observed that K1 (1.62) was greater than K2 (0.36), suggesting a contribution of the Fickian
diffusion in the release. At pH 6.8, the negative K1 value (−5.72) and the positive K2 value
(6.12) indicated that the release through the Fickian diffusion was inhibited, and the release
mechanism was contributed through polymeric relaxation [56]. The Korsmeyer–Peppas
model was used to analyze the release of polymeric dosage forms when the mechanism
was not well known or when more than one type of release may have been involved. At
pH 7.4, the value of n was −0.79, and for the kinetics of the drug release from swellable
polymeric systems with spherical morphology (Figure 5), a value of the release exponent
n ≤ 0.43 indicated that the release mechanism was the diffusion of the drug through the
layers of the matrix, also known as the Fickian release mechanism, or “Case I” [57].

3.7. In Vitro Cytotoxicity Study

Figure 9 shows the in vitro cytotoxicity study of the NP-ZN using the previously
cultured CT26 (murine colon adenoma) cell line. Nanoparticles at different concentrations
were added to the cell suspension and left for 72 h at 37 ◦C. Cell viability was measured
using the MTT assay, where the nanoparticles did not show a basal cytotoxicity up to a
concentration of 500 µg/mL; the usual concentration of zein used for the synthesis of NPs
is 296 µg/mL, so we verified the biocompatibility of NPs.

Similar findings were obtained by [9], who used zein-based composite nanoparticles
for pterostilbene encapsulation and evaluated cell viability in Caco-2, L-02 and HK-2 cells.
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3.8. Stability Test

The colloidal stability of the NPs was monitored for 120 days after synthesis at room
temperature (Table 3). No significant difference was observed in terms of the size, IPD and
zeta potential, which confirmed the stability of the material and indicated the presence of
particles with a lower tendency to form aggregates, an important parameter for interactions
with, and the penetration of, biological barriers.

Table 3. Colloidal stability of NP-ZN-MSZ after 120 days at room temperature.

Time (Days) Size (nm) Polydispersion Index Zeta Potential (mV)

0 266.6 ± 52 nm 0.14 ± 0.1 −42.4 ± 5.31 mV

30 296.2 ± 25 nm 0.11 ± 0.02 −40.4 ± 6 mV

60 300.6 ± 81 nm 0.12 ± 0.1 −41.6 ± 9.3 mV

90 269 ± 31 nm 0.14 ± 0.1 −37.4 ± 8.24 mV

120 291.6 ± 32 nm 0.13 ± 0.03 −32.4 ± 6.7 mV

4. Conclusions

In this study, mesalazine was successfully incorporated into zein nanoparticles using
the desolvation method, demonstrating colloidal stability. A SEM image analysis con-
firmed the size of the NP (220 to 400 nm). The high levels of cell viability indicated that
the nanoparticles offered good biocompatibility in CT26 colonic cells. The in vitro release
profile showed the gastroresistance of the nanoparticles and sustained release in the simu-
lated ileocolonic pH 7.4 medium for 120 h. We suggest that NP-ZN, a biocompatible and
biodegradable natural protein polymer, showed promising properties for the delivery of
mesalazine (5-ASA) to the colon to optimize the treatment of inflammatory bowel diseases;
however, further in vivo studies are needed.
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