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Abstract: Plant-derived extracellular vesicles (EVs) are capable of efficiency delivering mRNAs,
miRNAs, bioactive lipids, and proteins to mammalian cells. Plant-derived EVs critically contribute
to the ability of plants to defend against pathogen attacks at the plant cell surface. They also
represent a novel candidate natural substance that shows potential to be developed for food, cosmetic,
and pharmaceutical products. However, although plant-derived EVs are acknowledged as having
potential for various industrial applications, little is known about how their stability is affected by
storage conditions. In this study, we evaluated the stability of Dendropanax morbifera leaf-derived
extracellular vesicles (LEVs) alone or combined with the preservatives, 1,3-butylene glycol (to yield
LEVs-1,3-BG) or TMO (LEVs-TMO). We stored these formulations at −20, 4, 25, and 45 ◦C for up
to 4 weeks, and compared the stability of fresh and stored LEVs. We also assessed the effect of
freeze-thawing cycles on the quantity and morphology of the LEVs. We found that different storage
temperatures and number of freeze-thawing cycles altered the stability, size distribution, protein
content, surface charge, and cellular uptake of LEVs compared to those of freshly isolated LEVs. LEVs-
TMO showed higher stability when stored at 4 ◦C, compared to LEVs and LEVs-1,3-BG. Our study
provides comprehensive information on how storage conditions affect LEVs and suggests that the
potential industrial applications of plant-derived EVs may be broadened by the use of preservatives.

Keywords: plant-derived extracellular vesicles; stability; preservative; freeze-thawing cycles

1. Introduction

Extracellular vesicles (EVs) contain DNA, RNA, proteins, and lipids. EVs mediate
cell-to-cell communication by delivering a variety of molecules, and allow cross-kingdom
communication between plants and animals [1,2]. Plant-derived EVs are structurally similar
to mammalian exosomes [3]. They successfully mediate bioactive components intercellular
communication, owing to their small nano-sized EVs [4]. These characteristics suggest that
EVs could potentially be developed for applications in the cosmetic and food industries [5].

Recent studies on food-derived EVs have shown that these EVs are safe, non-toxic
to humans, and even modulate cellular processes involved in health and disease [6,7]. In
addition, there is a report that exosomes perform biological functions in the skin [8]. Kim
et al. suggested an important role of stem cell EVs in the initiation and progression of skin
aging [9]. Cho et al. showed plant exosomes have the potential to be commercialized as
a cosmeceutical product [10,11]. Despite the high potential for using EVs in the cosmetic
and food industries, little effort has been made to standardize or optimize their storage
conditions, especially for plant-derived exosomes [12].
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Exosomes are most often used when freshly isolated, but it has been reported that
they can be stored at −80 ◦C for up to 1 year [12–14]. However, repeated freeze-thaw
cycles can structurally distort the membrane and impact the shelf life of exosomes, and
the physicochemical properties of exosomes can be affected by a variety of other storage
conditions, including pressure, the properties of the utilized solvent(s), and the storage
period. Cosmetic raw materials need to be able to withstand extreme temperature changes
during transportation, and freeze-thaw testing is highly useful for liquid-based cosmet-
ics [15]. Given the above, exosome preservation methods should be optimized to protect
their biological activities and increase the convenience of their transportation and industrial
application [13].

The current methods for storing EVs mainly include freezing, freeze-drying, and
spray-drying [13]. Freezing is a widely accepted storage method that uses cryoprotectants
to maintain protein stability [16]. In freeze-drying (or lyophilization), a moisture-containing
material is frozen such that any ice is sublimated to water vapor. In spray-drying [17], the
solution is atomized and hot air is used to quickly convert it into a dry powder [16,18].

We should understand the relationship between shelf life and integrity of EVs if we
hope to efficiently apply EVs for commercial production [14]. The conditions for preserving
and storing EVs must be optimized to ensure their stability [19]. A preservative is a natural
or synthetic compound added to a pharmaceutical or cosmetic preparation to avert spoilage
due to microbial growth [20]. Natural preservatives could be an alternative to synthetic
preservatives in the cosmetic and food industries [21]. The 1,3-BG (1,3-butylene glycol)
as a natural preservative is a highly viscous, colorless, odorless, and transparent liquid
with low volatility and low toxicity for people of most skin types [22]. It has been used
in cosmetic products at concentrations of 0.1–50% as a moisturizer, anti-microbial, and
solvent for plant extracts and fragrances [23,24]. Saliguard TMO is a preservative that
has been developed as an alternative to parabens and formaldehyde-free preservatives
for the cosmetic industry. TMO consists of an extract of Illicium verum, caprylyl glycol,
1,2-hexanediol, and butylene glycol. Illicium verum extract has been widely used in tra-
ditional medicine as a bioactive compound and a pharmaceutical treatment for many
diseases [25,26]. It shows anti-oxidant, preservative, and antimicrobial properties, and a
number of its oil constituents induce synergistic biocidal effects against pathogenic fungi
and mycotoxin production [27,28]. Caprylyl glycol is found in a wide variety of preser-
vatives with broad-spectrum antimicrobial properties; it acts to disrupt the microbial cell
membrane [29,30]. 1,2-Hexanediol has been widely used in the cosmetic industry as a
preservative with antimicrobial activity. It exhibits broad-spectrum activity against Gram-
positive and Gram-negative bacteria, potentially by binding to and altering the cytoplasmic
membrane, leading to its rupture [31,32].

Dendropanax morbifera, which is endemic to southern parts of Asia, has historically
been used in traditional medicine and the commercial production of golden varnish. Den-
dropanax morbifera extracts have been shown to have anticancer [33,34], antioxidant [35],
antidiabetic [36], anti-inflammatory [37], and anti-melanogenic effects [5]. We previously
developed a technology to isolate plant-derived EVs and used it to isolate EVs from
Dendropanax morbifera [5]. We found that leaf-derived extracellular vesicles (LEVs) from
Dendropanax morbifera had anti-melanogenic effects [5]. However, little is known about the
optimal storage conditions of LEVs with and without preservatives.

In this study, we investigated the physical stability of Dendropanax morbifera LEVs alone
and when combined with the preservatives, 1,3-BG (LEVs-1,3-BG) or TMO (LEVs-TMO). The
preservatives, which met the criteria of being tasteless, odorless, colorless, non-irritating,
and antimicrobial [38], were intended to inhibit the growth of microorganisms and needed
to last longer than the cosmetic and food product itself. In addition to time, temperature and
pH play important roles in modulating the physical stability of EVs, such as by provoking
their decomposition or modifying their preservative activity. Furthermore, we monitored
EV size and protein levels over time and at different temperatures.
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We found that LEVs were stable when incubated at 4 ◦C for 0 to 2 weeks, as measured
by DLS (dynamic light scattering) and protein level analysis. LEVs-TMO exhibited more
homogeneous-sized particles compared with LEVs and LEVs-1,3-BG. Furthermore, LEVs-
TMO were stable at 4 ◦C for an extended period. Thus, the storage of naturally generated
EVs under an improved preservation condition may support a new direction for delivering
for nutraceutical or cosmeceutical compounds into cells. Collectively, our findings suggest
that using favorable preservation conditions may facilitate the development of natural
plant-derived EVs for industrial applications. This technique could be a new strategy with
multiple purposes for commercial use in the exosomes-based food raw materials without
preservation that can be used for a short term, as well as exosomes-based cosmetic market
from natural plants in the future, when combined with TMO preservative.

2. Materials and Methods
2.1. Isolation of D. morbifera Leaf-Derived Extracellular Vesicles

We collected fresh leaves of Dendropanax morbifera from Bogil Island, which is located
in Wando-gun, Jeollanam-do, South Korea. Unlike the general method for isolating plant
vesicles [39–41], we have developed a method for isolating EVs from Dendropanax morbifera
leaf to facilitate industrial application. Dendropanax morbifera-derived EVs were isolated by
processing the leaves with a mixer grinder plus extractor, passing the resulting crude leaf
extract through filter paper, and centrifuging the obtained extract at 10,000× g for 10 min.
Then, large debris was removed by filtering the supernatant through a 0.22-µm membrane,
and then the filtered EVs were concentrated by centrifuging the sample at 5000× g for
10 min at 4 ◦C in an Amicon Ultra-4 PL 100 K concentrator (Merck Millipore, Darmstadt,
Germany) [5]. After isolating LEVs, we measured the protein concentration using a Pierce
bicinchoninic acid (BCA) protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA),
and prepared it by dilution with distilled water to calculate equal concentration of LEVs
with and without preservatives. After centrifugation, the protein concentration of EVs
was estimated using a Pierce bicinchoninic acid (BCA) protein assay kit (Thermo Fisher
Scientific, Waltham, MA, USA).

2.2. Combining LEVs with Preservatives

To test how preservatives affected the storage behavior of LEVs, we added 1,3-BG
or TMO as natural preservative into the crude leaf extract used for isolation of the LEVs.
Theses preservatives have been used in cosmetic products at concentrations ranging from
0.1 to 50% as moisturizers, anti-microbials, and solvents for plant extracts and fragrances.
Natural preservatives have been extensively explored for their antioxidant and antimicro-
bial properties in food preservation systems. The LEVs were mixed with 1,3-BG at a ratio
of 7:3 (w/w) to generate LEVs-1,3-BG or with TMO at a ratio of 99.5:0.5 (w/w) to generate
LEVs-TMO. The LEVs-TMO consisted of LEVs (3.3%), Illicium verum (anise) fruit extract
(0.05%), caprylyl glycol (0.15%), 1,2-hexanediol (0.2%), butylene glycol (0.1%), and water
(96.2%).

2.3. Evaluation of Physical Stability

The physical stabilities of LEVs, LEVs-1,3-BG, and LEVs-TMO were evaluated over
4 weeks under storage at −20, 4, 25, and 45 ◦C. Physical properties were evaluated at the
beginning of the experimental period (week 0) and after 1, 2, 3, and 4 weeks of storage. The
parameters assessed were odor, color, phase separation, and pH.

2.4. Size Characterization of Stored LEVs under Different Preservative and
Temperature Conditions

Dynamic light scattering (DLS) was used to assess the hydrodynamic size distribution
profiles of the various formulations, as applied with a Zetasizer nano ZS90 system (Malvern
Panalytical, Malvern, UK). Collected LEVs were placed in a thermostatic cell at 20 ◦C, and
measurements were obtained using the scattered intensity autocorrelation function. For
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zeta potential measurement, the LEVs were mixed with distilled water at a ratio of 95:3
(v/v). Each diluted sample was inserted into a folded capillary cell (DTS1070; Malvern
Instruments) and detected using a Zetasizer nano ZS90 system.

2.5. Protein Quantification

The concentration of proteins associated with LEVs of the different formulations was
assessed using a Pierce BCA assay kit. A standard curve was prepared by mixing 10 µL
of BCA standard solution and 200 µL of BCA working solution in a 96-well plate, and
incubating the mixture at 37 ◦C for 30 min. Absorbance was evaluated at 562 nm using
a microplate reader (BioTek, Winooski, VT, USA) under storage at −20, 4, 25, and 45 ◦C.
Protein levels were evaluated during 4 weeks of storage.

2.6. Stability Testing under Freeze-Thaw Cycles

Samples were subjected to zero, one, or three freeze-thaw cycles consisting of −20 ◦C
for 24 h followed by a return to room temperature (23 ◦C) for 24 h. After each cycle, the
size distribution was determined using DLS.

2.7. Transmission Electron Microscopy (TEM)

For TEM analysis, 4 µL of a sample solution consisting of LEVs or LEV-TMO was
loaded onto Cu 200-mesh carbon film grid (Electron Microscopy Science, PA, USA) that
had been surface-treated with glow discharge. The grid was incubated with the sample
for 1 min, washed three times with 20 µL of distilled water, and stained with 100 µL of 2%
(w/v) uranyl acetate solution. Excess staining solution was removed with Whatman filter
paper (GE Healthcare Life Science, Buckinghamshire, UK), and the grids were air-dried
for 10 min and observed using an JEM-2100F (JEOL Ltd., Tokyo, Japan) equipped with a
field emission gun and One View camera (Gatan Inc., CA, USA). An acceleration voltage of
200 kV was used.

2.8. Imaging Analysis of Intracellular LEVs and LEVs-TMO Subjected to Freeze-Thaw Cycles

The internalization of LEVs and LEV-TMO was analyzed by fluorescence microscopy.
LEVs and LEVs-TMO were incubated with lipophilic Di-I (MOP-D-3911l; Invitrogen,
Waltham, MA, USA) for 30 min at 37 ◦C, and transferred to 100 kDa filter to removed free
Di-I dye. We previously confirmed the anti-melanogenic effects and monitored internaliza-
tion of LEVs into B16BL6 murine melanoma cells [5]. B16BL6 melanoma cells were cultured
in α-minimum essential media (α-MEM) (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 10% foetal bovine serum (Rocky Mountain Biologicals, Missoula,
MT, USA), and 1% penicillin/streptomycin (Lonza, Basel, Switzerland). The cells were in-
cubated at 37 ◦C in a humidified 5% CO2 atmosphere. To investigate whether preservatives
affect the internalization of LEVs, B16BL6 were treated with tagged 1 mg/mL LEVs and
LEVs-TMO for 3 h, the medium was removed, and cells were washed three times with
PBS and fixed with 4% paraformaldehyde. Hoechst 33342 (Invitrogen, Carlsbad, CA, USA)
was added and the cells were incubated at room temperature for 15 min to stain nuclei.
Finally, the cells were washed with 1% bovine serum albumin (BSA) and imaged under
a fluorescence microscope (Leica Microsystem, Wetzlar, Germany). At least three images
were analyzed per sample using the Image J software (U.S. National Institutes of Health,
Bethesda, MD, USA).

3. Results and Discussion
3.1. Physical Stability of LEVs, LEV-1,3-BG, and LEVs-TMO

To assess the effect of preservatives, we mixed the LEVs with 1,3-BG or TMO. We then
measured the odor, color, phase separation, pH, and size distribution of the LEVs (taken as
reflecting their stability) at −20, 4, 25, and 45 ◦C. Measurements were performed at baseline
and weekly thereafter for 4 weeks. The results obtained for these assessments are presented
in Tables S1–S3. We did not observe any change in the color (light yellow) or odor (similar
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to that of the raw materials), nor was there any apparent phase separation during 4 weeks of
storage at 4, 25, or 45 ◦C. In contrast, LEVs-1,3-BG exhibited phase separation, as evidenced
by our observation of soluble sediment, which is dissolved by shaking accumulating
sediment from week 1 to 4 (1w–4w) of storage at 45 ◦C. This was verified under optical
microscopy (Figure S1). We observed phase separation in LEVs-1,3-BG compared to LEVs
and LEVs-TMO, which is transparent under microscopy.

Figure 1 showed the average pH of the stored formulations over time. The average pH
of LEVs and LEVs-1,3-BG were about pH 6 at 0w, whereas that of LEVs-TMO was about
pH 5 in Figure 1 and Figure S2. The pH of LEVs and LEVs-1,3-BG tended to decrease over
time, although the total change was relatively minor (<1 unit) over 4 weeks. In contrast,
the pH of LEVs-TMO was stable and remained about pH 5 throughout the experimental
period in all storage conditions. As shown in Figure 1, the pH change of LEVs stored for
4 weeks under various temperatures could be relatively minimal reduced by the addition
of TMO.
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Figure 1. pH values for LEVs stored with and without preservatives at different temperatures. pH
values for (a) LEVs and (b) LEVs-TMO following storage for 4 weeks at −20, 4, 25, and 45 ◦C. Data
are presented as mean ± standard error of mean (SEM).

As skin pH values range from 5.0 and 6.0 [42], LEVs with and without preservatives
had pH values within the average pH range of the skin. Stability testing of cosmetic
products is used to predict the physical and chemical changes that may occur during their
shelf life. Such testing seeks to provide information on how instability could manifest, and
to suggest possible changes that could be made to the product before it is released [43]. We
could predict stability of LEVs by combining preservatives throughout trends of pH during
4 weeks.

3.2. Physiological Properties of LEVs, LEV-1,3-BG, and LEVs-TMO over Storage Time and Under
Different Temperatures

EVs can be characterized according to their physical properties, surface charge, and
protein concentration [44]. The particle size of LEVs is considered to be a key element,
because many properties of nanomaterials depend on their size [33,45].

To investigate the influence of different storage temperatures and preservatives, we
measured the size range of LEVs, LEVs-1,3-BG, and LEVs-TMO at −20, 4, 25, and 45 ◦C.
For LEVs (Figure 2a–d), the particle diameters ranged mainly between 30 and 200 nm at
0w, and polydispersity index (PDI) values were approximately 0.2–0.3 (Figure S3). The
diameters of those stored at −20 ◦C were mainly within the 30–200 nm range over the
4-week period, but the proportion of particles with diameters 200–500 nm increased over
time. The diameter of LEVs stored at 4 ◦C were increased sizes larger than 500 nm by
DLS over time, and the diameter of LEVs stored at 25, 45 ◦C were mainly sizes larger than
500 nm from 2 weeks in Figure 2a–c.
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atures. (a–d) Size distributions over time for LEVs stored at −20, 4, 25, and 45 ◦C. (e–h) Size
distributions over time for LEVs-TMO stored at −20, 4, 25, and 45 ◦C. Data are presented as
mean ± standard error of mean (SEM).

At 0w, the particles of LEVs-1,3-BG were generally smaller than 30 nm (Figure S4a–
c), indicating that the LEVs were affected by the presence of 1,3-BG. The proportions of
LEVs-1,3-BG particles larger than 500 nm increased over time under storage at −20, 4, 25,
and 45 ◦C. Optical microscopy revealed the presence of a soluble sediment beginning at 2w
in samples stored at 45 ◦C (Figure S1). In particular, the average 10-µm-sized particles of
LEVs-1,3-BG were increased from 2 weeks at 45 ◦C. Based on these results, we speculate
that LEVs mixed with 1,3-BG may fuse into larger vesicles depending on the temperature.

Based on these results, we found that LEVs-TMO was more stable in physiological
properties compared to LEVs-1,3-BG. We selected LEVs-TMO for stability studies. The zeta
potential of an EV is its surface charge, and can be estimated from electrophoretic mobility
within colloidal dispersion [46]. We measured the zeta potentials of LEVs and LEVs-TMO
at −20, 4, 25, and 45 ◦C. The results are presented in Figure S5a–d. The zeta potentials of
LEVs and LEVs-TMO showed minimal difference when stored at —20 ◦C, and there was
not significant difference when stored at 4, 25 ◦C from 0 to 4w (Figure S5a–c). That of LEVs-
TMO stored at 45 ◦C was changed to negative charge at 4w (Figure S5d). Zeta potentials may
have functional consequences for the EVs, such as by inducing alterations in aggregation,
protein structures, surface modifications, and/or protein unfolding/denaturation. As
Maroto et al. reported that freezing of exosomes can diminish their zeta potential [40], we
found that the surface charge of LEVs-TMO was slightly decreased at −20 ◦C.

To examine quantity change during storage, we measured the total protein level under
different temperatures and increasing storage time. We used the bicinchoninic acid (BCA)
assay to monitor the protein levels present in equal amounts of LEVs and LEVs-TMO
(Figure 3a–d). The protein levels of LEVs and LEVs-TMO showed a general decrease of
protein level from 0 to 4 weeks. However, decreasing trends of protein levels in LEVs
were more rapid than in LEVs-TMO. In particular, LEVs and LEVs-TMO stored at −20 ◦C
exhibited rapid decreases in protein levels beginning at 1 w (Figure 3a). This suggests that
the protein content of these EVs could be decreased by the freezing process. Cheng et al.
reported that the concentration of exosomal proteins was decreased the most by storage at
−20 ◦C, compared to the other tested temperatures, as assessed by nanoparticle tracking
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analysis (NTA) [47]. These results may indicate that freezing leads to a loss of exosomal
contents. Notably, although we found that the total protein level decreased for both LEVs
and LEVs-TMO stored at 25 or 45 ◦C (Figure 3b,c), the highest protein level was maintained
over 4 weeks for LEVs-TMO stored at 4 ◦C (Figure 3a).
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Sokolova et al. found that exosomes exhibited a smaller size change at 37 ◦C compared
to 4 ◦C [48]. Another study showed that animal EVs stored at 4 °C had the highest exosome
concentration and higher levels of the representative exosome markers, ALIX, HSP70, and
TSG101 [47]. Higher temperatures were found to be unsuitable for storage of exosomes due
to degradation of exosomal proteins [12]. Here, we found that the particle sizes of LEVs
came to range widely (from 10 to 10,000 nm) when LEVs were stored for 4 weeks at −20, 4,
25, and 45 ◦C, whereas LEVs-TMO remained largely in the range of 30–200 nm throughout
the experimental period, and thus resembled the control value at day 0. Our results support
the idea that selecting an appropriate preservation method for LEVs could support function
of extracellular vesicles and thereby make LEVs more useful for industrial applications.

3.3. Physiological Properties of LEVs and LEV-TMO under Various Numbers of
Freeze-Thaw Cycles

It is currently recommended that EVs be maintained at −80 ◦C for transportation and
storage. However, this temperature may alter the biological activities and/or morphological
characteristics of EVs. In addition, it is expensive to transport materials at −80 ◦C [17,49,50].
Furthermore, freeze-thaw may encounter during transportation. We should investigate
whether the raw materials remain stable. To evaluate the effect of freeze-thaw cycles, LEVs
and LEVs-TMO were frozen to −20 ◦C and thawed to room temperature for 1 or 3 cycles
(Figure 4) and analyzed by DLS and TEM. Prior to freeze-thawing, LEVs were relatively
spherical nanoparticles with a diameter of approximately 100–150 nm (Figure 4a). However,
with the increasing cycles of freezing and thawing, LEVs were larger than 200 nm and
a size distribution histogram showed a wider than 0-cycle of LEVs, as measured DLS,
which aggregated and clogged LEVs, shown in Figure 4a. The results of our TEM analyses
were consistent with those obtained from the DLS measurements. TEM analyses show
that LEVs exhibited a spherical morphology at cycle 0 and then, aggregated or disrupted
at increased cycles of freeze and thaw. In addition, TEM images show that LEVs-TMO
exhibited a spherical morphology at 0–3 cycles but seem to expand in size with increasing
freeze-thaw cycles.
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Figure 4. Size distributions of LEVs and LEVs-TMO over freeze-thaw cycles. (a) Top: Dynamic
light scattering (DLS) measurements of the size distribution intensity for LEVs exposed to 0, 1, and
3 freeze-thaw cycles. Insets: number-size distribution curves. Bottom: TEM images of LEVs exposed
to different numbers of freeze-thaw cycles. (b) Top: DLS measurements of the size distribution
intensity for LEVs-TMO exposed to 0, 1, and 3 freeze-thaw cycles. Insets: number size distribution
curves. Bottom: TEM images of LEVs-TMO of different freezing and thawing cycles. Data are
presented as mean ± standard error of mean (SEM).

Some reports described that size changes and heterogeneous shapes were observed
upon thawing of frozen exosome samples, and suggested that freezing without cryop-
reservation may affect the stability of exosome membranes during thawing [51,52]. The
hydrodynamic diameters of LEVs-TMO were approximately 100 nm and small nano vesi-
cles of approximately 30 nm were observed. The hydrodynamic diameter of LEVs-TMO
remained similar to that of 0-cycle LEVs-TMO as the freezing and thawing cycle increased
(Figure 4b). This phenomenon may reflect that the preservative (TMO) affected the size of
the LEVs, but increased their stability in the face of freeze-thawing.

3.4. Freeze-Thawing-Related Differences in the Cellular Uptake of LEVs and LEV-TMO

Storage conditions were also found to influence the cellular uptake of LEVs. To in-
vestigate how the different storage conditions impacted the cellular uptake of LEVs, we
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subjected DiI-labeled LEVs to 0, 1, and 3 cycles of being frozen to −20 ◦C and thawed to
room temperature. We then applied the treated formulations to B16BL6 cells for 3 h and
assessed the uptake of the labeled EVs. Our results revealed that LEVs without freeze-
thawing were widely distributed within cells, including in the cytoplasm surrounding the
nucleus (Figure 5a). As the number of freeze-thaw cycles increased, the cellular uptake
efficiency decreased for LEVs (Figure 5b). This may be due to the freeze-thaw-induced
aggregation of LEVs observed by TEM (Figure 4), and/or to freeze-thaw-induced damage
that is enhanced by repeated cycles [53]. The uptake of the labeled LEVs showed a signifi-
cant decrease of autologous cellular uptake efficiency under increased cycles of freezing
and thawing, but 1, 3 cycles of uptake of the labeled LEV-TMO were less affected compared
to 0 cycle in Figure 5b. However, the BCA protein level between LEVs and LEVs-TMO
was not significantly decreased by 1 or 3 freeze-thaw cycles (data not shown). In Figure 3a,
the LEV and LEV-TMO stored at −20 ◦C resulted in decreased protein levels at 1 w. The
protein contents of short-term storage conditions about freezing-thawing cycles may have
less effect than these of long-term storage conditions. LEVs stored at 25 ◦C showed higher
cellular uptake than LEVs stored at −20 ◦C and 4 ◦C. On the other hand, we observed
that the LEVs stored at 45 ◦C were difficult to uptake into cells because lipophilic Di-I
aggregates at high temperature (Figure S6).
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Figure 5. Comparison of cellular uptake for LEVs with and without preservatives. (a) Representative
fluorescence microscopic images of cellular uptake over 3 h for fluorescently labeled LEVs and
LEVs-TMO previously exposed to 0, 1, and 3 freeze-thaw cycles. (b) Summary data comparing
intracellular fluorescence intensity per cell between LEVs and LEVs-TMO treated as described in (a).
* p < 0.05, ** p < 0.01. (c) pH values for stored solutions of LEVs and LEVs-TMO exposed to 0, 1, and
3 freeze-thaw cycles.
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We found that the internalized LEVs were significantly decreased in the cytoplasm,
whereas the cellular uptake of similarly treated LEVs-TMO was relatively stable. The
size of EVs is an important factor that influences cellular uptake [54]. We found that the
size of LEVs-TMO was about 100 nm, which is smaller than that of LEVs. As shown in
Figure 4a, LEVs showed agglomeration and aggregation during freeze-thaw cycles on
TEM images, which may be one of the reasons for the low cellular uptake. Furthermore,
as some reports found that increased exosome uptake occurred at low pH [47,55], we
speculate that the increased cellular uptake of LEVs-TMO was due to the decrease in
the pH level (Figure 5c). Future studies are warranted to improve our understanding of
how pH influences exosomes. Interestingly, the relative number of freeze-thaw cycles
was reported to change the membrane properties of exosomes, enabling them to be more
easily absorbed by cells [47]. However, our results showed that an increased number of
freeze-thaw cycles decreased the cellular uptake of LEVs. Clearly, further biochemical
research is needed to clarify the various parameters that are relevant for exosomal uptake.

Our findings indicated that LEVs-TMO were more stable than LEVs or LEVs-1,3-
BG, exhibiting smaller changes in pH and size with time and temperature. pH changes
may influence the internalization of exosomes. Our protein content analysis indicated
that the optimal condition was storage at 4 ◦C with the preservative, TMO, and that
this storage could be maintained for at least 4 weeks. Our study provides relatively
comprehensive information on how storage conditions affect EVs. This could inform efforts
to better preserve LEVs and significantly contribute to improving the functions and future
applications of LEVs.

4. Conclusions

We herein investigated the stability of plant leaf-derived extracellular vesicles when
stored at various temperatures with and without two selected preservatives. We found
that LEVs-TMO were more stable in storage (as reflected by pH, size distribution, etc.),
compared to LEVs and LEVs-1,3-BG. We found that the sizes of LEVs-TMO remained
between 30 and 200 nm from 0 to 4 weeks and exhibited a nearly unimodal distribution.
The zeta potential (a measure of surface charge) of the EVs was influenced by temperature.
When stored at 4 ◦C with TMO (LEVs-TMO), the vesicles maintained their protein contents
to a higher degree over 4 weeks, compared to the other tested conditions. Our data suggest
that plant leaf-derived extracellular vesicles stored with the preservative, TMO, at 4 ◦C
showed the best stability among the tested formulations and temperatures. However,
increasing the efficiency of Evs’ isolation excluding free proteins is still a challenging issue.
Additionally, we presume that aggregation between LEVs occurred by 1,3-BG, but the effect
of 1,3-BG on the size of EVs should be studied in the future.

Freeze-thaw cycle testing is an important stability test that assesses whether a formula
will remain stable under various temperatures. Here, we found that the size distribution of
LEVs was affected by increasing cycles of freezing and thawing, taking on a multimodal
distribution. We also assessed whether freeze-thawing and various storage conditions
influenced the cellular uptake of LEVs. Indeed, 0 cycles of LEVs showed significantly
less efficient autologous cellular uptake compared to 1, 3 cycles of LEVs. In contrast,
the cellular uptake of LEVs-TMO was relatively stable despite increasing storage time.
We hypothesized that LEVs-TMO were more readily internalized due to their acidic pH.
However, additional work is needed to test this hypothesis and better understand the
impact of pH on cellular internalization.

EVs research can potentially open many new possibilities in the fields of medicine,
cosmetics, and nutrition. Together, the results of optimization of storage condition accord-
ing to preservatives and various condition described herein improve our understanding
of the stability of plant-derived EVs by physical properties. Our studies provide critical
evidence for how plant-derived EVs can be stored to best preserved. Because we previously
confirmed the anti-melanogenic effects, our findings may enable LEVs to be developed
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for the wide application as the cosmeceutical formulations as well as their nutrition and
pharmaceutical product.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics14020457/s1, Figure S1: Optical microscopy images of mixture of LEVs and 1,3-
BG using at 45°C during 4 weeks. Figure S2: pH tests of LEVs-1,3BG over time. Figure S3: PDI values
of LEVs, LEVs-1,3BG, and LEVs-TMO. Figure S4: Size distribution of LEVs-1,3BG over time under
different temperature. Figure S5: Zeta potentials over time under different temperatures. Figure S6:
Cellular uptake for LEVs under different temperatures. Table S1: Physical characteristics of LEVs.
Table S2: Physical characteristics of mixture of LEVs and 1,3 BG. Table S3: Physical characteristics of
mixture of LEVs and TMO.
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