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Abstract: Remote triggering of contents release with micron spatial and sub-second temporal resolu-
tion has been a long-time goal of medical and technical applications of liposomes. Liposomes can
sequester a variety of bioactive water-soluble ions, ligands and enzymes, and oligonucleotides. The
bilayer that separates the liposome interior from the exterior solution provides a physical barrier
to contents release and degradation. Tethering plasmon-resonant, hollow gold nanoshells to the
liposomes, or growing gold nanoparticles directly on the liposome exterior, allows liposome contents
to be released by nanosecond or shorter pulses of near-infrared light (NIR). Gold nanoshells or
nanoparticles strongly adsorb NIR light; cells, tissues, and physiological media are transparent to
NIR, allowing penetration depths of millimeters to centimeters. Nano to picosecond pulses of NIR
light rapidly heat the gold nanoshells, inducing the formation of vapor nanobubbles, similar to
cavitation bubbles. The collapse of the nanobubbles generates mechanical forces that rupture bilayer
membranes to rapidly release liposome contents at the preferred location and time. Here, we review
the syntheses, characterization, and applications of liposomes coupled to plasmon-resonant gold
nanostructures for delivering a variety of biologically important contents in vitro and in vivo with
sub-micron spatial control and sub-second temporal control.

Keywords: nanobubble; plasmon-resonant; hollow gold nanoshell; picosecond laser pulses

1. Introduction

Following their discovery by Bangham in 1965 [1,2], liposomes have been one of
the most thoroughly investigated nanocarriers for drug delivery [3–13]. Many promis-
ing drugs are discarded due to difficulties in maintaining a safe biodistribution in the
concentration range necessary for efficacy [14]. Liposomes and other lipid-based drug
carriers sequester toxic drugs within a lipid bilayer to alter drug biodistribution, thereby
enhancing efficacy while minimizing damage to healthy tissue and organs [14]. Liposomes
are capable of concentrating and stabilizing small molecule therapeutic compounds and
larger oligonucleotides for delivery in vivo and in vitro [12,15–18]. Liposomes based on
naturally occurring lipids are inherently biocompatible and hence can overcome many
of the obstacles to cellular and tissue uptake. Small liposomes (<200 nm) are passively
targeted to tumors and sites of inflammation by the enhanced permeation and retention
(EPR) effect [18,19]. Liposomes can also be actively targeted by treating their surface with
antibodies to ligands overexpressed on tumor cells [20–26]. Hydrophilic cargoes can be
encapsulated within the aqueous liposome core, while hydrophobic molecules can be
trapped within the hydrophobic bilayer interior [27].
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1.1. Separating Cargo Sequestration from Rapid Release

Despite these advantages, it is difficult for a single bilayer to simultaneously prevent
drug release and trigger rapid release at the preferred site of action [28]. It remains a
challenge to initiate a biological or chemical response in cells or tissues with spatial and
temporal control. Conventional liposomes often release small molecule drugs prematurely
in the circulation due to degradation of the liposome bilayer or are taken up in the liver
and spleen by interactions with the reticuloendothelial system (RES). “Stealth” coatings
of polyethylene glycol and other polymer lipids can prolong the circulation time [29,30].
However, optimizing the liposome cargo retention in the circulation to maximize drug
accumulation at the disease site may slow drug release from the liposome at the site of
interest and reduce therapeutic activity. This is the case for clinical doxorubicin liposomes
(Doxil) [31–33] and for clinically tested cisplatin liposomes [34]; drug release is so slow that
the critical drug concentration is not easily achieved. As a result, multiple strategies for
enhancing local drug release at the site of interest have included the incorporation of mem-
brane destabilizing agents that respond to stimuli such as general hyperthermia [35–37],
receptor targets [38–40], pH changes [41], or tumor-specific enzymes [42,43]. These strate-
gies promote release but can compromise long-term liposome stability and decrease drug
retention in the circulation. Specific ligands with high affinities to receptor overexpressed
on disease cells can in turn lead to “binding-site barriers” where high concentrations of
bound nanocarriers can prevent drug penetration into tissue [44].

1.2. Plasmon-Resonant Gold Nanostructures

To address the challenge of spatially and temporally controlled fast release, modified
liposome nanocarriers have been developed in which the liposome functions primarily as
the cargo container. Rapid spatial- and temporal-controlled contents release is addressed
by tethered gold nanostructures triggered by an externally applied pulsed NIR laser. Such
liposomes are also well-suited for in vitro, in vivo, and ex vivo use where spatial- and
temporal-controlled delivery of cargo ranges from small molecules to complex proteins
or oligonucleotides [45–48]. Plasmon-resonant hollow gold nanoshells (HGN) or simple
gold nanoparticles [46,47,49,50] can be chemically tethered to conventional polyethylene
glycol stabilized liposomes of any membrane composition to absorb and concentrate near-
infrared light (NIR) [32,33,48,51–53]. A hollow shell structure of gold, silver, or alloys can
strongly absorb NIR light at a characteristic localized surface plasmon resonance (LSPR)
wavelength (Figure 1) that can be tuned by controlling the nanoparticle size and shell
thickness [45]. As shown schematically in Figure 1, the absorption spectra of common
physiological molecules such as water, oxygenated hemoglobin (HbO2), and hemoglobin
(Hb) show a distinct minima in what has been called the “NIR window” [54]. As a result,
NIR light can penetrate deeply within cell suspensions, tissue, and other physiological
media. Unstructured solid silver or gold nanoparticles of 10–100 nm size absorb in the
same wavelength range as hemoglobin (400–540 nm) and cannot be readily addressed in
physiological fluids.

By manipulating the shape and organization of gold nanostructures, the surface
plasmon-resonance can be moved to the NIR window. Light absorption from high power
nanosecond or shorter pulses cause the gold nanostructures to undergo a rapid increase in
temperature before any heat can be dissipated to the surrounding fluids [45,55]. Follow-
ing this rapid heating of the nanoparticle, the hot nanoparticles begin to dissipate their
thermal energy to the surrounding solution in microseconds. The high temperature gradi-
ents around the gold nanoparticles vaporize a minute amount of the surrounding water
leading to the formation of unstable nanobubbles as the heat is dissipated (30 nm diame-
ter particles thermally equilibrate with their surroundings in fractions of a microsecond).
These nanobubbles rapidly expand and contract and give rise to microjets that have simi-
lar mechanical and thermal effects as ultrasound-induced cavitation (Figure 2) [51,56,57].
Nanobubble generation requires a threshold energy; any additional energy above threshold
makes the nanobubbles grow larger. Once formed, the mechanical forces generated by
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the expansion and collapse of the nanobubbles can lyse endosomes, liposomes, or cells,
providing rapid contents release [51,58–61], cell poration [62,63], or even cell death [62–65].
It is these mechanical cavitation forces that lead to endosome, liposome, and cell membrane
rupture and contents release rather than the change in temperature. As a result, complex
proteins and oligonucleotides, as well as small molecules, can be delivered without damage
following NIR light triggering of the gold nanostructures [47,48,58,61,66].
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Figure 1. Schematic representation of optical adsorption of water (H2O), oxygenated hemoglobin
(HbO2), and hemoglobin (Hb) showing the near-infrared window (NIR) from 650–900 nm over
which physiological materials do not adsorb significant fractions of incident light, adapted from [54],
published by Nature, 2001. Hollow gold nanoshells (HGN) have a surface plasmon resonance
determined by the HGN wall thickness and diameter that can be tuned to peak in the NIR Window.
This causes HGN suspensions to appear dark blue to purple.
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Figure 2. Plasmon-resonant gold nanoparticles tethered to liposomes can be triggered by short pulses
of NIR laser light (red lines) that heat the nanoparticles. At a threshold light fluence, heat dissipating
from the nanoparticles boils a minute amount of water to form unstable vapor nanobubbles that
rapidly expand and contract. As the nanobubbles collapse, liquid–vapor microjets form that can
perforate cell and liposome membranes. This allows the liposome contents to be rapidly released and
cells to be perforated.
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1.3. Summary

Here we review the synthesis and characterization of a variety of plasmon-resonant
gold nanostructures that show strong absorption in the NIR window that can be tethered to,
encapsulated within, or grown directly on conventional liposome carriers. Gold nanopar-
ticles are stable and non-toxic in physiological environments and can be synthesized in
various structures and shapes including nanoshells, nanospheres, nanocubes, nanowires,
nanocages, nanoflowers, nanopyramids, and nanobranches [67,68]. Nanobubbles can be
triggered around these gold nanostructures using focused near-infrared laser light pulses to
spatially and temporally control release of small molecules, siRNA, and DNA within cells,
in cell suspensions, or in tissue to initiate various biophysical or biochemical responses.
Gold nanoparticles can be bound directly to the small molecule, protein [61,66,69], or
oligonucleotide of interest [58–60,70]; however, this review focuses on gold nanoparticles
directly bound to conventional liposomes to trigger rapid, localized small molecule or
oligonucleotide delivery [32,33,45–53]. Gold nanoparticles and liposomes show minimal
toxicity; the unique plasmon resonance properties of gold nanostructures combined with
the simple synthetic methods needed to alter this plasmon adsorption, the ease of gold
surface functionalization and binding to liposome membranes, and the ability of liposomes
to sequester and protect almost any water-soluble cargo combine to create a uniquely
useful nanocarrier.

2. Plasmon-Resonant Gold Nanoparticles

To create a nanoparticle with a localized surface plasmon resonance (LSPR) in the near-
infrared region of the spectrum requires a low dielectric constant core such as water [45,71],
silica [72–78], lipid bilayers [47,49,50,79], or polymers [80,81], with a thin shell of high
dielectric gold or a gold–silver alloy, for use in aqueous or physiological solutions. Such
particles are known as “hollow gold nanoshells” or HGN. The typical techniques used to
create core-shell HGN nanostructures are sacrificial galvanic replacement of cobalt [82] or
silver nanoparticle templates [45,48,51,55,71,83–85], or using a silica [73–77,86], polymer,
or liposome [46,47,49,50] core onto which the gold nanoparticles precipitate. The plasmon
resonance depends on the ratio of the thickness of the dielectric shell to the dimensions of
the core that allows the LSPR maximum, λmax, to be shifted from the 400–500 nm for solid
gold or silver nanoparticles to >1000 nm.

2.1. Synthesis of HGNs via Galvanic Replacement of Cobalt Nanoparticles

Liang et al. [82] first reported on the sacrificial galvanic replacement of cobalt nanoparticles
based on the Kobayashi method for hollow platinum nanoshell synthesis (Figures 3 and 4). In
all these sacrificial processes, a metal nanoparticle template is synthesized, followed by
a galvanic replacement reaction with a gold salt. The template nanoparticles must have
a lower redox potential than gold, which causes the spontaneous reduction and plating
of gold onto the dissolving oxidized template. Cobalt (Co2+/Co 0.3 V, vs. SHE) or sil-
ver (Ag+/Ag 0.8 V, vs. SHE) templates have lower redox potentials than gold (AuCl4−/
Au 0.99 V, vs. SHE) [45,71,82,87]. During galvanic replacement, the gold salt is reduced
to (Figures 4 and 5) metal on the template and retains the shape and size of the template.
The oxidized template metal dissolves into the solution, leaving behind a hollow core
(Figures 4 and 5). The template size and polydispersity directly control the size and poly-
dispersity of the final hollow gold nanoparticles [45]. For the cobalt templates, an excess
amount of the reducing agent NaBH4 was used as reducing agent for CoCl2 in degassed wa-
ter under constant nitrogen flow, which led to cobalt nanosphere formation (Equation (1)).

2NaBH4 + CoCl2 → Co(0) + H2O + 2NaCl + B2H6 (1)
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Figure 4. High resolution TEM images of hollow gold nanoshells templated from cobalt nanoparticle
templates. (a) Lattice image of gold nanoshell showing the characteristic 0.235 nm lattice spacings
of crystalline gold. Reprinted with permission from ref. [82], Copyright 2005 American Chemical
Society. (b) Collection of cobalt-templated HGN showing spherical shapes with dark rims. (c) Higher
magnification image of nanoshell. The dark rim and lighter interior is consistent with a gold shell
structure. (d) Close-up of gold shell showing uniform shell thickness.
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Figure 5. (A) Transmission electron micrograph of silver nanocubes formed by the polyol reaction
following 30 min of growth. The cubes are monodisperse with well-defined sharp edges. The mean
size of the silver nanocubes is 18 nm. (B) TEM image of hollow gold nanoshells (HGN) made from
the silver templates in (A) by the galvanic replacement according to the reaction in Equation (3). The
inset shows a high magnification image illustrating the hollow shape with pores in the walls (arrow).
The mean size of the hollow gold nanocubes in (B) increased to 23 nm, and the size distribution
broadens. Adapted from [45], published by Wiley, 2018.
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After completion of the reaction, the cobalt nanosphere solution is washed and added
to a solution of HAuCl4, which leads to the oxidation of the cobalt, and the gold chlorate is
reduced to gold metal that precipitates onto the template by Equation (2).

3Co + 2AuCl−4 → 3Co2+ + 2Au(0) + 8Cl− (2)

The cobalt nanosphere acts as the primary reducing agent in Equation (2), which is
why it is important to remove any excess NaBH4 from the solution. Any remainingNaBH4
can cause direct gold reduction and thicker gold nanoshells to be formed, and it can prevent
the cobalt core from being oxidized, which increases the polydispersity of the core diameter
and shell thickness (Figure 3). As the nanoshell size and shell thickness control the local
surface plasmon resonance [45], the better controlled the reaction conditions, the more
precisely the LSPR can be located. It is also necessary to remove dissolved oxygen from
the solution by purging with nitrogen or argon to reduce premature oxidation caused
by ambient conditions to avoid extraneous oxidation reactions. The high reactivity of
cobalt makes the syntheses more complicated than silver as described below. A second
drawback is that cobalt toxicity has been observed following chronic exposure in patients
with metal-on-metal hip replacements that use cobalt, although it is unlikely that the
amount of residual cobalt in these nanoparticles would be problematic [88,89].

2.2. Synthesis of HGNs via Galvanic Replacement of Silver Nanoparticles

The use of silver nanoparticle templates for HGN synthesis was introduced by
Sun et al. [71]. The lower reactivity of silver relative to cobalt provides a simpler and
more readily reproducible synthetic method for gold nanoshell formation [45,87]. Silver
toxicity is considered quite low. Silver is an important part of dental amalgams, and silver
and silver nitrate compounds are used as antimicrobials [90].

Silver templates can be made with precise control of the nanoparticle size and shape
(Figure 5A) using the polyol process first described by Xia and coworkers [71,83]. Cubic
silver templates are synthesized by reduction of silver trifluoroacetate in diethylene glycol
in the presence of polyvinyl pyrrolidone heated to 150 ◦C (Figure 5A) [87,91]. The synthesis
is initiated by a rapid nucleation of silver crystals that is indicated by a color change to pale
yellow. Following nucleation, there is a slow growth of the silver templates as cubic crystals
stabilized by the polyvinyl pyrrolidone [87]. Figure 5A shows that the silver templates are
monodisperse in shape and size; cubic silver nanocrystals can be made with edge lengths
from 10 to 50 nm through this one-pot process [45]. To minimize aggregation and settling
during silver nanoparticle storage, sodium citrate is added. The citrate binds to the silver
templates and provides an electrostatic barrier to aggregation and sedimentation.

Figure 6 shows that the wavelength, λmax, at which the LSPR is a maximum is deter-
mined by a combination of the size distribution of the silver nanoparticles used as sacrificial
templates and the ratio of gold salt to silver in the subsequent galvanic replacement re-
action [45,71]. HGN can be made with a variety of shell thicknesses using Turkevich’s
colloidal growth chemistry to oxidize and dissolve the sacrificial silver nanoparticles while
metallic gold is plated on the template exterior [92].

Ag(s) + AuCl−4(aq) → Au(s) + 3Ag+
(aq) + 4Cl−(aq) (3)

As the reaction proceeds, the solution color changes from yellow to blue (Figure 1),
consistent with the red-shift of the localized surface plasmon resonance (LSPR) from 420 nm
to 700–950 nm, depending on the ratio of gold chlorate salt to silver (Figure 6) [45]. As
more gold is added, more silver is oxidized, and the shell thickness actually decreases as
three silver molecules are oxidized for every gold molecule reduced to metal. During this
process of oxidation and reduction, the gold metal mixes with any remaining metallic silver
from the template to form a gold/silver alloy in the walls of the HGN [45,87,93].



Pharmaceutics 2022, 14, 701 7 of 29

Pharmaceutics 2022, 14, x FOR PEER REVIEW 7 of 30 
 

 

(arrow). The mean size of the hollow gold nanocubes in (B) increased to 23 nm, and the size distri-
bution broadens. Adapted from [45], published by Wiley, 2018. 

Figure 6 shows that the wavelength, 𝜆 , at which the LSPR is a maximum is deter-
mined by a combination of the size distribution of the silver nanoparticles used as sacrifi-
cial templates and the ratio of gold salt to silver in the subsequent galvanic replacement 
reaction [45,71]. HGN can be made with a variety of shell thicknesses using Turkevich’s 
colloidal growth chemistry to oxidize and dissolve the sacrificial silver nanoparticles 
while metallic gold is plated on the template exterior [92]. Ag + AuCl → Au + 3Ag + 4Cl            (3)

As the reaction proceeds, the solution color changes from yellow to blue (Figure 1), 
consistent with the red-shift of the localized surface plasmon resonance (LSPR) from 420 
nm to 700–950 nm, depending on the ratio of gold chlorate salt to silver (Figure 6) [45]. As 
more gold is added, more silver is oxidized, and the shell thickness actually decreases as 
three silver molecules are oxidized for every gold molecule reduced to metal. During this 
process of oxidation and reduction, the gold metal mixes with any remaining metallic sil-
ver from the template to form a gold/silver alloy in the walls of the HGN [45,87,93]. 

To stabilize the final HGN against aggregation in physiological saline solutions, 750, 
2000, or 5000 Da methoxy-PEG-thiol can be coupled to the HGN surface. The excess PEG 
can be removed by repeated washing and centrifugation. PEG-stabilized HGN are ex-
tremely stable in saline and serum, and the spectra and nanostructure have remained un-
changed for more than a year. HGN made by other silver templated syntheses may be less 
stable [94]. 

 
Figure 6. Adding increasing amounts of 1 mM HAuCl4 to a fixed amount of 27 nm cubic silver 
template solution redshifts 𝜆  from 600 to 900 nm. Increasing the amount of gold thins the HGN 
shell leading to the increase in 𝜆 . Adapted from [45], published by Wiley, 2018. 

2.3. Synthesis of Gold Shells on Modified Silica Nanoparticles 
Halas and coworkers synthesized cores of monodisperse silica particles, followed by 

binding gold nanoparticle seeds to the silica using coupling agents. The monodisperse 
silica spheres are prepared by the Stöber method [95], then coated with 3-amiopropyl tri-
ethoxysilane [96]. The 1–3 nm gold nanoparticles are synthesized by the technique out-
lined by Duff [97] and mixed with the silica solution. The gold particles react with the 
amine groups on the organosilane and bind to the surface of the silica sphere. These gold 
nanoparticles act as nucleation sites for the reduction of chloroauric acid to gold with for-
maldehyde. The gold particles on the surface of the particles grow and can coalesce to 
form a continuous shell around the silica sphere (Figure 7). The density of the gold 

Figure 6. Adding increasing amounts of 1 mM HAuCl4 to a fixed amount of 27 nm cubic silver
template solution redshifts λmax from 600 to 900 nm. Increasing the amount of gold thins the HGN
shell leading to the increase in λmax. Adapted from [45], published by Wiley, 2018.

To stabilize the final HGN against aggregation in physiological saline solutions, 750,
2000, or 5000 Da methoxy-PEG-thiol can be coupled to the HGN surface. The excess
PEG can be removed by repeated washing and centrifugation. PEG-stabilized HGN are
extremely stable in saline and serum, and the spectra and nanostructure have remained
unchanged for more than a year. HGN made by other silver templated syntheses may be
less stable [94].

2.3. Synthesis of Gold Shells on Modified Silica Nanoparticles

Halas and coworkers synthesized cores of monodisperse silica particles, followed by
binding gold nanoparticle seeds to the silica using coupling agents. The monodisperse
silica spheres are prepared by the Stöber method [95], then coated with 3-amiopropyl
triethoxysilane [96]. The 1–3 nm gold nanoparticles are synthesized by the technique
outlined by Duff [97] and mixed with the silica solution. The gold particles react with
the amine groups on the organosilane and bind to the surface of the silica sphere. These
gold nanoparticles act as nucleation sites for the reduction of chloroauric acid to gold with
formaldehyde. The gold particles on the surface of the particles grow and can coalesce
to form a continuous shell around the silica sphere (Figure 7). The density of the gold
nanoparticles and the space between nanoparticles on the surface of SiO2 can be tuned to
provide control the amplitude and λmax of the LSPR [78,98].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 30 
 

 

nanoparticles and the space between nanoparticles on the surface of SiO2 can be tuned to 
provide control the amplitude and 𝜆  of the LSPR [78,98].  

 
Figure 7. TEM image of nanoshells prepared by seeding gold nanoparticles onto a silica core, fol-
lowed by a second reduction of gold chlorate to create a continuous gold film. Adapted from [78], 
published by ACS, 2005. 

2.4. Synthesis of Gold Shells on Lipid Bilayer Liposomes 
Romanowski and coworkers introduced a method for directly precipitating gold na-

noparticles and binding them to liposomes [49,50]. The gold coating provides a tunable 
LSPR while maintaining the carrier properties of conventional liposomes. The gold pre-
cipitates as discrete clusters on the liposome surface and can eventually grow into a con-
tinuous metallic shell [46,47]. As in other core-shell structures, the 𝜆  of the LSPR can 
be varied from 600 to 800 nm. The magnitude and wavelength of the LSPR is dependent 
on the quantity of the gold reduced, as is the case for the gold-coated silica spheres (Figure 
7) [46,47,49,50].  

Gold nanoparticles are nucleated onto the liposome surface by adding 10 mM gold 
chloride solution to a liposome suspension (0.66 mM lipid concentration) at a molar ratio 
of 1:2 gold to lipid followed by the addition of an equal volume of 40 mM ascorbic acid 
solution until a characteristic color develops [47]. Following reduction, the samples are 
dialyzed against the appropriate buffer at room temperature to remove unreacted gold 
chloride and ascorbic acid. The resulting structures are shown schematically and in the 
TEM image in Figure 8 [47]. 

 
Figure 8. (A) Schematic diagram of gold nanoparticles nucleating on the liposome surface. (B) TEM 
image of liposome decorated with gold nanoparticles. Adapted from [46,47], published by Wiley, 
2017 and Wiley, 2020. 

  

50 nm

Figure 7. TEM image of nanoshells prepared by seeding gold nanoparticles onto a silica core, followed
by a second reduction of gold chlorate to create a continuous gold film. Adapted from [78], published
by ACS, 2005.



Pharmaceutics 2022, 14, 701 8 of 29

2.4. Synthesis of Gold Shells on Lipid Bilayer Liposomes

Romanowski and coworkers introduced a method for directly precipitating gold
nanoparticles and binding them to liposomes [49,50]. The gold coating provides a tun-
able LSPR while maintaining the carrier properties of conventional liposomes. The gold
precipitates as discrete clusters on the liposome surface and can eventually grow into a
continuous metallic shell [46,47]. As in other core-shell structures, the λmax of the LSPR
can be varied from 600 to 800 nm. The magnitude and wavelength of the LSPR is depen-
dent on the quantity of the gold reduced, as is the case for the gold-coated silica spheres
(Figure 7) [46,47,49,50].

Gold nanoparticles are nucleated onto the liposome surface by adding 10 mM gold
chloride solution to a liposome suspension (0.66 mM lipid concentration) at a molar ratio
of 1:2 gold to lipid followed by the addition of an equal volume of 40 mM ascorbic acid
solution until a characteristic color develops [47]. Following reduction, the samples are
dialyzed against the appropriate buffer at room temperature to remove unreacted gold
chloride and ascorbic acid. The resulting structures are shown schematically and in the
TEM image in Figure 8 [47].
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Figure 8. (A) Schematic diagram of gold nanoparticles nucleating on the liposome surface. (B) TEM
image of liposome decorated with gold nanoparticles. Adapted from [46,47], published by Wiley,
2017 and Wiley, 2020.

2.5. How HGN Geometry, Size, and Wall Thickness Determine the LSPR

The amplitude of the adsorption cross section, σabs, as a function of wavelength for
core-shell nanoparticles can be approximated from Mie theory for core-shell spheres [45].
This analytical solution for σabs for spherical hollow metal nanoshells with particle diam-
eters much smaller than the wavelength of the incident light [99] gives insight into how
the composition, shape, and size of the nanoshell determine the LSPR. The nanoshell is
characterized by a total radius, R, (core radius + shell thickness) and a shell thickness, t.
For typical hollow gold nanoshells (Figure 5B), the ratio of shell thickness, t, to overall
size, R, varies from 0.10 < t/R < 0.25 [45,99]. Water, with a constant real permittivity of
εW = 1.77, serves as both the core of the hollow shells and the external medium. For
the HGN synthesis described previously, the shell is made up of a gold–silver alloy with
dielectric function εG(λ), which has real and imaginary (Im) frequency-dependent parts.
For a Ag fraction of xAg, the complex permittivity of the gold–silver alloy is [100]

εG(ω) =
(
8.6− 4.6× xAg

)
−

(
8.96 + 0.02xAg

)2

ω2 + iω
(

0.06 + 0.47xAg − 0.46x2
Ag

) . (4)

For t
R � 1, σabs for a spherical shell is given by the approximate expression [99]

σabs ≈
(

R2t
)[8π2√εW

λ

]
Im

((
2εG

2 − εWεG − εW
2)

3εGεW

)
∼ ξR2t. (5)
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This shows that σabs~ξR2t, in which ξ is a frequency-dependent function of the dielec-
tric constants of water and metal, and R2t are proportional to the volume of the metal in
the nanoshell.

Figure 9 shows σabs calculated from full-field finite-difference time-domain (FDTD)
electromagnetic simulations performed using numerical FDTD algorithms for cube-shaped
HGN (Figure 5) [101]. The shell geometry red-shifts λmax of the LSPR into the NIR window.
Increasing the edge length increases the magnitude of σabs as R2t, as suggested by the
simple Mie theory (Equation (5)) [45]. The sharper edges of the cuboids also increase the
adsorption cross section compared with the spherical geometry [45], while the gold–silver
alloy composition of the shells blue-shifts the σabs [45]. The experimental σabs (Figure 6) are
typically much broader than the calculated σabs in Figure 9. Figure 5B shows that there is
polydispersity in shape, size, and wall thickness of the synthesized HGN, while Figure 9
shows the sensitivity of the calculated σabs to small changes in the HGN geometry, which
allows for significant tunability of the optical properties. However, any polydispersity in
shape, size, and/or wall thickness broadens the experimental σabs, as seen in Figure 6.
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the adsorption cross section as ~R2t, as suggested by the analytic Mie theory (Equation (5)). Adapted
from [45], published by Wiley, 2018.

2.6. Localized Heating via HGN Absorption of Continuous NIR Light

There are two biological windows for NIR light: the first, from 650 to 900 nm (NIR-i)
and the second at 1000 to 1350 nm (NIR-ii). While the NIR-ii window may provide better
tissue transmission via lower scattering and lower background absorbance, it is difficult
to synthesize nanoshells that are responsive in the NIR-ii window using current synthetic
pathways. Figure 9 shows that moving the LSPR to 1000 nm or more would require large
nanoshells or small wall thicknesses, which would not penetrate tissues as well or be easily
coupled to liposomes. Therefore, the use of nanoshells in the NIR-ii window has not been
thoroughly studied.

Photothermal energy conversion using either continuous or pulsed laser irradiation
can be used to locally heat microscale volumes with plasmon-resonant gold nanoparticles
without heating the bulk of the solution. Heating with continuous laser irradiation is
commonly referred to as photothermal heating [73,102,103], and can be used to induce
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drug release from polymers [104–106], or localized hyperthermia to kill cancer or bacterial
cells [73,74,107–110], or to release drugs from temperature sensitive liposomes [32,33,53].
NIR heating of gold nanoshells has also been used to denature proteins used in “stitchless”
wound closure [111].

However, continuous laser irradiation of gold nanoparticles or gold/silica nanoshells
only generates small, steady-state temperature increases in the nanoparticles above the
average local solution temperature (∆T≈ 1–4 ◦C) [33]. The ratio of nanoparticle surface area
to volume leads to equilibration times of microseconds, so the nanoparticle temperature
when continuously irradiated with low power light is always close to the surroundings
temperature [32,33,53]. Hence, for continuous irradiation the nanoparticles act as a local
energy source for heating the bulk solution. The magnitude of the local heating depends
on the local nanoparticle concentration, the laser intensity, and the length of irradiation.
A uniform, elevated temperature distribution in a specific volume, such as a tumor, is
difficult to control due to the variable distribution of nanoparticles throughout the volume
as well as the often quite different thermal and transport properties of different tissues,
blood, and bone, as well as the natural convective losses due to blood and lymphatic
fluid flow. The temperature rise in off-target tissues must be limited to prevent thermal
damage as well as off-target drug release. However, under optimal conditions, the local
tissue temperature can be raised to 45–50 ◦C, sufficient to denature proteins and kill tumor
and other types of cells [112,113]. A recent clinical trial has shown that thermal ablation
of prostate cancer tumors is possible using continuous laser irradiation of silica–gold
nanoshells (Figure 7) [112]. Use of continuous, low power NIR-induced heating using gold
and other plasmon-resonant nanoparticles is reviewed in [114] but is not the focus here.

2.7. Localized Nanobubble Formation via HGN Adsorption of Pulsed NIR Light

The rate and power at which the NIR light is delivered to the gold nanoparticles
dictates the thermal and mechanical effects of NIR irradiation. Nanosecond and shorter
laser pulses can deliver optical energy to gold nanostructures faster than the thermal energy
can dissipate to the external surroundings [55,115–117], unlike the continuous low power
irradiation discussed in the previous section. The characteristic time for thermal dissipation

is τD ∼
ρCpR2

k ; ρCp is the volumetric heat capacity of gold (2.5 × 106 J·m−3·K−1), k is
the thermal conductivity of water (0.6 W·m−1·K−1), and R is the nanoparticle radius. For
5 ≤ R ≤ 50 nm, 100 ≤ τD ≤ 10,500 psec. This likely underestimates the characteristic time
because at the nanoscale, an energy mismatch of the vibrational modes at the metal–water
interface can limit heat transfer. Heat transfer may be further complicated by thiol-bound
PEGs or other ligands of various molecular weights. This leads to an interfacial resistance
to heat transfer that can increase τD [118]. For laser pulse lengths less than τD, the adsorbed
light energy is confined to heating the nanoparticle; hence, the temperature increase is
directly proportional to the light energy adsorbed (Equation (6)) [45,115]. The temperature
increase in the HGN can be sufficient to melt the hollow gold shape, causing a change in
the HGN shape, which in turn, alters the LSPR.

The absorption cross section is proportional to the metal shell volume, σabs
∼= ξR2t,

(Equation (5)), and the energy absorbed is Q = σabsF ∼= ξR2tF, in which F is the laser
fluence (energy/area). To generate a nanoscale bubble, the water must be superheated to
overcome the effects of the surface tension, γ, at the bubble–water interface. The required
superheating is significant: to nucleate a 10 nm radius bubble requires superheating water
to at least 272 ◦C [119]. However, at this temperature, water has essentially reached its
spinodal temperature, TS = 277 ◦C, at which the liquid becomes unstable and spontaneously
converts to the vapor phase with no heat of vaporization [117]. Recent theoretical simula-
tions suggest that the pressure increase inside rapidly heated bubbles reaches the critical
pressure as well [118].

Hence, to generate a nanobubble, the shell must be heated well above 277 ◦C. Rapid
conversion of the optical energy to heat causes the gold shell temperature to increase to
TG, determined by the light intensity and the HGN adsorption cross section (Figure 9).
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Subsequently, heat begins to flow to the water in the core of the nanoshell, initially at
T0, causing the water temperature to rise and the shell temperature to fall until they are
equalized. Hence the approximate maximum temperature that can be reached by the water
in the core is

Tmax =

( t
R
)
3ρCpTG + ρWCpW T0( t
R
)
3ρCp + ρWCpW

(6)

where ρWCpW (4.2 J·cm−3·K−1) is the volumetric heat capacity of water. The maximum
water temperature depends on t/R (Figure 6) [99]. For R = 10 nm and t = 2 nm, for Tmax
to reach the spinodal temperature of 277 ◦C, the gold–silver alloy shell must be heated to
~1000 ◦C, which is close to the melting point of ~1050 ◦C. The nanoshell also loses heat to
the surroundings, which means the metal shell must reach an even higher temperature.
TEM images (Figure 10, top) show that the hollow gold structure collapses following
nanobubble formation, confirming the intense temperature increase. The optical spectra
(Figure 10, bottom) shows that the LSPR peak at ~700 nm decreases with increasing irradi-
ation intensity, while the LSPR for solid, spherical silver–gold nanoparticles at ~450 nm
increases, consistent with reaching high enough temperatures that cause the hollow shells
to melt into solid spheres [45,55].
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Figure 10. (top) TEM images of HGN following 0, 350, and 700 µJ pulse energy irradiation. The
HGN evolve from hollow spherical shells to solid spheres following irradiation sufficient to induce
nanobubbles. Adapted from [55], published by Wiley, 2008. (bottom) Optical spectra of HGN
showing λmax of the LSPR peak at 700 nm decreases with increasing laser irradiation until this peak
disappears well above the threshold laser intensity to induce nanobubble formation. A second LSPR
grows in at λmax ~ 450 nm with increasing laser intensity, corresponding to the plasmon resonance of
solid silver–gold alloy spheres. Adapted from [45], published by Wiley, 2018.

Detecting nanobubble formation can be accomplished by monitoring the acoustic
signature or the scattering of light from the bubbles. Figure 11A shows the photo-acoustic
signal of pressure fluctuations in HGN solutions triggered by a NIR laser pulse at time
zero [51]. The pressure fluctuations in the solution die out in about 400 µs, consistent with
the formation of rapidly expanding and collapsing nanobubbles. A more quantitative
method of detecting the nanobubbles can be achieved by measuring the scatter of a probe
laser by the large refractive index difference between liquid and vapor following an NIR
light pulse. A continuous probe laser is aligned collinearly with the NIR pulsed laser,
and the transmitted light is directed onto a high speed photodetector and recorded by
an oscilloscope (Figure 11B) [120]. Bubble generation results in less light reaching the
photodetector from the probe laser due to scattering from the refractive index differences
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between the nanobubbles and the surrounding liquid. Fast oscilloscope recordings of the
photodetector signal (Figure 11B) show a dip in the photodiode signal as nanobubbles
form. The magnitude of the dip is proportional to the size and quantity of nanobubbles
formed [8,45,48,85,121]. Figure 11B shows that for 20 nm HGN irradiated at 800 nm (the
LSPR peak for these HGN was λmax ~ 780 nm), bubbles form for fluences ≥ 8 mJ/cm2,
(red trace) and the amount of light scattered increases with increasing laser fluence, con-
sistent with larger and longer lasting nanobubbles [120]. A fluence of ~3 mJ/cm2 was not
sufficient to induce bubbles, as indicated by the flat trace (black) of the optical signal. The
bubble traces are asymmetric; the decay of the nanobubbles is slower than the nanobubble
generation [116]. The extended tail of the trace is likely due to thermal disturbance of
the liquid refractive index following nanobubble decay [62] or to generation of secondary
bubbles at higher fluences.
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Figure 11. (A) Hydrophone voltage variations corresponding to pressure changes in a solution of
HGN following irradiation with pulsed NIR light. The pressure variations correspond to the forma-
tion and collapse of nanobubbles, similar to the pressure variations induced by cavitation bubbles
during sonication. Figure adapted from [51]. (B) The decrease in photodiode signal of a continuous
laser probe beam is due to the scattering from the nanobubbles and increases with increasing laser
fluence consistent with larger or more numerous nanobubbles. A fluence of ~3 mJ/cm2 is not suffi-
cient to induce nanobubbles, and there is no change in the probe signal (black trace). Higher fluences
show the decrease in signal with a threshold fluence of ~8 mJ/cm2 for nanobubble formation (red
trace). Adapted from [45], published by Wiley, 2018. (C) Optical microscope image of fluorescently
labelled liposome tethered to a glass coverslip. (D) Ten nanoseconds after pulsed NIR laser showing
the formation of a liquid–vapor jet due to the rapid expansion and collapse of the nanobubble. The
jet induces mechanical stress to the liposome membrane as in sonication, as in Figure 2. Bar is 10 µm.
(E) Fluorescent dye is released from the liposome in C after 10 ms (arrow). Adapted with permission
from [8], published by Elsevier, 2010.

Figure 11C is an optical micrograph of a liposome containing carboxyfluorescein
decorated with HGN adsorbed to a glass cover slip. Figure 11D shows the same liposome
10 nsec after pulsed NIR irradiation. The image shows the formation of an asymmetric
liquid–vapor jet visualized by the variations in refractive index around the liposome as
shown schematically in Figure 2 [8]. The mechanical forces generated by these liquid–vapor
jets are responsible for lysing liposomes or cell membranes, not the temperature increase in
the nanoparticles [122]. Figure 11E shows the release of a fluorescent dye from the liposome
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interior 10 ms after irradiation. Even at the highest fluences needed for liposome con-
tents release, the measured temperature change in the irradiated suspensions was <0.5 ◦C.
Nanobubble generation is not due to any changes in the average suspension temperature,
which are minimal and incapable of generating a vapor. The process of liposome, endo-
some, and cell membrane rupture and permeation is due to the mechanical deformations
induced by the collapse of the nanobubbles, similar to the changes in liposomes induced
by sonication [122], as shown schematically in Figure 2.

The amount of energy transferred to the HGN is maximized when the laser wavelength
is matched to λmax of the HGN, as shown in Figure 12. Three different 30 nm diameter
HGN were synthesized to have different λmax of 700, 800, and 900 nm (solid lines in
Figure 12). The threshold fluence to generate nanobubbles was measured as a function
of laser wavelength for the different HGN using the optical scattering method shown in
Figure 11B. Figure 12 shows that the minimum fluence to initiate nanobubbles corresponds
to the laser frequency that coincides with λmax and that the threshold fluence increases as
the laser wavelength moves off resonance.
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2.8. Decreasing Threshold Fluence by Adding Volatile Components to HGN

Shin et al. showed that the hollow cavity of the HGN can be filled with mixtures of
perfluoroheptane in tetradecanol (PFC-HGN) to decrease the threshold fluence necessary
for nanobubble formation by 50–60% [85]. The spinodal temperature for perfluoroheptane
is ~400–430 K, in comparison with that of water of 550 K [117]. The volumetric heat
capacity of perfluoroheptane, ρMCpM = 1.9 × 106 J·m−3·K−1 [123] is 55% lower than
water, ρMCpM = 4.2 × 106 J·m−3·K−1. Equation (6) shows that to reach the lower spinodal
temperature of perfluoroheptane, the nanoshell only needs to be heat to about 300 ◦C
compared with the ~1000 ◦C needed to induce a nanobubble (Equation (6)). This suggests
that the threshold fluence for perfluoroheptane nanobubble formation should be about
30–40% that of water nanobubbles, which is consistent with the observed reduction in
nanobubble thresholds of ~60%. Other volatile substances might be encapsulated within
the HGN or suspended in liposomes or other carriers to reduce the needed flux. For a
given flux, the PFC-HGN generate larger nanobubbles than the HGN, and hence rupture
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liposomes more efficiently to release more of their contents at a given laser fluence [85].
This may be important for in vivo use where the NIR light is being attenuated by thicker
tissue sections [47].

3. Liposome Carriers
3.1. Conventional Liposomes by Thin Film Hydration and Extrusion

Almost any liposome can be coupled to gold nanostructures. “Conventional” lipo-
somes can be prepared by thin-film hydration, with the desired buffer containing any small
molecule dyes or bioactive material to be encapsulated [45,48,124,125]. The desired lipids,
cholesterol, PEG-lipids, or PEG-thiol lipids to make up the liposome membrane are mixed
in chloroform, and the solvent is evaporated under vacuum overnight. If desired, lipophilic
dyes can be added to the lipids in chloroform to label the liposome bilayers. After the
solvent is completely removed, the dried lipids are hydrated for 30–60 min at a temperature
10–20 ◦C above the highest phase transition temperature of the lipids (for dipalmitoylphos-
phatidylcholine (DPPC), the phase transition temperature is ~45 ◦C [45,48,125]). The
multilamellar aggregates produced by hydration are converted to unilamellar liposomes
by extrusion to the desired final size. Prior to extrusion, five or more freeze–thaw cycles
(freezing in liquid N2 and increasing the temperature to 60 ◦C) can be carried out if the
extrusion does not produce the desired unilamellar liposomes.

To tether HGN to the exterior of the liposome membrane, HGN are mixed with
liposomes with thiol-PEG in the membrane overnight at room temperature at relative
concentrations to provide 1–10 HGN per liposome. A single HGN on a liposome is sufficient
for generating nanobubbles and lysing the liposome. Untethered HGN and unencapsulated
cargo materials can be removed by size-exclusion chromatography. The mean size of the
liposomes depends on the filter size used during extrusion, and particle tracking and cryo-
TEM imaging show that the HGN–liposomes are stable against aggregation or degradation
over the course of 2 months [48].

3.2. Interdigitation-Fusion Liposomes

To encapsulate HGN or other colloidal sized objects within a liposome, the inter-
digitated-fusion method can be used. DPPC and other saturated phospholipids form
an interdigitated phase on addition of ethanol at temperatures below the main phase
transition [124,126]. The bilayers in the interdigitated phase are quite rigid and form flat
sheets below the main transition temperature but soften and close into liposomes when
the temperature is increased above the main transition temperature [124,127]. First, small
unilamellar liposomes of DPPC are prepared by the conventional hydration-extrusion
process outlined above. The DPPC (or modified DPPC) liposomes are transformed into
interdigitated bilayer sheets by dropwise addition of ethanol (3 molar net ethanol concentra-
tion) to the liposome suspension at room temperature [124,127]. The interdigitated sheets
are centrifuged at low speed to pellet the sheets and then washed with buffer to remove the
ethanol. Following the final wash step, the desired buffer containing any small molecule
dyes or bioactive material to be encapsulated is added along with the desired concentration
of HGN or other nanoparticles [32,33,126,127]. The solution is held at 55 ◦C for 20 min to
melt the interdigitated phase into the Lα or liquid crystalline phase. The bilayers soften,
which allows the bilayers to close up into liposomes and encapsulate any nanoparticles,
dyes, macromolecules, or other smaller vesicles [125,127]. Liposomes can be separated
from unencapsulated nanoparticles by repeated slow-speed centrifugation followed by ex-
change of the supernatant with fresh buffer. To sterically stabilize the liposomes, a micellar
solution of DSPE-PEG of various molecular weights or thiolated DSPE-PEG is added to
the liposome solution at 5 mol% of the total liposome lipid concentration at 55 ◦C, and the
mixture is allowed to equilibrate for 24 h. The DSPE-PEG inserts itself into the bilayer of the
liposomes [32]. Excess DSPE-PEG can be removed by centrifugation and repeated washing
with buffer. TEM images of the interdigitated-fusion liposomes are shown in Figure 13.
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Figure 13. Cryo-TEM images of interdigitated-fusion DPPC liposomes (A) mixed with HGN, (B) teth-
ered to the HGN via a lipid-PEG-thiol linker, or (C) encapsulated within the liposome [51,52].
Adapted from [51,52], published by ACS, 2008 and Elsevier, 2009.

3.3. Laser Triggering of Contents Release from Liposomes and Other Carriers

The first demonstration of rapid release from dipalmitoylphosphatidylcholine (DPPC)
liposome carriers was by Wu et al. [51]. The HGN were encapsulated within the liposome
using the interdigitation-fusion process, tethered to the liposomes using a lipid-PEG-
thiol linker, or mixed as a liposome–HGN suspension (Figure 13) [51]. The liposomes
contained carboxyfluorescein (CF) at a sufficient concentration that CF’s fluorescence was
self-quenched prior to release from the liposomes. Disruption of the three sets of liposomes
was triggered by irradiation with NIR pulses (λ0 = 800 nm, 130 fs duration, 1 kHz repetition
rate, energy up to 670 µJ/pulse). Irradiation with the pulsed-NIR laser above the threshold
power triggered a near instantaneous increase in fluorescence in the liposome solutions
containing HGNs but had no effect on the control solutions of liposomes with CF but no
HGNs, or on a mixture of HGNs and CF, as shown in Table 1 [52]. Fractional release is taken
relative to the solution concentration measured following complete lysis of the liposomes
with Triton-X:

% Release =
Ir − I0

IT − I0
× 100% (7)

in which Ir is the measured signal intensity following NIR irradiation, I0 is the back-
ground signal intensity, and IT is the maximum signal intensity following liposome lysis by
Triton X-100.

Table 1. Percentage (%) release from liposomes.

Laser Solution Release (%)

Pulsed CF + HGN 1 ± 2
Pulsed Liposomes with CF, no HGN 0 ± 2
Pulsed Liposomes with CF mixed with HG 28 ± 2
Pulsed HGN and CF encapsulated in liposomes 71 ± 1
Pulsed HGN tethered to liposome with CF 93 ± 2

Continuous HGN tethered to liposome with CF 0 ± 2

Table 1 shows that proximity to the liposome membrane determines the fractional
release of CF following irradiation. Placing the HGN directly in contact with the liposome
membrane via tethering led to near complete disruption of the liposomes. Encapsulating
the liposomes also showed a high degree of disruption and CF release. However, simply
mixing the liposomes with HGN led to a lower level of CF release. These results are
consistent with liposome rupture by the mechanical forces of nanobubble expansion and
collapse, as shown in Figures 2 and 11.

Figure 14 shows the release of calcein dye from liposomes coated with gold nanopar-
ticles grown on the liposome surface as in Figure 8 [46,47,128]. A drop of calcein-loaded
gold-coated liposome suspension was placed on a glass slide, covered by a cover slide, and
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sealed. The samples were placed onto a microscope (Olympus IX73) stage and irradiated
with a single 740 nm wavelength (matched to the λmax of the gold-coated liposomes) pi-
cosecond laser pulse of fluence 40 mJ/cm2. Prior to irradiation the calcein fluorescence was
low due to the self-quenching properties of calcein at high concentration. Following the
laser pulse, the fluorescence intensity increased within 3 ms as the calcein was released
from the liposomes. At about 90 ms, the calcein fluorescence reached a maximum and
then decreased due to diffusion and dilution. This result showed that only a single laser
pulse was sufficient for inducing nanobubble formation, liposome rupture, and contents
release [47].
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Figure 14. Fluorescence images of release of calcein dye from a suspension of gold-coated liposomes
following a single 50 µm diameter light pulse. Prior to irradiation, the calcein fluorescence is
quenched in the liposomes. Three microseconds after irradiation, the fluorescence intensity increases
and reaches a maximum at ninety seconds. The fluorescence gradually decreases due to dilution.
Adapted from [47], published by Wiley, 2020.

3.4. In Vitro Release of Bioactive Compounds from Liposomes with NIR light

Bioactive molecules such as calcium, inositol 1,4,5-trisphosphate (IP3), adenosine
triphosphate (ATP), and other small, water-soluble “messenger” molecules induce a num-
ber of physiological functions. To investigate these processes requires the delivery of a pulse
of a particular biologically active molecule at a defined time and place [129–131], which led
to the synthesis of a variety of photoactivated “caged compounds”. For example, in “caged
ATP” [132], the ATP is rendered inactive by covalently bonding a photolabile protecting
group to prevent the ATP from reacting. To uncage the bioactive molecule, a pulse of UV
light is applied to cleave the covalent bond connecting the protecting group, rendering
the molecule biologically active. A variety of neurotransmitters, peptides, and enzymes
have been “caged” in a similar fashion by covalent linkages to ultraviolet light-triggered
chromophores [129]. The major limitation of these caged compounds is that UV light is
rapidly adsorbed by tissue and cells over a few microns and that the UV light can be toxic
and degrade proteins and DNA.

To address these limitations, Webb and Tsien [133] developed new chromophores
that could be triggered using two-photon excitation with near-infrared light to uncage
compounds. However, covalent bonds still require the equivalent energy of a UV photon
to break and uncage the ATP, enzyme, etc. To achieve the equivalent energy to break the
covalent bond attaching the photolabile protective group from the bioactive molecule,
two-photon excitation requires the simultaneous absorption of two NIR photons of approx-
imately half the energy of the UV photon. This is only possible at the focal point of the
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two-photon microscope, where the photon density is at a maximum, although still with
relatively low probability. The commercialization of two-photon microscopes [134] makes
delivering NIR light with cell level resolution accessible to most labs [61,135,136]. The
major practical drawback is that each caged compound requires a separate synthesis with
an appropriate photolabile caging group tuned to the NIR window [129]. Inorganic ions
such as calcium or magnesium cannot be caged but can be trapped in photolabile chelators
such as BAPTA, EDTA, and EGTA. Photolysis decreases the chelator ion affinity, releasing
some fraction of the chelated ion [137,138].

However, NIR-triggered gold liposomes can deliver almost any water-soluble bioac-
tive molecules, including calcium, ATP, and IP3, or water-soluble fluorescent dyes such
as calcein or carboxyfluorescein [45–48]. The liposome carrier is universal and sequesters
almost any water-soluble cargo of interest, protects that cargo against degradation, and
minimizes premature release. Liposome encapsulated ATP is 85% active compared after
25 min of exposure to ATPase; free ATP is completely degraded [139]. Ion and polar
molecule release through liposome membranes is slow; calcium can be held in liposomes
for over a month without detectable leakage [48].

Liposomes, siRNA [59,60], or functional proteins [61,66,69] can be chemically tethered
to HGN and successfully delivered to the cell cytoplasm via endocytosis. Gold-coated
liposomes, HGN-tethered liposomes, HGN, and other gold nanoparticles have a negligible
effect on cell viability [32,33,47,58–61,66]. Figure 15 shows calcein containing gold-coated
liposomes taken up by endocytosis into Raw 264.7 macrophage model cells. The cells were
seeded and cultured in DMEM medium supplemented with 10% fetal bovine serum for
24 h. The cells were then washed with PBS and fresh medium that contained calcein-loaded
gold-coated liposomes was added. For the images in Figure 15, 3 h of incubation were
allowed for endocytosis of the liposomes. The liposomes co-localized with late endosomes
and lysosomes, as shown by the merged fluorescence signals (Figure 15). The punctate
distribution of the calcein fluorescence prior to NIR-triggered release is consistent with
localization in the endosomes [58].
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Figure 15. Fluorescence intensity resulting from the intracellular distribution of calcein containing
gold-coated liposomes following incubation with RAW 264.7 model macrophage cells. The punctate
nature of the calcein fluorescence is consistent with localization of the liposomes in endosomes. This
is confirmed by labeling late endosomes and lysosomes with LysoTracker Red DND-99. The merged
images shows that the calcein and LysoTracker fluorescence co-localize, confirming that the liposomes
are located in the endosomes. Adapted from [47], published by Wiley, 2020.

However, functional molecules can only have an effect if the liposome contents can be
released from the endosomes into the cytoplasm. Endosome escape is the main bottleneck
of all non-viral vectors; recent reports suggest that only 0.01–2% of endocytosed non-viral
vectors reach the cytoplasm [140–143]. The less efficient the endosome escape, the higher
the carrier and cargo dose that is required, which may increase toxicity [142,144]. To escape
this “endosome abyss” [143], NIR light-generated nanobubbles can be used to mechanically
rupture endosomes and endocytosed liposomes to release their contents [45,51,52,55,85],
releasing siRNA [58–60] complex functional proteins [61,66,69] and small molecules from
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liposomes to the cytoplasm [46,47,51,52,120]. Figure 16 shows the NIR light-triggered
release of calcein from liposomes endocytosed into RAW 264.7 cells (Figure 15) with a
single laser light pulse. The green fluorescence of the calcein spreads throughout the cell
over a few seconds, eclipsing the blue fluorescence in the cell nucleus (Figure 15). The
nanobubbles induced by the NIR light pulse ruptured not only the liposomes containing
the calcein but also the endosomes, resulting in the release of calcein to the cytoplasm and
the spread of calcein fluorescence throughout the cell. For the proper choice of fluence, no
toxicity is observed, although higher fluences can be used to lyse the cells.
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NIR-triggered release can be patterned at high resolution using the NIR light from a two-
photon microscope [58,61]. 

Figure 16. Calcein fluorescence intensity distribution following a single NIR laser pulse. Gold-
coated liposomes encapsulating calcein were endocytosed (Figure 15) into RAW 264.7 cells and the
endosomes and liposomes ruptured by a single NIR light pulse. The rapid spreading of the calcein
dye is indicative of efficient endosome escape. The cells show minimal toxicity for the appropriate
NIR fluence, although higher fluences can be used to kill the cells. Bar is 10 µm, and the magnification
is the same in all images. Adapted from [47], published by Wiley, 2020.

Figure 17 shows that rapid endosome escape via NIR light pulses can release sec-
ond messenger molecules and trigger complex intracellular functions. Inositol 1,4,5-
trisphosphate (IP3) is a second messenger for intracellular calcium ion signaling [47].
IP3 was encapsulated within gold-coated liposomes and incubated with RAW 264.7 cells,
as in Figure 15, leading to endocytosis. IP3 in the cytosol binds to a receptor located on
the endoplasmic reticulum membrane, which causes calcium release from the endoplas-
mic reticulum into the cytosol [145]. A single pulse of NIR light releases the IP3 from
the liposomes and endosomes and causes a transient increase in the intracellular calcium
concentration, as shown by the increase in Fluo-4 fluorescence.
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somes trapped in endosomes. The blue fluorescence signal within each cell increases up to about 30 
sec, indicating release of calcium from the ER . Bar is 10 µm, and the magnification is the same in all 
images. Adapted from [46,47], published by Wiley, 2017 and Wiley, 2020. 
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Figure 17. (Left): Schematic of gold-coated liposomes containing IP3 entering the cell via endocytosis.
A single laser pulse induces vapor nanobubbles that rupture the liposome- and endosome-releasing
IP3 to the cytoplasm. The IP3 opens calcium channels, thereby increasing the calcium concentration in
the cytoplasm detected by the Fluo-4 calcium indicator. (Right): Time sequence of Fluo-4 fluorescence
in RAW 264.7 cells following NIR light-induced rupture of IP3-containing liposomes trapped in
endosomes. The blue fluorescence signal within each cell increases up to about 30 sec, indicating
release of calcium from the ER. Bar is 10 µm, and the magnification is the same in all images. Adapted
from [46,47], published by Wiley, 2017 and Wiley, 2020.

Nanobubble-triggered endosome escape makes siRNA delivery possible at an order
of magnitude lower dose than lipofectamine [60,146] and can be used to pattern 3D human
embryonic stem cell spheroids [136]. Two-photon microscopes can be used to deliver the
NIR light pulses with sub-cellular resolution [61], or cells and liposomes can be triggered in
microfluidic flow using stand-alone lasers [66]. Functional, high molecular weight proteins
such as Cre Recombinase or green fluorescent protein can be delivered via plasmonic gold
nanoparticles without protein degradation [61,66,69]. Following endosome rupture, gold
nanoparticles are rapidly passivated by endogenous glutathione bonding via the cysteine
thiol [147] and are then eliminated from the cell. In addition to enhancing delivery, NIR-
triggered release can be patterned at high resolution using the NIR light from a two-photon
microscope [58,61].

3.5. Differential Release from Different Liposome/HGN Combinations

As shown in Figure 12, the threshold fluence for nanobubble generation depends on the
plasmon resonance wavelength, λmax relative to the laser wavelength, and the magnitude
of the absorption cross section, σabs. The threshold also depends on the HGN size and/or
shell thicknesses, which determine the maximum temperature that the nanoshell and the
liquid trapped in the hollow core might reach (Equation (6)) (Figure 9). The liposome
membrane composition can also be adjusted to maximize [48] or minimize [47] the lysis
tension and mechanical integrity of the liposome. As a result, by tethering HGN of various
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sizes and λmax to liposomes of different composition, it is possible to release one set of
liposome contents with light of a given wavelength at a given fluence, then release the
contents of a second batch of liposomes at a different wavelength and/or fluence [48]. This
“fluence window” is the difference in laser fluence needed to release the contents from one
type of HGN–liposome without inducing contents release from a second type of HGN–
liposome. Figure 18A shows an ~50 mJ/cm2 fluence window for calcium release from
liposomes following NIR light for liposomes with 10 nm vs. 35 nm cubic HGN (Figure 18A)
with different λmax and σabs. Figure 18B shows that liposomes tethered to identical HGN
but made from lower lysis tension DPPC vs. higher lysis tension mixtures of DPPC and
cholesterol can generate a ~20 mJ/cm2 fluence window.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure 18. (A) Liposomes tethered to different HGN with different light adsorption properties in-
duce calcium release at different laser fluences when irradiated with 800 nm NIR light. This creates 
a “fluence window” over which one liposome–HGN releases its contents while the second remains 
intact. (B) A fluence window is opened between liposomes with identical HGN but different lipo-
some membrane compositions. Adding cholesterol to DPPC liposomes increases the membrane ly-
sis tension, which increases the laser fluence needed to release calcium. Adapted from [48], pub-
lished by Nature, 2020. 

Controlling ATP to Calcium Ratio by Triggering Mixed Liposomes 
With fluence windows made by controlling HGN size, 𝜆  and 𝜎 , irradiation 

wavelength, and liposome composition, the sequence or time release of two or more pop-
ulations of liposome–HGNs can be achieved in the same solution. Due to the universal 
nature of liposome contents release, any small molecule cargo release only depends on 
the properties of the liposomes and/or the tethered HGN and the irradiating wavelength. 
The order of contents release can be inverted by simply changing the HGN–liposome car-
riers, showing the flexibility of the HGN–liposome delivery platform, especially in com-
parison with traditional caged compounds. 

Figure 19A shows the flexibility of HGN–liposome release. Calcium-containing lipo-
somes were tethered to 10 nm HGN, while ATP containing liposomes were tethered to 20 
nm HGN, 26 nm HGN, 30 nm HGN, 35 nm HGN, and 40 nm HGN. The 𝜆  of all the 
HGN were 800 nm, and 800 nm NIR pulses at 42 mJ/cm2 were used to trigger contents 
release. A mixture was made from equal volumes of calcium-containing HGN–liposomes 
and ATP containing HGN–liposomes. The 10 nm HGN calcium-containing liposomes had 
a constant ~90% calcium release in all mixtures. However, as shown in Figure 19A, ATP 
release decreased significantly with increasing HGN size—for 40 nm HGN, the ATP re-
lease dropped to 0%. This provided an increase in the calcium to ATP release ratio of 5, 
12, 22, 58, and ∞  for 20 nm HGN, 26 nm HGN, 30 nm HGN, 35 nm HGN, and 40 nm 
HGN, respectively (Figure 19B) [48]. 

10 nm HGN

35 nm HGN

B
io

m
ol

ec
ul

e 
R

el
ea

se
 (%

)

50

60

40

30

20

10

0
0 10 20 30 40 50 60 70 80

Laser power intensity [mJ/cm2]

No Cholesterol

40% Cholesterol

Fluence 
Window

A

B

Figure 18. (A) Liposomes tethered to different HGN with different light adsorption properties induce
calcium release at different laser fluences when irradiated with 800 nm NIR light. This creates a
“fluence window” over which one liposome–HGN releases its contents while the second remains
intact. (B) A fluence window is opened between liposomes with identical HGN but different liposome
membrane compositions. Adding cholesterol to DPPC liposomes increases the membrane lysis
tension, which increases the laser fluence needed to release calcium. Adapted from [48], published
by Nature, 2020.

Controlling ATP to Calcium Ratio by Triggering Mixed Liposomes

With fluence windows made by controlling HGN size, λmax and σabs, irradiation
wavelength, and liposome composition, the sequence or time release of two or more
populations of liposome–HGNs can be achieved in the same solution. Due to the universal
nature of liposome contents release, any small molecule cargo release only depends on the
properties of the liposomes and/or the tethered HGN and the irradiating wavelength. The
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order of contents release can be inverted by simply changing the HGN–liposome carriers,
showing the flexibility of the HGN–liposome delivery platform, especially in comparison
with traditional caged compounds.

Figure 19A shows the flexibility of HGN–liposome release. Calcium-containing lipo-
somes were tethered to 10 nm HGN, while ATP containing liposomes were tethered to
20 nm HGN, 26 nm HGN, 30 nm HGN, 35 nm HGN, and 40 nm HGN. The λmax of all the
HGN were 800 nm, and 800 nm NIR pulses at 42 mJ/cm2 were used to trigger contents
release. A mixture was made from equal volumes of calcium-containing HGN–liposomes
and ATP containing HGN–liposomes. The 10 nm HGN calcium-containing liposomes had
a constant ~90% calcium release in all mixtures. However, as shown in Figure 19A, ATP
release decreased significantly with increasing HGN size—for 40 nm HGN, the ATP release
dropped to 0%. This provided an increase in the calcium to ATP release ratio of 5, 12, 22,
58, and ∞ for 20 nm HGN, 26 nm HGN, 30 nm HGN, 35 nm HGN, and 40 nm HGN,
respectively (Figure 19B) [48].
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Figure 20A shows a co-culture of normal (NOM9) and squamous cell carcinoma (HN31 
arrows) following 24 h of incubation with gold nanoshells conjugated to panitumumab 
antibodies targeting the HN31 cancer cells that overexpress epidermal growth factor re-
ceptor (EGFR). The antibody-enhanced endocytosis occurred primarily in the HN31 cells, 
resulting in nanoparticle clusters localized in the endosomes. These NP clusters in anti-
body-targeted cells can nucleate vapor nanobubbles at lower fluence than in normal cells 
that may have endocytosed individual gold nanoparticles or no nanoparticles. The cells 
within the brown circles in Figure 20A were irradiated with a 260 µm diameter laser beam 
of wavelength 820 nm at a fluence of 40 mJ/cm2. Vapor nanobubbles resulting in cell death 
occurred primarily in the tumor cells targeted by the antibody, as indicated by the dark 
blue staining with Trypan Blue. The difference in threshold fluence between the clustered 
gold nanoparticles and isolated nanoparticles amplifies the targeting of the tumor cells. 
Most normal cells survived this treatment, even those adjacent to cancer cells in which 
nanobubbles were generated, showing the extremely localized effects of nanobubbles on 
cell integrity. 

Figure 19. (A) Liposomes containing calcium were tethered to 10 nm HGN and mixed with equal
volumes of liposomes with 20 nm, 26 nm, 30 nm, 35 nm, and 40 nm HGN encapsulating ATP. All
HGN had an identical λmax of 800 nm. The mixed liposomes were triggered with single pulses of
800 nm NIR light at a constant fluence of 42 mJ/cm2. This fluence was sufficient to induce ~90%
calcium release. However, the fraction of ATP released from otherwise identical liposomes decreased
with increasing HGN size, dropping to 0 for 40 nm HGN. (B) This gives a release ratio of calcium
to ATP that could be varied from 5:1 for the 20 nm HGN to infinity for the 40 nm HGN. Adapted
from [48], published by Nature, 2020. By controlling the liposome and HGN properties, any ratio of
liposome contents can be released from a mixture of liposomes simultaneously with a single laser
pulse. Adapted from [48], published by Nature, 2020.

3.6. Co-Delivery of Antibody Labelled Liposomes and Gold Nanoparticles

Superficial tumors such as oral cavity squamous cell carcinoma (OCSCC) are partic-
ularly accessible for topical application of gold nanoparticles and liposomal drugs with
targeting and activation by near-infrared light. Both gold nanoparticles and liposomes can
be selectively targeted to tumor cells using antibodies to overexpressed surface ligands.
Figure 20A shows a co-culture of normal (NOM9) and squamous cell carcinoma (HN31
arrows) following 24 h of incubation with gold nanoshells conjugated to panitumumab an-
tibodies targeting the HN31 cancer cells that overexpress epidermal growth factor receptor
(EGFR). The antibody-enhanced endocytosis occurred primarily in the HN31 cells, resulting
in nanoparticle clusters localized in the endosomes. These NP clusters in antibody-targeted
cells can nucleate vapor nanobubbles at lower fluence than in normal cells that may have
endocytosed individual gold nanoparticles or no nanoparticles. The cells within the brown
circles in Figure 20A were irradiated with a 260 µm diameter laser beam of wavelength
820 nm at a fluence of 40 mJ/cm2. Vapor nanobubbles resulting in cell death occurred
primarily in the tumor cells targeted by the antibody, as indicated by the dark blue staining
with Trypan Blue. The difference in threshold fluence between the clustered gold nanopar-
ticles and isolated nanoparticles amplifies the targeting of the tumor cells. Most normal
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cells survived this treatment, even those adjacent to cancer cells in which nanobubbles
were generated, showing the extremely localized effects of nanobubbles on cell integrity.
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endocytosed antibody-labelled HGN increased the death level for cancer cells by 25 times for cis-
platin, 6 times for doxorubicin, and 33 times for Doxil, while the death level remained low among 
normal cells (large circles). Near 100% cancer cell death was achieved at 10-fold reduced drug con-
centrations. Adapted from [119], published by Oxford, 1989. 
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level for cancer cells increased by 25 times for cisplatin, 6 times for doxorubicin, and 33 
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cell death was achieved at 10-fold reduced drug concentrations (Figure 20B); similar cell 
death levels for the drugs alone required an order of magnitude higher drug dose. Re-
duced drug doses together with a lower laser fluence required to initiate effective PNBs 
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Lukianova-Hleb et al. [64,65] used this strategy for intra-operative and preventive 
treatment of head and neck squamous cell carcinoma in mouse models. Prior to surgical 
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Figure 20. (A) Before: Bright-field optical microscopy images of a co-culture of normal (NOM9)
and squamous cell carcinoma cells (HN31, green arrows) incubated with gold nanoparticles labeled
with EFGR antibodies. After: A single laser pulse (70 psec, 820 nm, 40 mJ cm−2) induced vapor
nanobubbles in the HN31 cells without damaging the surrounding normal cells. The dead HN31 cells
were stained with Trypan Blue (blue—dead cells, white—live cells). (B) Cell death level among cancer
(solid lines) and normal (dotted lines) cells measured after 72 h of continuous free doxorubicin (blue),
free cisplatin (orange), and liposome-encapsulated doxorubicin (Doxil, purple) exposure as a function
of drug concentration. HN31 cells are drug-resistant; cancer cell death levels were lower than normal
cells at all drug concentrations. NIR light-induced nanobubble formation induced by endocytosed
antibody-labelled HGN increased the death level for cancer cells by 25 times for cisplatin, 6 times for
doxorubicin, and 33 times for Doxil, while the death level remained low among normal cells (large
circles). Near 100% cancer cell death was achieved at 10-fold reduced drug concentrations. Adapted
from [119], published by Oxford, 1989.

Figure 20B shows the effects of combining chemotherapy agents with NIR light-
induced nanobubbles. Free cisplatin and doxorubicin and liposome-encapsulated doxoru-
bicin (Doxil) were added to the co-cultures in (A) prior to triggering nanobubble generation
with NIR light. Figure 20B shows the death level among cancer and normal cells measured
after 72 h of continuous drug exposure as a function of drug concentration. HN31 cells are
drug-resistant; cancer cell death levels (solid lines) were lower than normal cells (dotted
lines) at all drug concentrations. However, following NIR light-induced nanobubble forma-
tion, compared with the drugs or with nanobubbles alone, the death level for cancer cells
increased by 25 times for cisplatin, 6 times for doxorubicin, and 33 times for Doxil, while the
death level remained low among normal cells. Near 100% cancer cell death was achieved
at 10-fold reduced drug concentrations (Figure 20B); similar cell death levels for the drugs
alone required an order of magnitude higher drug dose. Reduced drug doses together
with a lower laser fluence required to initiate effective PNBs in cancer cells resulted in a
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significant reduction in non-specific toxicity for the combination treatment (large circles in
Figure 20B).

Lukianova-Hleb et al. [64,65] used this strategy for intra-operative and preventive
treatment of head and neck squamous cell carcinoma in mouse models. Prior to surgical re-
section, gold nanoparticles and liposome-encapsulated chemotherapeutics are administered
locally or systemically. Both gold nanoparticles and liposomes have attached antibodies to
recognize ligands overexpressed on the tumors. This, combined with the enhanced perme-
ation and retention effect, allows both the nanoparticles and chemotherapeutic liposomes to
accumulate preferentially in the tumor. Following surgical resection of the bulk tumor, the
tumor margins were exposed to NIR laser pulses via an endoscope. As shown in Figure 20,
the laser pulses generated nanobubbles that would preferentially destroy any residual
cancer cells at the tumor margins. The laser treatment could be followed up with targeted
X-rays that are also enhanced by interaction with the gold nanoparticles in the tumor cells.
Local recurrence after 2–4 weeks was 100% for surgery alone, while surgery accompanied
by NIR-triggered nanobubble release of chemotherapeutics and X-ray therapy eliminated
tumor recurrence [64,65].

4. Summary

HGN–liposomes or gold-coated liposomes that can be triggered by nanosecond pulses
of near-infrared light can provide spatially and temporally localized delivery of many
different cargoes in vitro, ex vivo, and in vivo. This combined liposome–plasmon-resonant
nanoparticle delivery platform separates the delivery mechanism from the method of
sequestering the cargo to be delivered. The delivery platform is also generic in that almost
any water-soluble molecule that can be encapsulated in a liposome will be delivered in
the same way, in comparison with “caged compounds” that require the chemical synthesis
of an individual “cage” with different chemical and physical properties. Liposome cargo
release is activated by nanosecond pulses of NIR light that can be delivered by two-photon
microscopes, by stand-alone lasers in well plates or during microfluidic flow, or via en-
doscopes in vivo. NIR light can penetrate millimeters to centimeters in cell suspensions
and tissue [45,64]; UV or visible light cannot penetrate more than 10–20 microns. Release
is accomplished by the generation of unstable vapor nanobubbles; their violent collapse
leads to mechanical forces that rupture liposomes and cell membranes. However, func-
tional proteins and complex oligonucleotides are not degraded during this process and
can induce physiological changes following release to the cell cytoplasm. All liposome
cargoes—including calcium, ATP, IP3, doxorubicin, cisplatin, calcein, and carboxyfluores-
cein (CF)—can be released from different liposome–HGN combinations by controlling
the HGN size and the liposome membrane composition and by irradiating on or off reso-
nance. As a result, different liposomes with different cargoes can be triggered at different
times and locations. The combination of unilamellar liposomes, with their ability to en-
capsulate almost any water-soluble molecule, and plasmonic gold nanostructures, which
can be nucleate vapor nanobubbles following a threshold fluence of near-infrared light,
provides a unique and universal method of in vitro and in vivo delivery with spatial and
temporal control.
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