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Abstract: Chirality, the property whereby an object or a system cannot be superimposed on its mirror
image, prevails amongst nature over various scales. Especially in biology, numerous chiral building
blocks and chiral-specific interactions are involved in many essential biological activities. Despite
the prevalence of chirality in nature, it has been no longer than 70 years since the mechanisms of
chiral-specific interactions drew scientific attention and began to be studied. Owing to the advent
of chiral-sensitive equipment such as circular dichroism spectrometers or chiral liquid columns for
chromatography, it has recently been possible to achieve a deeper understanding of the chiral-specific
interactions and consequential impacts on the functionality and efficiency of nanomedicine. From
this point of view, it is worthwhile to examine previously reported chiral biomaterials with their
compositions and possible applications to achieve new paradigms of biomaterials. This review
discusses chiral materials on various scales and their biological applications.

Keywords: chirality; nanomedicine; biomaterials; nanomaterials

1. Introduction

Regarding the fact that the majority of organisms are composed of amino acids with
left-handedness and DNA double helices with right-handedness, it is not surprising that
most biological activities are very sensitive to the chirality of molecules that biosystems
encounter [1,2]. For instance, there are several reports that the same molecule can taste and
smell differently depending on its molecular chirality [3–5]. Considering that the distinctive
taste or scent of molecules is determined based on several chemical reactions of our sensory
receptors, this difference could be attributed to chiral-specific biochemical interactions of
the receptors, which also consist of numerous chiral peptides [6]. Moreover, the chirality
of a molecule can determine whether it will be therapeutic or toxic [7,8]. One of the most
prominent cases is thalidomide, which was frequently prescribed for insomnia and morning
sickness during the early 1960s [9]. When it was not known that the atomic configuration
of (−)-(S)-thalidomide could interfere with vasculogenesis, the drug had been prescribed
to numerous pregnant women, which led to serious birth defects [9,10]. Nevertheless,
further studies based on stereochemistry revealed the enantioselective mechanism of
vasculogenesis [10,11]. The detailed understanding of chiral-specific biochemical activities
allowed this toxin to be reborn as an anticancer drug that inhibits the angiogenesis of
malignant tumors. Besides thalidomide, several following studies have demonstrated
that the pharmacological actions of various drugs are highly governed by their molecular
chirality [12,13]. Therefore, discriminating a eutomer, a specific enantiomer of a chiral
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compound that is more potent, from the less potent distomer has been considered as a
crucial step for designing novel drugs [14].

Meanwhile, nanomaterials have begun to emerge as a novel pharmaceutical platform,
which had highly relied on therapeutic biomolecules [15]. Indeed, nanomedicine based on
nanomaterials with tunable properties, including optical, magnetic and biological proper-
ties, could enable unprecedented therapeutic strategies with high drug efficiency and low
side effects [16]. Nonetheless, several breakthroughs, such as enhanced cell uptake or selec-
tive targeting, have been required for nanomedicine to be clinically applicable [17,18]. One
of the possible strategies to achieve these requirements is chiral-engineered nanomaterials.
Similar to chiral biomolecules, several studies have suggested that interactions between
biosystems and nanomaterials are heavily affected by the chirality of the nanomaterials,
which could be utilized for improvements in nanomedicine. From this point of view, this
review introduces recent advances in chiral biomaterials (Table 1) and perspectives.

Table 1. Chiral biomaterials with various scales and their possible applications.

Base Materials Chiral Agents Size (nm) Possible Applications Ref.

Co3O4 nanoparticles (NPs) L-/D-cysteine 2–3 Drug delivery system [2,19]

CoxCuyS NPs L-/D-penicillamine 2–3 Selective senescent cell elimination [20]

Graphene quantum dots L-/D-glutamic acid 3 Anti-microbial activity [21]

Carbon dots L-/D-lysine 4 Reducing toxicity of β-amyloid fibril [22]

CdTe NPs L-/D-cysteine 4–5 Site-selective DNA photocleavage [23]

MoO3−x NPs L-/D-cysteine 21–22 Photothermal therapy [24]

Au nanorod dimers DNA origami 40 Controlling drug release [25]

FexCuySe NPs L-/D-penicillamine 40–50 β-amyloid fibril elimination [26]

Au bipyramid NPs L-/D-glutamic acid 110 (length)
35 (width) Anti-microbial activity [27]

Cu2−xS nanoflowers L-/D-cysteine 1500–2000 Multi-channel bioimaging [28]

Au nanorod assemblies Human islet amyloid
polypeptides

Several µm (length)
50 (width) Drug screening [29]

1,4-benzenedicarboxamide
phenylalanine hydrogel

L-/D-1,4-
benzenedicarboxamide
phenylalanine derivative

Several µm (length)
50–60 (width) Scaffolds for wound healing [30,31]

2. Chiral Nanomaterials for Nanomedicine

Since the chirality of molecules governs their biological activities, as aforementioned,
various studies using chiral nanomaterials for nanomedicine also have been conducted.
Yeom et al. synthesized chiral supraparticles (SPs) for drug delivery systems based on
previously reported chiral cobalt oxide (Co3O4) nanoparticles (NPs) [19]. In this study, the
interactions between the surface chirality of the drug delivery system and the biological
system were investigated and the overall performance of the chiral SPs was evaluated. The
chiral cobalt SPs were prepared using L- and D-cysteine as chiral agents and DL-cysteine
was used for their control, achiral cobalt SPs (Figure 1a). The prepared SPs had a size of
around 60 nm (Figure 1b,c) and their optical activity was confirmed via circular dichroism
(CD) spectroscopy (Figure 1d). The authors hypothesized that SPs with D-cysteine (D-SPs)
would interact with the cellular membrane more effectively than SPs with L-cysteine (L-SPs)
since both D-SPs and lipids from the cell membrane showed a positive CD signal at around
270 nm, while L-SPs showed a negative CD signal at the same wavelength (Figure 1e).
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Figure 1. Characterization of chiral cobalt oxide NPs and SPs. (a) Schematic illustration of chiral 
NPs’ self-assembly into SPs. (b) Transmission electron microscopy (TEM) image of L-SPs and D-
SPs. Yellow arrows indicate the (311) lattice fringe of chiral cobalt oxide NPs. (c) The size distribu-
tion curve of SPs. (d) CD spectra of SPs and NPs with different chirality. (e) CD spectra of lipids 
extracted from human cell (HBMEC and MDA-MB-231). Reprinted with permission from Ref. [19]. 
Copyright 2019 John Wiley and Sons. 

To confirm the hypothesis, the authors exposed HeLa cells to SPs with fluorescent 
dye for 24 h before confocal imaging was carried out. The results revealed that SPs with 
the same handedness (D-SPs) as the cell membranes exhibited better adhesion to phos-
pholipid cellular membranes, which led to better cellular internalization (Figure 2a). The 
stronger adhesion of D-SPs to liposomes, which were analogous to the cellular membrane, 
also was examined by performing quartz crystal microbalance with dissipation (QCM-D) 
measurements and isothermal titration calorimetry (ITC) measurements (Figure 2b,c). 
These results confirmed that D-SPs were more adhesive to phospholipid membranes and 
this chiral-specific preference could be attributed to the difference in thermodynamic 
binding affinity between SPs and lipid molecules. Subsequently, the effect of chirality was 
tested through an in vivo study. SPs conjugated with fluorescent dye were injected intra-
venously into mice. After 0.5 h, 2 h and 24 h, the distribution of injected SPs was measured 
by an in vivo imaging system (Figure 2d). The result showed that SPs with D-handedness 
exhibited a longer biological half-life compared to their counterpart with L-handedness. 
The authors suggested that the D-amino acids on the SPs could act as a stealth sheath 
layer, which inhibited enzymes in blood plasma from digesting the SPs. Despite the innate 
toxicity of cobalt-based nanomedicine, this work could be considered as a pioneering 

Figure 1. Characterization of chiral cobalt oxide NPs and SPs. (a) Schematic illustration of chiral
NPs’ self-assembly into SPs. (b) Transmission electron microscopy (TEM) image of L-SPs and D-SPs.
Yellow arrows indicate the (311) lattice fringe of chiral cobalt oxide NPs. (c) The size distribution
curve of SPs. (d) CD spectra of SPs and NPs with different chirality. (e) CD spectra of lipids extracted
from human cell (HBMEC and MDA-MB-231). Reprinted with permission from Ref. [19]. Copyright
2019 John Wiley and Sons.

To confirm the hypothesis, the authors exposed HeLa cells to SPs with fluorescent dye
for 24 h before confocal imaging was carried out. The results revealed that SPs with the
same handedness (D-SPs) as the cell membranes exhibited better adhesion to phospholipid
cellular membranes, which led to better cellular internalization (Figure 2a). The stronger
adhesion of D-SPs to liposomes, which were analogous to the cellular membrane, also was
examined by performing quartz crystal microbalance with dissipation (QCM-D) measure-
ments and isothermal titration calorimetry (ITC) measurements (Figure 2b,c). These results
confirmed that D-SPs were more adhesive to phospholipid membranes and this chiral-
specific preference could be attributed to the difference in thermodynamic binding affinity
between SPs and lipid molecules. Subsequently, the effect of chirality was tested through
an in vivo study. SPs conjugated with fluorescent dye were injected intravenously into
mice. After 0.5 h, 2 h and 24 h, the distribution of injected SPs was measured by an in vivo
imaging system (Figure 2d). The result showed that SPs with D-handedness exhibited a
longer biological half-life compared to their counterpart with L-handedness. The authors
suggested that the D-amino acids on the SPs could act as a stealth sheath layer, which
inhibited enzymes in blood plasma from digesting the SPs. Despite the innate toxicity of
cobalt-based nanomedicine, this work could be considered as a pioneering study demon-
strating that chiral surface engineering can be applied for the design of high-efficiency drug
delivery systems [32].
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QCM-D monitoring of D- and L-SPs’ adhesion on lipid bilayers. (c) ITC experiments for D- and L-
SPs in liposome dispersions. (d) In vivo imaging system images of mice after intravenous injection 
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right 2019 John Wiley and Sons. 

Similarly, Li et al. synthesized chiral copper cobalt sulfide (CuxCoyS) nanoparticles 
for the selective elimination of senescent cells [20]. The NPs were prepared by using L-, 
DL- and D-penicillamine as surface chiral ligands (Figure 3a). In detail, induced senescent 

Figure 2. (a) Confocal images of HeLa cell nuclei (blue) and internalized D-, L- and DL-SPs (red).
(b) QCM-D monitoring of D- and L-SPs’ adhesion on lipid bilayers. (c) ITC experiments for D- and
L-SPs in liposome dispersions. (d) In vivo imaging system images of mice after intravenous injection
of phosphate-buffered saline, L-, D- and DL-SPs. Reprinted with permission from Ref. [19]. Copyright
2019 John Wiley and Sons.

Similarly, Li et al. synthesized chiral copper cobalt sulfide (CuxCoyS) nanoparticles
for the selective elimination of senescent cells [20]. The NPs were prepared by using L-,
DL- and D-penicillamine as surface chiral ligands (Figure 3a). In detail, induced senescent
cells were incubated with the NPs and then confocal imaging was carried out. The result
showed that senescent cells accepted NPs covered with D-penicillamine (D-NPs) more
efficiently than NPs covered with L-penicillamine (L-NPs) (Figure 3b). Aside from the chiral
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effect, it was reported that intracellular CuxCoyS NPs released reactive oxygen species
(ROS), which triggered the apoptosis of senescent cells under near-infrared (NIR) radiation.
It was also reported that the mechanical movement of the NPs triggered the apoptosis
of the cells under an alternating magnetic field (AMF) since the NPs exhibited moderate
ferromagnetism. Considering the apoptotic effect of the NPs, the authors claimed that
D-NPs could selectively and effectively induce the apoptosis of senescent cells under NIR
radiation and AMF (Figure 3c,d).
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Figure 3. (a) TEM images of (A) L- and (B) D-penicillamine stabilized CuxCoyS NPs, scale bar = 20 nm.
The upper-right images are high-resolution images of corresponding NPs, scale bar = 1 nm. (b) Con-
focal images of L-, DL- and D-NPs in senescent cells, scale bar = 100 µm. (c) Cell viability of D-NP
internalized senescent cells with different NIR illumination times. (d) Cell viability of D-NP internal-
ized senescent cells after being treated with AMF at different time points. Reprinted with permission
from Ref. [20]. Copyright 2020 John Wiley and Sons.

Chiral nanoparticles can also be applied for regulating the formation of peptide fibrils,
which are much smaller than cellular scale [22,26]. Zhang et al. synthesized chiral iron
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copper selenide (FexCuySe) NPs decorated with L- and D- penicillamine (Figure 4a) [26].
Since FexCuySe NPs were also known to generate reactive oxygen species under NIR
radiation, they suggested that the chiral NPs and reactive oxygen species from them would
prohibit the formation of Aβ42 fibrils, a well-known biomarker of Alzheimer’s disease (AD).
To verify the hypothesis, mixtures of FexCuySe NPs conjugated with L-/D- penicillamine
(L-/D-NPs) and Aβ42 fibrils were irradiated with NIR light for 10 min. Transmission
electron microscopy (TEM) images exhibited that the fibrils with D-NPs were disintegrated
after NIR radiation, while the fibrils with L-NPs remained (Figure 4b). To elucidate this
chiral-specific disintegration, ITC experiments were conducted. ITC results indicated that
the binding affinity between Aβ42 fibrils and D-NPs was two times higher than the binding
affinity between the fibrils and L-NPs (Figure 4c). Moreover, the authors showed that
injecting the D-NPs into the brains of AD mouse models could reduce the concentration of
Aβ42 fibrils and alleviate their neurotoxicity (Figure 4d).

Xin et al. focused on D-glutamic acid, which is an essential biomolecule for bacteria to
synthesize peptidoglycan [21]. The authors synthesized graphene quantum dots (GQDs)
by pyrolysis of citric acid with the L- and D- glutamic acid, which functionalized the GQDs
(Figure 5a). They hypothesized that GQDs covered with D-glutamic acid (D-GGs) would in-
hibit the activity of MurD ligase, a crucial enzyme for peptidoglycan synthesis, while GQDs
covered with L-glutamic acid (L-GGs) would not. To confirm the hypothesis, Escherichia coli
(E. coli, Gram-negative) and Staphylococcus aureus (S. aureus, Gram-positive) were incubated
with L-GGs, D-GGs and unfunctionalized GQDs (UGs) for a control experiment. The result
revealed that D-GGs displayed dose-dependent antibacterial activity toward both E. coli
and S. aureus (Figure 5b,c). Then, scanning electron microscopy (SEM) showed that D-GGs
inhibited the formation of cell walls, which were composed of peptidoglycan, while L-GGs
and UGs did not (Figure 5d). The damage to cell walls contributed to the leakage of the
cellular content of D-GG-treated bacteria, which led to their death.

A similar study using gold nanoparticles functionalized with chiral glutamic acid was
also conducted by Zhang et al. [27]. They synthesized gold nanobipyramids (Au NBPs)
stabilized by thiolated polyethylene glycol (PEG) with carboxyl group terminals. Then,
L- and D-glutamic acids were conjugated with terminal carboxyl groups (Figure 5e). The
synthesized L- and D- glutamic acid-conjugated gold nanobipyramids (L-/D-Glu-Au NBPs)
were added to bacterial suspensions of Staphylococcus epidermidis (S. epidermidis) to evaluate
the antibacterial properties of the chiral NBPs. Similar to the case of chiral graphene quan-
tum dots, SEM images showed that the cell walls of S. epidermidis incubated with D-Glu-Au
NBPs were damaged, while those of L-Glu-Au NBP-treated S. epidermidis were relatively
intact (Figure 5f). Since the antibacterial mechanisms of these chiral nanomedicines are sig-
nificantly different from the antibacterial mechanisms of conventional β-lactam antibiotics,
chiral nanoantibiotics would be a novel approach for treating antibiotic-resistant bacteria.

While the aforementioned studies focused on a chiral selective interaction between
nanomaterials and the biosystem itself, there have been several attempts to utilize the
optical activity of chiral materials for nanomedicine [23,24]. Sun et al. reported that chiral
cysteine-modified CdTe nanoparticles could be utilized for cleaving specific sequences
of DNA double strands (Figure 6a) [23]. In detail, the authors demonstrated that chiral
CdTe NPs produced ROS, which cleaved phosphodiester bonds within DNA backbones
by oxidation, under 405 nm light radiation (Figure 6b). When circularly polarized light
(CPL) was illuminated, the amount of produced ROS was affected by the handedness of
the illuminated CPL because the chiral NPs were optically active. For instance, the number
of hydroxyl radicals produced by L-cysteine-modified CdTe NPs (L-Cys-CdTe) under
right-handed circularly polarized light (RCP) illumination was doubled, compared to that
under left-handed circularly polarized light (LCP) illumination (Figure 6c,d). These results
suggested that the activities of abiotic nanozymes based on chiral nanomaterials could
be controlled by CPL radiation. Indeed, the authors successfully demonstrated the CPL-
−induced DNA cleavage in living cells and in vivo, which were confirmed by fluorescent
imaging (Figure 6e,f). Since DNA itself and its transcription could be easily affected by a
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considerable number of small molecules, it has been difficult to find appropriate molecular
drugs for precisely targeting specific DNA sequences [33,34]. Considering the fact that
medication based on chiral NPs seems to be an emerging alternative, although the reported
photocleavage effect of chiral CdTe NPs was limited to a specific recognition site (GATATC),
this study suggested a new design strategy for highly stereospecific and controllable abiotic
nanoenzymes, which would be crucial for gene therapy [35].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

internalized senescent cells after being treated with AMF at different time points. Reprinted with 
permission from Ref. [20]. Copyright 2020 John Wiley and Sons. 

Chiral nanoparticles can also be applied for regulating the formation of peptide fi-
brils, which are much smaller than cellular scale [22,26]. Zhang et al. synthesized chiral 
iron copper selenide (FexCuySe) NPs decorated with L- and D- penicillamine (Figure 4a) 
[26]. Since FexCuySe NPs were also known to generate reactive oxygen species under NIR 
radiation, they suggested that the chiral NPs and reactive oxygen species from them 
would prohibit the formation of Aβ42 fibrils, a well-known biomarker of Alzheimer’s dis-
ease (AD). To verify the hypothesis, mixtures of FexCuySe NPs conjugated with L-/D- pen-
icillamine (L-/D-NPs) and Aβ42 fibrils were irradiated with NIR light for 10 min. Trans-
mission electron microscopy (TEM) images exhibited that the fibrils with D-NPs were dis-
integrated after NIR radiation, while the fibrils with L-NPs remained (Figure 4b). To elu-
cidate this chiral-specific disintegration, ITC experiments were conducted. ITC results in-
dicated that the binding affinity between Aβ42 fibrils and D-NPs was two times higher 
than the binding affinity between the fibrils and L-NPs (Figure 4c). Moreover, the authors 
showed that injecting the D-NPs into the brains of AD mouse models could reduce the 
concentration of Aβ42 fibrils and alleviate their neurotoxicity (Figure 4d). 
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MN9D cells treated with NIR, D-NPs, as well as D-NPs and NIR. Nuclei were stained with DAPI
(blue). Reprinted with permission from Ref. [26]. Copyright 2020 John Wiley and Sons.
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I indicate the (100) lattice fringe of chiral graphene QDs and yellow hexagons in inset III indicate
hexagonal crystalline structure of the QDs. (b) Antimicrobial activities of chiral GQDs and UGs
against S. aureus evaluated by a standard plate count method, ** p < 0.01. (c) Antimicrobial activities
of chiral GQDs and UGs against E. coli. (d) SEM images of E. coli after incubating D-GGs, L-GGs, UGs
and normal saline as the control for 3 h, respectively, scale bar = 1 µm (first low), 500 nm (second row,
yellow arrow indicates the leaked cellular content). (e) Schematic illustration of D-/L-Glu-Au NBP
fabrication. (f) SEM images of S. epidermidis treated by phosphate-buffered saline (PBS), PEG-Au
NBPs and L-/D-Glu-Au NBPs for 3 h, scale bar = 1 µm. Reprinted with permission from Refs. [21,27].
Copyright 2016 John Wiley and Sons. Copyright 2020 Elsevier.
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Figure 6. (a) TEM images of L-/D-Cys CdTe NPs. (b) Electrophoresis images of L-Cys CdTe NPs
with 1839 bp DNA illuminated RCP for 2 h. The two DNA fragments after cleavage are denoted
by frag 1 and frag 2. (c) ROS production with 90 bp DNA, mutated 90 bp DNA and 90 bp DNA
with ROS inhibitor (NaN3) in L-Cys CdTe NPs under RCP and D-Cys CdTe NPs under LCP. (d) ROS
production in L-Cys CdTe NPs under LCP and D-Cys CdTe NPs under RCP. (e) Confocal images of
neural stem cells incubated with L-/D-Cys CdTe NPs under RCP/LCP and without irradiation, scale
bar = 20 µm. (f) In vivo images of nude mice after L-/D-Cys CdTe NPs injected with irradiation under
RCP/LCP for 2 h and without irradiation. Reprinted with permission from Ref. [23]. Copyright 2018
Springer Nature.

Li et al. utilized the optical properties of chiral molybdenum oxide (MoO3−x) NPs in
photothermal therapy (PTT) for cancer treatment [24]. The chiral NPs were obtained by
the substoichiometric reduction of cysteine molecules, which also acted as a chiral capping
agent (Figure 7a). Similar to the studies conducted by Sun and coworkers, the amount of
heat generated by the chiral MoO3−x NPs varied with the combination of the handedness
of the NPs and CPL (Figure 7b) [23]. An in vitro study using HeLa cells for chiral PTT
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followed. A standard Cell Counting Kit-8 (CCK-8) assay revealed that 93.01% of HeLa cells
incubated with D-cysteine-capped chiral MoO3−x NPs (D-Cys-MoO3−x NPs) were dead
after 15 min of 808 nm RCP irradiation, while only 29.98% of the cells were dead under
LCP irradiation (Figure 7c). This chiral-specific cell viability tendency was inverted when
HeLa cells were incubated with L-cysteine-capped chiral MoO3−x NPs (L-Cys-MoO3−x
NPs); 32.25% of the cells were dead under RCP irradiation, while the fatality rate reached
96.95% when LCP was irradiated (Figure 7d). These chiral-specific PTT results were also
confirmed by confocal microscopy (Figure 7e).
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3. Chiral Biomaterials with Supramolecular Structures

Unlike nanoparticles whose atomic components are held together by primary bonds,
materials with supramolecular structures consist of monomers organized by noncovalent,
intermolecular binding interactions [36]. Supramolecular materials have recently drawn
attention since they have emergent properties that their unorganized subunits do not
possess [37]. Indeed, this supramolecular emergence could be easily found in nature. One
example is collagen, the main protein component of various types of connective tissue.
A single collagen microfibril has right-handed chirality, while its subunit polypeptide
strands have left-handed chirality [38]. Considering that this emergent supramolecular
right-handed chirality of collagen fibrils plays a pivotal role in cell adhesion, biomaterials
with supramolecular chirality are worthwhile to investigate further [39].

One of the applications in the field of supramolecular chiral biomaterials is synthetic
hydrogel networks for the 3D extracellular matrix (ECM) [30,31,40]. Liu et al. hypoth-
esized that cell adhesion and proliferation would be determined by the chirality of the
polymeric matrix where cells grew [30]. They synthesized chiral nanofibers based on
chiral 1,4-benzenedicarboxamide phenylalanine derivative (PH) monomers. When the PH
monomers were mixed with an aqueous medium for cells, a hydrogel with helical fibers was
spontaneously formed due to hydrophobic benzene ring moieties (Figure 8a,b) [41]. Mouse
fibroblast cells (NIH/3T3) and human endothelial cells (HUVECs) were then cultured onto
the chiral hydrogels. It was found that cells cultured in the left-handed hydrogel showed
higher adhesion and density, regardless of the cell line (Figure 8c–e). Further studies using
fibronectin, a protein promoting cell adhesion, revealed that a larger amount of fibronectin
was adsorbed by left-handed fibers than right-handed fibers (Figure 8f). Considering that
adsorbed fibronectin acted as a cellular anchor, the left-handed helices could provide more
cellular anchoring sites compared to right-handed helices [42].

The stereospecific interaction between chiral suprastructures and fibronectin can
also dictate cell differentiation. Wei et al. demonstrated that the cell differentiation
of mesenchymal stem cells (MSCs) was governed by the handedness of the surround-
ing matrix [31]. Similar to Liu and colleagues, the authors fabricated chiral matrixes by
using 4-benzenedicarboxamide phenylalanine derivatives as monomers for cell culture
(Figure 9a). After 14 days of incubation, the cell phenotype of cultured MSCs was analyzed
by fluorescent staining. It revealed that MSCs cultured in the left-handed matrix (LH)
produced more alkaline phosphatase, which indicated the osteogenesis of MSCs, than the
cells cultured in the right-handed counterpart. Meanwhile, MSCs cultured in the right-
handed matrix (DH) produced more lipids, which were significant clues regarding the
adipogenesis of stem cells (Figure 9b,c). The mechanism of the chiral-specific differentiation
was attributed to stereospecific interactions between fibronectin and the chiral monomers,
according to molecular dynamic (MD) simulations (Figure 9d). The MD simulation results
demonstrated that fibronectin had a higher binding affinity for left-handed monomers
than right-handed monomers, which caused more fibronectin to be absorbed on LH. Con-
sidering that fibronectin was recognized by a cellular mechanosensory protein (Itgα5),
the upregulated Itgα5 triggered the osteogenesis of MSCs in LH [43]. Furthermore, the
authors demonstrated that chiral-specific osteogenesis occurred in vivo. MSCs in chiral
(LH/DH) and achiral (racemic matrix, RH) matrices were injected into defected rat cranial
bones. After 12 weeks, MSC/LH−injected rats were fully recovered, while other groups
of rats were not fully recovered (Figure 9e). These studies using chiral hydrogels clearly
demonstrated that biological interactions, such as wound healing, are deeply governed by
nanoscale 3D structures including chirality, which have not been fully investigated.

Similar to chiral biomaterials with nanoscale, there have been several attempts to
utilize the optical activity of chiral supramolecular materials for biomedical purposes
recently [25,28,29]. Indeed, optical activity in the NIR region is one of the most promising
properties of supramolecular chiral materials for biomedical applications. While either
ultraviolet (UV) light or visible (vis) light has a short attenuation length, which is a critical
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drawback for biomedical applications, the longer attenuation length of NIR light enables
photoresponsive biomaterials to be used from diagnostics to treatment [44–46].
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For instance, Ávalos-Ovando et al. focused on chiral-specific photothermal heating
induced by a pair of gold nanorods (NRs) formed with a sheet of DNA origami under
CPL irradiation (Figure 10a) [25]. Unlike nanoparticles without chirality, the photothermal
activity induced by CPL of these chiral gold structures was highly localized within the
gap between a pair of NRs, so-called a photothermal hotspot (Figure 10b) [47,48]. When
CPL was irradiated, heat generated within the hotspots caused the chiral structures to
break, since the DNA origami layers between nanorods were disintegrated by the heat.
It was demonstrated that when 790 nm LCP was irradiated, a pair of Au NRs with a
right-handed structure (R-pair) were easier to break into two achiral Au NRs, compared to
the left-handed pair (L-pair) (Figure 10c,d). This result was attributed to the fact that 790
nm LCP was more efficiently absorbed by the R-pair than the L-pair, which was confirmed
by circular dichroism spectroscopy. Considering that the controlled release of drugs can be
achieved by using thermoresponsive polymers [49], the CPL-sensitive photoheating could
be applied to drug delivery systems.

Lu et al. suggested a novel drug discovery protocol using chiral Au NR assemblies
decorated along human islet amyloid polypeptide (hIAPP) fibrils [29]. They demonstrated
that when premade hIAPP-bounded Au NRs were mixed with free hIAPP, left-handed
helical assemblies of gold nanorods were self-assembled (Figure 11a,b). When linearly
polarized light was propagated through the assembled chiral Au NRs, the electric field
vector of propagating light would be rotated since the assembled chiral NRs had optical
activity at the NIR region [50]. As the Au NRs were assembled in a highly ordered chiral
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manner, the intensity of the rotating light increased, which could be measured by a cross-
polarization optical cell (Figure 11c,d). The authors suggested that potential drugs for
inhibiting amyloid-fiber synthesis could be screened by using the chiral Au NR assemblies.
For instance, the authors tested two molecules, epigallocatechin gallate (EGCG) and hIAPP-
derived peptide (D-NFGAIL), for amyloid-fiber inhibitors (Figure 11e). When EGCG was
mixed with hIAPP-bound Au NRs and free hIAPPs, the self-assembly of chiral Au NRs
interfered, which was indicated by the weak intensity of transmitted light [51]. Meanwhile,
when D-NFGAIL was mixed with the hIAPP-Au NRs and free hIAPPs, the self-assembly
was less effectively inhibited. The authors claimed that this protocol could be more effective
compared to traditional fluorescence-based drug screening methods since auto-fluorescent
signals from various biomolecules interfere with the signals from target drugs.

Park et al. reported chiral copper sulfide (Cu2−xS) supramolecular nanoflowers (NFs)
with broad optical activity in the UV–vis–NIR–short-wave infrared (SWIR) region using
cysteine as chiral ligands (Figure 12a–c) [28]. The IR region has been considered important
for biological applications since it is a so-called biologically transparent region where
bio-species such as muscle, bone, fat, etc., hardly absorb light [52]. It was revealed that the
molecular chirality of a single cysteine molecule was transferred to the nanoscale chirality
of NPs and SPs, and the nanoscale chirality ultimately determined the microscale chirality
of NFs through self-assembly processes (Figure 12d). Moreover, the authors emphasized
that this chirality transfer process could be fully controlled by varying the growth times
and the molecular ratio of the chiral initiator (Figure 12e). The controllability of chirality
over a broad range of spectra would be regarded as a crucial technology for bioimaging,
including multi-channel imaging or time-series imaging.
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Reprinted with permission from Ref. [31]. Copyright 2019 John Wiley and Sons.
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4. Conclusions and Outlook

Unlike materials for other technologies, strict constraints are imposed for the design
of novel biomaterials for nanomedicine [53]. Base materials for nanomedicine have been
highly limited; thus, finding a niche for designing biomaterials with dramatically enhanced
functionalities has been regarded as a time-consuming and high-risk task. However, several
remarkable studies have shown that a small tweak in the chiral conformation of materials
could lead to considerable improvements in properties that are crucial for biomaterials,
providing more degrees of freedom [19,21,27,30]. Meanwhile, other studies demonstrated
novel approaches for controlling the pharmacological actions of biomaterials by using their
chiral-specific interactions [23–25,29,31].

Discovering and designing new drugs relies heavily on the biochemical properties
of the small molecules [54]. Though nanomedicines based on nanomaterials with various
physicochemical features seem intriguing, critical drawbacks include low therapeutic
efficacy or high cytotoxicity [55,56]. In this stalemate, the concept of chiral engineering
would offer a brand-new breakthrough for designing high-functioning biomaterials such
as nano-scaffolds with enhanced cell adhesion for wound healing or targeted drug delivery
systems with improved cellular internalization while minimizing side effects [19,57].

Nonetheless, there have been several limitations for reported chiral-engineered bioma-
terials. Above all, a general and consensual explanation of how the biosystem perceives
and reacts to surrounding chiral environments has not been fully suggested yet. Though
some studies have tried to examine and unravel these chiral-specific interactions based
on thermodynamic simulations, the results are somewhat incoherent and highly limited
to molecular scales [2,29,31]. If comprehensive principles for chiral-specific interactions
between nanomaterials and biosystems are clearly demonstrated, the design of novel chiral
biomaterials with various functionalities would be possible. Based on the design princi-
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ple of chiral biomaterials, multi-functional nanomedicine would be supplied on demand,
which would ultimately lead to the realization of precision medicine.
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