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Abstract: Compartment modeling is a widely accepted technique in the field of pharmacokinetic anal-
ysis. However, conventional compartment modeling is performed under a homogeneity assumption
that is not a naturally occurring condition. Since the assumption lacks physiological considerations,
the respective modeling approach has been questioned, as novel drugs are increasingly characterized
by physiological or physical features. Alternative approaches have focused on fractal kinetics, but
evaluations of their application are lacking. Thus, in this study, a simulation was performed to
identify desirable fractal-kinetics applications in conventional modeling. Visible changes in the
profiles were then investigated. Five cases of finalized population models were collected for imple-
mentation. For model diagnosis, the objective function value (OFV), Akaike’s information criterion
(AIC), and corrected Akaike’s information criterion (AICc) were used as performance metrics, and
the goodness of fit (GOF), visual predictive check (VPC), and normalized prediction distribution
error (NPDE) were used as visual diagnostics. In most cases, model performance was enhanced by
the fractal rate, as shown in a simulation study. The necessary parameters of the fractal rate in the
model varied and were successfully estimated between 0 and 1. GOF, VPC, and NPDE diagnostics
show that models with the fractal rate described the data well and were robust. In the simulation
study, the fractal absorption process was, therefore, chosen for testing. In the estimation study,
the rate application yielded improved performance and good prediction–observation agreement
in early sampling points, and did not cause a large shift in the original estimation results. Thus,
the fractal rate yielded explainable parameters by setting only the heterogeneity exponent, which
reflects true physiological behavior well. This approach can be expected to provide useful insights in
pharmacological decision making.

Keywords: pharmacokinetics; compartment modeling; fractal; transdermal patch; intramuscular
injection; biological drug

1. Introduction

In the field of pharmacokinetic (PK) analysis, compartmental modeling is a widely
accepted technique that is used in the various clinical stages of drug development [1]. In
this approach, an ordinary differential equation (ODE) is commonly used to describe the
quantitative relationships between compartments in both simple and complex structured
models. ODEs are used to represent the changes in the drug amount in a given compartment
for a specified period, with the amount of change expressed as the ordered rate, described
as a fixed parameter over time on the basis of a homogeneity assumption; however, this
condition rarely occurs in natural processes [2]. Consequently, conventional modeling
based on a homogeneity assumption does not consider the actual space in which drug
diffusion and transportation take place; instead, the characteristics of the space are either
ignored or abstracted into simple processes during the PK analysis.

Since all drug dosing is necessarily carried out on the basis of diffusion towards the
site of action through distinct kinds of interfaces, the physical features of the drug body (in
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other words, the drug depot) and the physiological features of the drug administration site
play important roles in determining the PK. The homogeneity assumed in conventional
methods does not adequately address these issues, such that, in the PK profile, it is difficult
to clearly distinguish among absorption, distribution, metabolism and excretion (ADME).

For example, under clinical conditions, transdermal-patch drugs that follow zero-
ordered rate release patterns in drug studies may not achieve the intended plasma concen-
tration [3], but rather fluctuate over time because the gradient of driving forces that moves
the drug molecules out of the formulation and into the central body system is not constant.
In this case, during conventional modeling, the degree of freedom for a molecule-taking
path is considered to be 1, in which a projectile linearly extends from the formulation to the
central system according to Fick’s law. Rather, under physiological conditions, a portion
of the drug molecules take the fastest route to the central system, while the remainder
are trapped in the formulation. Thus, Fick-type diffusion does not describe the quanti-
tative movement relationship for a degree of freedom > 1, and the respective PK model
insufficiently reflects the mechanistic action of the drug.

Recent advances resulting in novel drug molecules and their formulations have high-
lighted the deficiencies of the conventional approach, as new generations of drugs more
closely utilize physical and physiological conditions, such that the models required to
describe their PK profiles have become more complicated. An alternative modeling method
that can be used to represent drug movement uses ordered rates that vary over time us-
ing fractal kinetics, as demonstrated in the study by Kopelman et al. [4,5] In that study,
fractal-like kinetics were introduced to describe the rate of reaction in fractal dimension
in comparison with classical reaction kinetics. This fractal-like reaction rendered the rate
dependent on its elapsed time and enabled the macroscopic interpretation of the response
of fractal dimensions (Figure 1). The method was suitable for explaining the dimensional
characteristics of molecules in various tissues and organs in several studies.

Figure 1. Classical pharmacokinetic model scheme of one-compartment model for oral absorption
(upper left scheme, Ka: absorption rate, Kel: elimination rate), pharmacokinetic model with fractal
dimension (lower left scheme) and simulation for drug concentration with fractal-like reaction rate
to the absorption process (right plot, dashed lines: concentration of classical model; solid lines:
concentration of fractal-like rate model with homogeneity exponent of 1/3, red lines: Ka = 0.01,
brown lines: Ka = 0.1, gray lines: Ka = 1).

Dokoumetzidis, and Macheras et al. organized and applied fractal kinetic concepts to
PK and pharmacodynamics [6,7]. Other researchers employed fractal kinetics to in vitro in
vivo correlation (IVIVC) studies to quantify drug dissolution and release at interfaces [8,9].
Fractal kinetics have been vigorously applied In PK studies of ADME. For example, a
fractal dimension was introduced in drug metabolism in the liver using a physiological
pharmacokinetic model [10] and in modeling tissue trapped in a distribution space [11–13],
drug elimination [14]. In those studies, the observed PK profiles were described well using
fractal kinetic models, and the concept of the fractal was mechanistically suitable.

Fractal kinetics in PK analysis has been successfully introduced into case-specific
studies, but generalized applications to PK analysis have not been investigated through
direct comparison with the conventional method in terms of validity and applicability.
Thus, in this study, a simple fractal-kinetics expression obtained in previous research and
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the inclusion of a heterogeneity exponent were implemented together with a conventional
population PK model to determine its sensitivity to the model; the fractal expression was
then applied to five developed population PK models to assess its performance metrics and
diagnostics, and thus confirm the validity and practicality of fractal-kinetics interpretation
in the field of PK analysis.

2. Materials and Methods
2.1. Fractal Rate Expression

The fractal expression introduced by Kopelman et al. [4] was implemented in pre-
viously constructed mixed-effect models. In the fractional dimension, the rate constant
was divided by time to the power heterogeneity. The heterogeneity was set to be 0–1. The
equation is, therefore, as follows:

rate =
θ

timeh (1)

where rate is the fractal-like rate that is an instantaneous rate coefficient [5], θ is the rate
coefficient at the time point of 1, time is a modeled time from the point of dosing, h is
the heterogeneity exponent, and the rate coefficient is regarded to be the rate constant in
Fick’s law when h is set to 0. In Equation (1), the term containing ’time’ is considered to be
dimensionless, and the scale of time that the ordinary differential equation system solves
was put into the modeled time.

2.2. Simulation Study

Simulations were conducted using one- and two-compartment models, and fractal
expressions were applied on the absorption rate, intercompartmental rates, and elimination
rate by replacing the existing rate constant with the instantaneous rate coefficient from
Equation (1). In the one-compartment model, rate constants Ka (absorption rate) and Ke
(elimination rate) were modified as fractal expressions. For the two-compartment model,
Ka, Ke, rate central to peripheral (Kcp), and rate peripheral to central (Kpc) were modified,
and the heterogeneity exponent h was changed by 0.05 within the range of 0–1. The
simulated PK profiles covered 0–400 hours, with 100 mcg doses given via the extravascular
route (i.e., not administered directly into the central system). The parameters of Ka and CL
(clearance, defined as the multiplication of Ke by the central volume of distribution) were
set as lower (0.033), middle (0.1), and upper (0.3) values; V2 (the volume of distribution in
the peripheral compartment) was set as lower (1) and upper (100) values. These parameters
were compared in each possible combination where the rates between compartments were
differently assigned. The simulated parameters are summarized in Table 1.

Table 1. Summary of the conditions and parameters used in the simulation study.

Simulation A (1-Comp Model) B (2-Comp Model) C (2-Comp Model)

Condition Ka < CL Ka = CL Ka > CL Ka < CL Ka = CL Ka > CL Ka < CL Ka = CL Ka > CL

Ka 0.033 0.1 0.3 0.033 0.1 0.3 0.033 0.1 0.3
CL 0.3 0.1 0.033 0.3 0.1 0.033 0.3 0.1 0.033
Q - 3 3
V1 10 10 10
V2 - 100 1
h 0.00–1.00 0.00–1.00 0.00–1.00

Ka: absorption rate constant, CL: clearance, Q: intercompartmental clearance, V1: volume of distribution (central),
V2: volume of distribution (peripheral), h: fractal rate constant. Simulations were performed with the conditions
of Ka being larger or smaller than CL, and Ka being equal to CL. Between Simulations B and C, the ratio of central
and peripheral volume of distribution was set to be different.

On the basis of simulation research, a fractal rate equation that could be straightfor-
wardly interpreted was selected and applied to several original models constructed on the
assumption of a homogeneous environment while maintaining the structures of the models.
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2.3. Model and Dataset Collection for Real Case Application

Five conventional models were tested. The model parameters were modified using
the fractal expressions considered to be the most appropriate for use with the conventional
method. The five models were as follows.

1. Single-dose transdermal patch [3]. This was a two-compartment model with a first-
order absorption in the case of an oral dose, and absorption in two transit compart-
ments in the case of a transdermal dose. The amounts derived from oral adminis-
tration and patch administration were processed in the same central compartment.
The model was fitted simultaneously in each case of oral and transdermal patch
administration for 312 h. Single oral and transdermal-patch amounts were dosed.

2. Multiple doses of a drug administered either orally or via a transdermal patch. This
two-compartment model included first-order absorption for the oral dose, and ab-
sorption in a transit compartment for the transdermal dose. The drug amounts from
oral administration and patch administration were processed in the same central
compartment. The model was fitted under the condition of 7 days of titration with
the oral dose and then three patch doses, with an observation time of 2496 h. Two
different amounts were dosed for oral and transdermal-patch administration.At every
point of new dosing, the time value in the equation was modeled to be reset as zero,
and the remaining amount was emptied.

3. Controlled-release intramuscular injection (inhouse data). The two-compartment
model included ordinary first-order rate absorption and transit absorption using
Stirling’s approximation (Savic et al. [15]) to the same central compartment. The
dose was divided into two fractions, one with fast absorption and the other with slow
absorption. The intramuscular injection was administered once, and the model was
fitted for a period of 672 h. Four different drug amounts were dosed.

4. Subcutaneous injection, antibody [16]. This was a two-compartment target-mediated
drug disposition (TMDD) model with quasiequilibrium conditions. It consisted of a
drug depot (injection site), distribution space, and central and peripheral compart-
ments. The drug concentration was observed for a maximum of 746 h. Five different
amounts for subcutaneous injections were dosed.

5. Subcutaneous injection, antibody (anakinra) [16]. This was a one-compartment target-
mediated drug disposition (TMDD) model with quasiequilibrium conditions. It
consisted of a drug depot (injection site) and a central compartment. The drug
concentration was observed for a maximum of 48 h. One amount for subcutaneous
injection was dosed.

2.4. Model Evaluation

As this was a numerical diagnostics study for the purpose of estimation, model
performance was measured using objective function value (OFV), Akaike’s information
criterion (AIC) [17], and corrected Akaike’s information criterion (AICc) [18]. The fractal
models were compared with the original models with respect to OFV, AIC, and AICc.

OFV is defined as minus twice the log of the likelihood. It yields a single number
that provides overall model fitting on the basis of the distribution of the observations. AIC
and AICc are defined by the OFV value, the number of free parameters, and the number
of observations in the model. Decreasing values of these measures indicate better models.
The equations are as follows:

AIC = OFV + 2k (2)

AICc = AIC +
2k(k + 1)
n − k − 1

(3)

A change is regarded significant if the OFV decreases to 3.84 for one parameter ad-
dition, and to 5.99 for the addition of two parameters. For AIC and AICc, a decrease in
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the value is regarded as significant. In addition to numerical diagnostics, visual diagnos-
tics such as the goodness of fit (GOF) and prediction-corrected visual predictive check
(pcVPC) [19] were performed for each model. For GOF, observations were compared to
population predictions and individual predictions; individual weighted residuals were
compared to individual predictions and conditional weighted residuals [20] over the ob-
served time. To determine the fitting tendency, a generalized additive model was used
as the regression method. For VPC, 500 simulations were performed on the basis of the
model’s fixed and random effects. A normalized prediction distribution error (NPDE) [21]
test was additionally conducted to check the normality of the prediction of the two different
types of models.

2.5. Software for Simulation and Estimation

For the simulation study, R (4.2.2) and its rxode2 package [22] were used. Parameter
optimization for the models was performed using NONMEM (7.5.0) and PsN (5.2.6; Perl
Speaks NONMEM) software. During the model estimation process, to prevent local
minimization, saddle point reset [23] and parameter perturbation were used to confirm
the minima state of the parameter set. The estimation method was first-order conditional
estimation with interaction (FOCEI).

3. Results
3.1. Simulation Study

In the simulation in which the one-compartment model’s absorption rate (Ka) was
modified to a fractionally modified rate, when the heterogeneity exponent h value was
in the range of 0.75–0, the lower peak concentration appeared earlier. When the h value
was in the range of 1–0.75, the concentration increased, and the time point to the peak was
reached near 0. By contrast, in the case in which the elimination rate (Ke) was adjusted, a
larger h resulted in a faster decrease in elimination rate. As a result, the drug amount in
the central compartment became trapped, and the concentration stopped moving from a
certain point determined by h and its corresponding rate constant value. Changes in PK
patterns were more pronounced when the fractionally modified parameter was slower than
the other rate constants (Figure 2).

In the two-compartment model simulation, after the fractal expression had been
applied, the pattern changes in absorption and elimination were similar to those of the
one-compartment cases. When the volume of the peripheral compartment was larger than
the volume of the central compartment, the PK pattern did not show a larger difference.
When the fractal rate was applied to Kcp, there was little change in the PK profile if the
central distribution volume was larger than the peripheral distribution volume. By contrast,
the effect of the fractal Kcp was large, and double peaks in the profiles were observed when
the rate of absorption was higher than the clearance. In the case of fractal Kpc, the increase
in h resulted in a more distinct PK pattern between the distribution and elimination phases
(Figure 3).

3.2. Numerical Model Evaluations in a Real Case

The fractal rate of the absorption process was applied to the collected models, and
estimations in each model were conducted. The minimized state of the model was con-
firmed on the basis of parameter perturbation and saddle point resets. Performance was
measured using OFV, AIC, and AICc. For the OFV, all metrics decreased significantly, but
not for Model Case 3. The decrease was greatest in Model Case 2. For AIC and AICc,
positive values were obtained only for Model Case 3, which indicated that the addition
of the parameter did not enhance model prediction. The decrease in AICc was largest in
Model Case 2, followed by Model Case 1. The performance results are summarized in
Table 2.
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Figure 2. Simulated PK profiles of one-compartment model from parameter sets (upper label) and
fractal rate (right label). Changes in the fractal exponent are plotted from 0 (blue line) to 1 (red line)
by 0.05. The exponent of 0.25/0.75 is shown with dashed orange lines, and 0.5 is plotted as solid
orange line.

Figure 3. Simulated PK profiles of two-compartment model from parameter sets (upper labels) and
fractionally modified rate (right labels). Changes in the fractal exponent are plotted from 0 (blue
line) to 1 (red line) by 0.05. The exponent of 0.25/0.75 is shown as dashed orange lines, and 0.5 is
plotted as solid orange line. The first three columns present the concentration profile when the central
volume is greater than the peripheral volume, and the rest of the columns represent the profiles with
the central volume being less than the peripheral volume.
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Table 2. Summary of the performance metrics in the estimation study.

Model Case 1 Case 2 Case 3 Case 4 Case 5

No. of subjects 18 44 20 40 8
No. of observations 383 3024 339 472 93
No. of parameters—base 12 13 16 21 10
No. of parameters—fractal 13 14 18 22 12

OFV—base 1443.70 13,977.10 2155.43 1556.43 358.47
OFV—fractal 1410.08 13,592.00 2153.54 1539.64 350.13
∆ OFV −33.62 −385.10 −1.89 −16.79 −8.34

AIC—base 1467.70 14,005.10 2187.43 1598.43 378.47
AIC—fractal 1436.08 13,624.00 2189.54 1583.64 374.13
∆ AIC −31.62 −381.10 2.11 −14.79 −4.34

AICc—base 1468.54 14,005.24 2189.11 1600.48 381.15
AICc—fractal 1437.07 13,624.18 2191.67 1585.89 378.03
∆ AICc −31.47 −381.06 2.55 −14.58 −3.12

OFV: objective function value, AIC: Akaike’s information criteria, AICc: corrected Akaike’s information criteria.
Value difference in performance metrics is shown as ∆.

3.3. Visual Model Evaluations

In the GOF plots, observations vs. predictions, predictions vs. individual weighted
residuals, and time vs. conditional weighted residuals showed reasonable fittings for all
model cases. Some prediction discrepancies were observed in Model Case 3, which lacked
a structural part. The other models’ fitting points were closely located near the standard
lines of y = x and y = 0 in each of the predictions and residuals. Most of the conditional
weighted residual values were included within ±2, and the trends lay around zero. With
the exception of Model Case 4, the fractal models’ regression lines tended to be closer to the
standard lines, and the conditional weighted residuals’ tendency was notably improved by
the application of fractal kinetics (Figure 4).

Prediction-corrected VPC plots reveal that all of the models reasonably explained the
respective observation data. In the absorption phases that included fractal kinetics, the
observations were mostly better covered by the middle range of the prediction intervals. In
Model Cases 1 and 5, the NPDEs of the fractal models were more normally distributed than
in the models without fractal kinetics. The other model cases showed similar distribution
patterns. When combined with the numerical NPDE results, the prediction error tendency
of the models was more satisfactory for conditions of normal distribution. Prediction-
corrected VPC and NPDE results are shown in Figures 5 and 6.
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Figure 4. Overlain goodness of fit plots for the fractal and base models. Plots of the x and y axes are
displayed in the label on the right side. DV: observation, PP: population prediction, IP: individual
predictions, IWRES: individual weighted residuals, CWRES: conditional weighted residuals, TIME:
time in hours.

Figure 5. Model performance. Differences are displayed from the mean value of five model outputs.
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Figure 6. Model performance. Differences are displayed from the mean value of five model outputs.

4. Discussion

The simulation study for the one-compartment model shows that a heterogeneity
exponent h close to 1 for the absorption process generated a PK profile similar to that of
intravenous injection. An h value close to 1 produced a very high rate constant at time
points close to 0, implying that the dosed compartment emptied almost instantaneously.
The fractal expression of elimination implies that the drug amount remained in the central
compartment, with the time when the amount became completely trapped being earlier
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as the value of h increased. The fractal equation had a significant effect on relatively slow
rate constants, implying a larger difference in the distribution of the drug particles between
two compartments. These results are consistent with the theoretical underpinnings of
fractal concepts.

For the simulation results of the two-compartment model, the fractal absorption and
elimination patterns were similar to those of the one-compartment model, in which the
volume of the peripheral compartment was smaller than that of the central compartment.
Fractal Kcp, which describes the drug’s rate of movement from the central to the peripheral
compartment, did not have a large effect on the drug concentration in the central compart-
ment because the peripheral compartment’s capacity to retain the drug was smaller than
that of the central compartment. However, when the drug’s estimated peripheral volume of
distribution was large, drug distribution between the central and peripheral tissues played
a major role in drug elimination from the systemic circulation, such that the sensitivity of
drug concentration with respect to fractal absorption was less.

When the fractal rate was applied to Kcp, in the case that the volume of drug dis-
tribution in the peripheral compartment was large, a unique PK pattern was obtained in
which the drug moved into a large peripheral space and slowly returned to the central
space, yielding double peaks in the concentration profile. The h value in Kcp determined
the amount of the dose that moved into the peripheral compartment by adjusting the
rate of Kcp decay over time. This double-peak pattern was most pronounced when the h
value was around 0.5 because the portion of dose in the peripheral compartment gradually
decreased as h approached 1. This pattern is often seen for sustained-release drugs that
are thought to circulate in the lymph nodesor bind to certain tissue, as in Model Case 3. In
the reproduction of this behavior in compartment modeling, it is important to establish
certain conditions between parameters; for example, when the volume of distribution is
larger in the peripheral compartment than that in the central compartment, the absorption
rate should be far greater than the clearance, as shown in Figure 3.

In the case of Kpc, the fractal rate had a greater effect when the volume of distribution
was smaller in the peripheral compartment than that in the central compartment. The h
value determined the amount of dose retained in the peripheral compartment by adjusting
the rate of Kpc decay over time. When the volume of distribution was larger in the periph-
eral compartment than that in the central compartment, the fractal effect was relatively
small, as the value of Kpc was much smaller, such that the dosed amount already tended to
be retained in the peripheral compartment after the first dosing event.

Among the five model cases, on the basis of the AIC and AICc results, improved
performance metrics only failed to occur in Model 3, such that the decrease in OFV was not
significant. Among the models, performance improvement was best for Model 2, followed
by Models 1, 4, and 5. All GOF plots and regression lines were in reasonable ranges,
with good agreement between observations and predictions. The fractal models generally
showed equal or better fitting results in the predictions, except for Model 4, and most of
the differences between the conventional and fractal models were not notable according to
the visual criteria. The effect of fractal absorption for the conditional weighted residuals vs.
time was the most distinctive.

According to the VPC results, the confidence intervals of the prediction for the 5th,
50th, (median), and 95th percentiles show that the observations were better for the models
with the fractal rate than those of the base models without the fractal rate with respect to
absorption. The 95th percentiles were especially improved in terms of coverage, which
showed that the interpretation of high dose concentrations was better in models with a
fractal rate.

The prediction confidence intervals of the fractal model tended to be lower in Model
Cases 1, 2, and 5 than that in the base model. This implies that the fractional expression
can improve interindividual model misspecification, by narrowing the width of the confi-
dence interval, if the misspecification did not originate from uncontrolled variance of the
data itself. Although the performance metrics were improved, the confidence intervals
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could increase, as they better reflect the variance in the observations. The fractal rate
can improve the η-shrinkage [24], a measure of the agreement between the observed and
model-specified variances. The normalized prediction distributions of the models were not
impaired by fractal rate introduction. In all cases, there were improvements on kurtosis,
variance converged to 1, and the model prediction errors were better shaped following the
normal distribution.

In summary, the models in this study had already been fully minimized; thus, changes
in the visual diagnostics of the fractal model’s fitting appeared to be subtle, but the intro-
duction of the heterogeneity exponent was favorable, resulting in a further significant
improvement in the given structure. In the evaluation of the pure effects of the fractal
kinetics upon a model, no structural modifications of the model occurred except for the
parameters concerning absorption, i.e., the important step in which drug particles pene-
trate largely heterogeneous interfaces. If the model compartments and rate constants can
be designed to better incorporate fractal kinetic concepts, simpler and more descriptive
models are possible. The fractal kinetic models tested in this study are expected to provide
different results in terms of the nonlinearity between doses, and different interpretations of
the nonlinearity of the doses, which can have a large effect on predicting the first-in-human
(FIH) dose or bioequivalence (BE). For example, as noted above, the application of fractal
kinetics can change the way in which variabilities in models are assessed, as simulated
variability may differ from that in models based on a homogeneous assumption. Tests that
are highly dependent on drug variability, such as the BE test, may be greatly affected by
this difference in approach.

With the models tested in this study, most of the fractal-kinetics applications were
meaningful, with differences in performance gain. In addition to the fractal expression
tested here, there are several other expressions that can reflect spatial characteristics. Ad-
ditional improvements in model performance depend on whether the appropriate fractal
kinetics are applied to the appropriate step in the process of ADME.

5. Conclusions

The application of simple fractal kinetics to existing models is valid and provides a
better description of PK without losing the mechanistic description of a drug.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics15010304/s1, Figure S1: Compartmental scheme of case 1
and fractional rate modification site (highlighted); Figure S2: Compartmental scheme of case 2
and fractional rate modification site (highlighted); Figure S3: Compartmental scheme of case 3
and fractional rate modification site (highlighted); Figure S4: Compartmental scheme of case 4
and fractional rate modification site (highlighted); Figure S5: Compartmental scheme of case 5 and
fractional rate modification site (highlighted); Figure S6: Individual plot of case 1. Black dotted line:
observation, dashed line: population pre-diction, solid line: individual prediction, blue lines: base
model, red lines: fractal model; Figure S7: Individual plot of case 2. Black dotted line: observation,
dashed line: population pre-diction, solid line: individual prediction, blue lines: base model, red
lines: fractal model; Figure S8: Individual plot of case 3. Black dotted line: observation, dashed
line: population pre-diction, solid line: individual prediction, blue lines: base model, red lines:
fractal model; Figure S9: Individual plot of case 4. Black dotted line: observation, dashed line:
population pre-diction, solid line: individual prediction, blue lines: base model, red lines: fractal
model; Figure S10: Individual plot of case 5. Black dotted line: observation, dashed line: population
pre-diction, solid line: individual prediction, blue lines: base model, red lines: fractal model; Table S1:
Estimated results of case 1; Table S2: Estimated results of case 2; Table S3: Estimated results of case 3;
Table S4: Estimated results of case 4; Table S5: Estimated results of case 5; Code S1: R Code for
simulation; Code S2: NONMEM Code for case 1 (base model); Code S3: NONMEM Code for case 1
(fractal model); Code S4: NONMEM Code for case 2 (base model); Code S5: NONMEM Code for case
2 (fractal model); Code S6: NONMEM Code for case 3 (base model); Code S7: NONMEM Code for
case 3 (fractal model); Code S8: NONMEM Code for case 4 (base model); Code S9: NONMEM Code

https://www.mdpi.com/article/10.3390/pharmaceutics15010304/s1
https://www.mdpi.com/article/10.3390/pharmaceutics15010304/s1
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for case 4 (fractal model); Code S10: NONMEM Code for case 5 (base model); Code S11: NONMEM
Code for case 5 (fractal model).
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