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Abstract: Drug discovery and development are aimed at identifying new chemical molecular entities
(NCEs) with desirable pharmacokinetic profiles for high therapeutic efficacy. The plasma concentra-
tions of NCEs are a biomarker of their efficacy and are governed by pharmacokinetic processes such
as absorption, distribution, metabolism, and excretion (ADME). Poor ADME properties of NCEs are a
major cause of attrition in drug development. ADME screening is used to identify and optimize lead
compounds in the drug discovery process. Computational models predicting ADME properties have
been developed with evolving model-building technologies from a simplified relationship between
ADME endpoints and physicochemical properties to machine learning, including support vector
machines, random forests, and convolution neural networks. Recently, in the field of in silico ADME
research, there has been a shift toward evaluating the in vivo parameters or plasma concentrations of
NCEs instead of using predictive results to guide chemical structure design. Another research hotspot
is the establishment of a computational prediction platform to strengthen academic drug discovery.
Bioinformatics projects have produced a series of in silico ADME models using free software and
open-access databases. In this review, we introduce prediction models for various ADME parameters
and discuss the currently available academic drug discovery platforms.

Keywords: in silico model; ADME; artificial intelligence; machine learning; prediction; academic
drug discovery

1. Introduction

The major goal of pharmaceutical research and development is to ensure the continu-
ous availability of new chemical molecular entities (NCEs) which display a high therapeutic
efficacy with few or no adverse effects. Efficacy and toxicity are associated with pharma-
cokinetic profiles governed by absorption, distribution, metabolism, and excretion (ADME).
Consequently, poor ADME profiles of NCEs can be a major cause of attrition in drug
development [1]. Major challenges in drug discovery include the chemical constraints
derived from receptor or target ligands, and ADME plus toxicology (ADMET) properties
are regarded as secondary constraints in the drug discovery process. ADME screening has
become increasingly important in identifying and optimizing lead structures. Each ADME
process can be further evaluated using certain parameters, i.e., absorption is evaluated
mainly using solubility and membrane permeability; distribution using protein binding,
tissue binding, and transporters such as P-glycoprotein (P-gp), which is a key factor in dis-
tribution to the central nervous system (CNS); metabolism using metabolic stability in liver
microsomes or hepatic clearance; and excretion using renal clearance and urinary excretion
rates. Many screening systems have been developed and applied to evaluate compounds
based on the appropriate criteria during lead identification and optimization. To streamline
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these stages, ADME prediction using in silico models has become essential, and is ideally
used to extract compounds for high-throughput screening from vast compound libraries or
to guide structural design before chemical synthesis [2,3].

The most important challenge for in silico ADME screening includes setting up robust
models with a high predictability. Recent model construction studies have predominantly
utilized artificial intelligence (AI) and machine learning (ML) technologies, including
artificial neural networks (ANN), random forests (RF), support vector machines (SVM),
and tree-based methods [3]. Furthermore, current state-of-the-art technologies, such as
graph convolution networks (GCNs) and graph neural networks (GNNs), have permitted
researchers to generate novel in silico ADME prediction models in addition to assessing the
biological activities of NCEs toward druggable protein targets [4,5]. These models can be
divided into two types, classification models (that can select compounds based on cut-off
values for each parameter) and regression models (that can provide the exact value).

In silico ADME models are likely to be constructed by players in three major areas:
information technology (IT), pharmaceuticals, and academia. IT companies have created
predictive platforms for various ADME parameters, including toxicological profiles, such
as ADMET Predictor (Simulations Plus, Lancaster, CA, USA; http://www.simulations-
plus.com/ (accessed on 7 November 2023)), BIOVIA Discovery Studio (Accelrys, San
Diego, CA, USA; https://www.3ds.com/products-services/biovia/products/ (accessed
on 7 November 2023)), and SCIQUICK (Fujitsu Ltd., Tokyo, Japan; https://www.fujitsu.
com/jp/solutions/business-technology/tc/sol/sciquick/ (accessed on 6 November 2023)).
These platforms have emerged as powerful tools for drug discovery in the pharmaceuticals
industry. Furthermore, effort has been made by different pharmaceutical companies
to construct in-house ADME prediction platforms using datasets based on proprietary
chemical libraries and data derived from in-house screening systems with optimized assay
conditions. The complementary use of in-house platforms and commercially available
suites allows for improved ADME screening and the efficient acceleration of NCE discovery.

It is interesting to note that basic academic research has garnered attention as an
alternative method for discovering NCEs, and more than half of the recent small-molecule
discoveries have their origins in academic research, with increasing relative inventive con-
tributions from academia [6,7]. However, most academia-led drug discovery projects fail in
the nonclinical stage (the so-called “death valley”). This is attributed to the lack of expertise
and resources in academia to optimize lead structures in terms of their pharmacokinetics
and toxicology. Academic researchers have limited access to commercial ADME prediction
software packages due to high licensing fees; therefore, the establishment of a favorable
research environment for such prediction tools is essential.

To meet social demand, freely available prediction models have been developed,
including online chemical modeling environments, such as OCHEM (https://ochem.eu/
home/show.do (accessed on 6 November 2023)) [8], SwissADME (http://www.swissadme.
ch/ (accessed on 6 November 2023)) [9], and pkCSM (http://biosig.unimelb.edu.au/
pkcsm/ (accessed on 6 November 2023)) [10]. The Japan Agency for Medical Research
and Development (AMED) directs integrated research to translate basic research into
practical applications (https://www.amed.go.jp/en/ (accessed on 6 November 2023)). The
Department of Innovative Drug Discovery and Development (iD3) division of AMED,
which supports academic drug discovery, established the Initiative Development of a Drug
Discovery Informatics System (iD3-INST) with financial support. The objective of the
iD3-INST was mainly to construct a platform for academic drug discovery, which would
comprise a database and in silico prediction models for ADME profiles. Attempts have
been made in the public sector and in public–private partnerships to overcome the issues
described above [11].

Given that pharmacokinetic behavior is governed by many parameters, an under-
standing of pharmacokinetics requires a comprehensive evaluation of these parameters.
Many in silico models have been reported for each parameter. It is necessary to recognize
the significance of these parameters when considering which model is appropriate for

http://www.simulations-plus.com/
http://www.simulations-plus.com/
https://www.3ds.com/products-services/biovia/products/
https://www.fujitsu.com/jp/solutions/business-technology/tc/sol/sciquick/
https://www.fujitsu.com/jp/solutions/business-technology/tc/sol/sciquick/
https://ochem.eu/home/show.do
https://ochem.eu/home/show.do
http://www.swissadme.ch/
http://www.swissadme.ch/
http://biosig.unimelb.edu.au/pkcsm/
http://biosig.unimelb.edu.au/pkcsm/
https://www.amed.go.jp/en/


Pharmaceutics 2023, 15, 2619 3 of 30

screening purposes. While this may be possible for pharmacokinetic researchers, medici-
nal chemists working in industry and academic biologists often do not have an in-depth
understanding of these parameters. Therefore, this review describes the background and
significance of evaluating each parameter in pharmacokinetic studies and then introduces
the characteristics of various in silico models. Thus, this review will serve as a guide for
ADME-based in silico drug discovery for researchers in various fields. The features of the
open-access in silico models developed using the iD3-INST are also described. Toward the
end, we briefly discuss the ongoing challenges with newly available AI technologies built by
industry–academia partnerships, and the future prospective for in silico ADME prediction.

2. Evaluation Metrics of Predictive Models

We evaluated the predictive models more frequently cited in previous studies. A
description of the evaluation metrics is shown in the tables, and their descriptions are
given below.

a. Classification model evaluation metrics

“Accuracy” measures the proportion of samples correctly classified by the model;
however, it may not be suitable for imbalanced datasets. “Precision” calculates the ratio
of true positive predictions to all positive predictions made by the model; it is important
to minimize false positives. “Recall” calculates the ratio of true positive predictions to all
actual positive samples; it is important to minimize false negatives. “F1” is the harmonic
mean of precision and recall, and balances the trade-off between these two metrics. In
addition, it is useful for assessing the overall model performance. “Receiver operating
characteristic area under the curve (ROC-AUC)” quantifies the area under the ROC curve,
which plots the true positive rate against the false positive rate at different thresholds.
“Cohen’s kappa (kappa)” measures the agreement between observations, and it takes into
account the possibility of agreement occurring by chance. It is a credible and dependable
indicator of inter-rater agreement.

These metrics (other than kappa) are expressed in the range of 0–1; a higher value is
desirable. The range of possible values of kappa is from −1 to 1, though it usually falls
between 0 and 1.

b. Regression model evaluation metrics:

“Mean absolute error (MAE)” is the average of the absolute differences between the
actual and predicted values. It quantifies the size of prediction errors without squaring
the values and is less sensitive to outliers. “Mean squared error (MSE)” is the average
of the squared differences between the actual and predicted values. It quantifies the size
of prediction errors and is more sensitive to outliers than the MAE. “Root mean squared
error (RMSE)” is the square root of the MSE, providing a similar measure of prediction
error with the same units as the target variable. “Coefficient of determination (R2)” and
“Cross-validation coefficient of determination (Q2)” represent the proportion of variation
in the dependent variable that can be explained by the model, where Q2 is calculated based
on a full cross-validation. R2 and Q2 provide a measure of how well the observed outcomes
are replicated by the model, based on the proportion of total variation in the outcomes that
can be explained by the model.

All the metrics in regression models take values from 0 to 1. Lower values of MAE,
MSE, and RMSE and higher values of R2 and Q2 indicate a better model performance.

3. Physicochemical Properties

When considering the relationship between physicochemical properties and ADME,
the most fundamental properties include lipophilicity, solubility, ionization, topology,
and molecular weight (MW). In the subsequent subsections, we describe the definition,
importance in ADME, and determination of each of these properties.
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3.1. Lipophilicity

Lipophilicity refers to the ability of a compound to interact with non-polar solvents
and is a fundamental property for describing hydrophobicity.

It has been associated with the ADME, toxicity, and efficacy of NCEs and has been
widely exploited when constructing in silico models for ADMET as a chemical descriptor.
Increasing the lipophilicity of compounds via chemical modifications tends to enhance their
penetration through cell membranes and biological barriers, in addition to their binding to
proteins such as serum albumin, but reduces their aqueous solubility.

Lipophilicity is typically defined by the partition coefficient (P), which is determined
based on the ratio of the concentrations of a solute between the two solvent phases (gener-
ally, with water and n-octanol). The logarithm of this ratio (log P) has also been utilized to
indicate lipophilicity.

The distribution coefficient, log D, is the ratio of the sum of the concentrations of all
forms of the compound (ionized plus unionized forms) in each of the two solvents (aqueous
phase at a specified pH and n-octanol). Therefore, log D depends on the ionization of the
compound and is equal to log P for non-ionizable compounds. For ionizable compounds,
log D is preferentially utilized over log P when considering the relationship between
lipophilicity and ADME.

3.2. Solubility

Solubility refers to the ability of a compound to dissolve in a specific solvent (i.e., water
or buffer with a specific pH, fasted state simulation intestinal fluid, and fed state simulated
intestinal fluid). The solubility of a compound varies greatly depending on its salt and
crystal structures and is also influenced by chemical structure, temperature, and the nature
of the solvent.

Solubility is a critical property in drug development because it directly affects bioavail-
ability. Solubility is also an indicator of absorbability. For poorly soluble compounds,
much effort is often needed to improve their intestinal absorption in the nonclinical stages
(pharmacokinetic and toxicological studies) and to develop appropriate formulations for
clinical trials.

Solubility can be determined using the shake-flask method. In this method, a com-
pound is added to a known volume of the solvent, and the mixture is shaken until equi-
librium is reached. The concentration of the dissolved compound is then determined via
various analytical techniques, such as high-performance liquid chromatography.

3.3. Ionization

Ionization (indicated using the ionization constant (pKa)) is a measure of the acidity or
basicity of a compound, specifically its ability to donate or accept protons (H+ ions) when
in solution.

pKa is an important parameter because it helps to explain the pharmacokinetic behav-
ior and interactions of a compound. It is determined by measuring the pH at which the
concentrations of the compound’s ionized and unionized forms are equal. When log D is
measured at various pHs, a curve is drawn (based on a plot of log D against pH). The pH
at the inflection point is the pKa, and log D is closely related to pKa.

3.4. Topology

Topology refers to the arrangement or connectivity of atoms in a molecule, specifically
in the context of its chemical structure and the spatial relationships between atoms.

It is a fundamental concept in medicinal chemistry, and the connectivity and arrange-
ment of atoms in a compound are key factors in determining its chemical and biological
properties. Medicinal chemists often design the topology of a compound to optimize its
binding affinity to specific targets and improve its pharmacokinetic properties.



Pharmaceutics 2023, 15, 2619 5 of 30

3.5. Molecular Weight

The MW of a compound, also known as the molecular mass or molar mass, is the sum
of the atomic weights (or atomic masses) of all the atoms in a molecule and is typically
expressed in Daltons (Da).

A compound’s MW is a determinant of its ADME profile, and affects its membrane
permeability; this consequently affects its intestinal absorption and tissue distribution,
particularly in the context of penetration through the blood–brain barrier (BBB).

To calculate the MW, the atomic weights of all the atoms in the chemical formula
are added up. Accurate MWs can be obtained using analytical instruments such as mass
spectrometers.

4. Oral Absorption
4.1. General Assessment

Oral absorbability, alongside hepatic metabolic stability, is a key criterion for selecting
NCEs with desirable pharmacokinetic properties [12]. Solubility and membrane permeabil-
ity are determinants of oral absorption [13], and the Biopharmaceutics Drug Classification
System has identified permeability and solubility as key parameters controlling absorp-
tion [14]. The significance of these two parameters can be demonstrated by the fact that the
maximum absorbable dose is mainly dependent on water solubility and absorption rate
constants, when the intestinal water volume is fixed [14,15]. A poor water solubility and
membrane permeability profiles are challenges when selecting the appropriate solvents to
achieve sufficient exposure in toxicokinetic studies and when developing formulations for
clinical studies; these barriers can result in increased failure rates [16,17].

The terms “kinetic solubility” and “thermodynamic solubility” are often used to
describe water solubility, and solubilities are assessed during several stages in drug discov-
ery [18]. The kinetic solubility method, which utilizes a relatively high-throughput system,
is determined after the addition of a small volume of DMSO to the aqueous buffer; this
assay is widely considered to be the standard method [19]. Kinetic solubility values are
typically higher than corresponding thermodynamic solubility values because supersat-
uration occurs when an organic solvent is diluted in water. Thermodynamic solubility
is determined by dispensing a solid compound in a solvent. This is often considered to
be the true solubility of the compound and is critical for formulation development [20].
The analysis of thermodynamic solubility has become streamlined recently through the
development of miniaturized high-throughput assays in conjunction with novel analytical
techniques, such as solid-state analysis, ultra-performance liquid chromatography, and
polychromatic turbidimetry. Newly developed thermodynamic solubility assays enable
more complex physicochemical profiling during drug discovery.

Cell-based models have been used to predict in vivo intestinal drug permeability by
utilizing Caco-2 and other epithelial cell lines, such as human primary intestinal cells and
induced pluripotent stem cells [21]. Caco-2 cells, which are derived from human colorectal
adenocarcinoma cells, have been widely used by pharmaceutical companies and regulatory
authorities as a standard assessment line, and have been widely used for in vitro cell culture
models of the human intestinal mucosa. The Caco-2 cell assay commonly uses a 24-well
format with a long-term culture, but is considered to be labor-intensive, time-consuming,
expensive, and low throughput. The 24-well assay plate format has been miniaturized to a
96-well assay format [22,23]. As alternative approaches, a short-term growing-cell assay
with Madin–Darby canine kidney (MDCK) cells and parallel artificial membrane permeabil-
ity assays (PAMPAs) have been used for permeability screening in drug discovery [24,25].
Given that wild-type (WT) MDCK cells are genetically heterogeneous, Bokulic et al. [26]
developed an assay system for assessing passive permeability based on a subclone of
MDCK cells, which lowly expressed P-gp. Consequently, in silico permeability prediction
models have been developed in accordance with various assay methods.

Several in silico models for solubility, membrane permeability, and intestinal absorption
have been developed, and Table 1 summarizes the characteristics of some of these models.
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Table 1. In silico prediction models for solubility and membrane permeability in cell-based assays.

Assay
Dataset

Type of Model Algorithms Predictive Performance Ref.
No of cpds Source Parameters

Solubility 483
AQUASOL

and SRC
databases

Aqueous
solubility

Two-
classification

model

Cart
classification

model

Sensitivity = 0.823,
selectivity = 0.879 [27]

Solubility 11,780–22,209 In-house
assay data

Kinetic
solubility

Two-
classification

model
RF, GCNN

AUC-ROC = 0.87–0.90,
Sensitivity = 0.63–0.71,
Specificity = 0.90–0.91

[28]

Solubility 12,674 Two public
databases

Aqueous
solubility

Combination
of two-

classification
and regression

models

Gradient
boosting and
recursive RF

R2 = 0.87 for consensus model
Sensitivity = 0.80,
specificity = 0.96

[29]

Permeability 207
In-house

cpds
measured

Caco-2 cells QSAR
Multivariant

linear
regression

R = 0.76 [30]

Permeability 130 Literature Caco-2 cells QSAR

Innovative
machine

learning-based
HSVR

R2 = 0.91 [31]

Permeability 386 Marketed
drugs MDCK cells QSAR PLS, SVM AUC = 0.84 for PLS,

0.81 for SVM [32]

Permeability 74 Discovery
cpds

Rat intestinal
permeability QSAR HSVR R2 = 0.93 [33]

Permeability 71

Drugs
peptide
mimic

compounds

PAMPA QSAR Regression
analysis R2 = 0.76 [34]

Permeability 182 Literature PAPMA QSAR PLS, HSVR Q2 = 0.88 for HSVR
and 0.61 for PLS

[35]

Permeability >6500
Drugs and
drug-like

compounds
PAMPA Four-classifier

models

Graph
convolutional

neural network

Sensitivity = 0.74
specificity = 0.82 [24]

Permeability 2406–16,624 In-house PAMPA Two-classifier
model RF, GCNN

AUC-ROC = 0.85–0.86,
Sensitivity = 0.83–0.84,
Specificity = 0.64–0.78

[28]

4.2. Solubility Prediction

Most available in silico solubility predictors are classification models rather than quan-
titative structure–activity relationship (QSAR) models. Newby et al. [27] developed in silico
models with binary classifiers using 483 compounds obtained from the AQUASOL (6th Edi-
tion) and SRC (PHYSPROP) databases, and the model achieved a sensitivity and selectivity
of 0.823 and 0.879, respectively. Siramshetty et al. [28] investigated the ability of QSAR and
classification models to predict ADME properties, such as metabolic stability, permeability,
and solubility; an in silico prediction model for solubility was constructed based on kinetic
solubility data from a large dataset of 25,853 compounds. Binary classification models
with a cut-off of 10 µg/mL were built using RF and graph convolutional neural networks
(GCNN), and achieved a relatively high predictive performance with an AUC-ROC curve
of 0.87–0.90, sensitivity of 0.63–0.71, and specificity of 0.90–0.91. Falcón-Cano et al. [29]
suggested that the limited performance of in silico solubility models may be attributable
to the lack of high-quality solubility data. Their group developed a QSAR model and
a binary classification model based on a large and diverse dataset including thermody-
namic solubility information collected from two public sources in accordance with the
curation protocol, i.e., including the cleaning of the chemical structures, standardization of
the molecular representation, and treatment of duplicates. The consensus model for the
QSAR and binary classification models with cut-offs of log S > 10−2 produced a coefficient
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determinant (R2) of 0.87 and sensitivity and specificity of 0.96 and 0.80, respectively, for
the internal test set. It should be noted that their groups intensively summarized existing
in silico classification and QSAR models. A novel prediction approach for biorelevant
solubility was recently reported, which was based on a thermodynamic cycle comprising
solid-state crystal lattice packing and the dissociation of molecules from the lattice and
solvation [36]. This approach provides important information on the molecular interactions
that occur during drug dissolution and solubilization.

4.3. Prediction of Membrane Permeability

The Caco-2 cell assay is a standard method for evaluating the membrane permeability
of molecules in the pharmaceutical industry. Large variabilities in membrane permeabil-
ity (Papp) predictions between laboratories, which can be attributable to different assay
conditions and/or heterogenous cell lines [22], have become a common issue. Although
reference compounds (i.e., metoprolol) have been utilized to validate this routine assay, data
correction based on the Papp of reference compounds is necessary. Therefore, it is difficult
to develop QSAR models with a high accuracy using large datasets comprising Papp data
collected by various laboratories. Smaller datasets tend to be used when constructing in
silico models based on Caco-2 cells to predict permeability. An attempt utilizing an in-house
dataset by Kamiya et al. [30] yielded QSAR models via multivariant linear regression, but
the predictive performance was relatively low with a correlation coefficient (R) of 0.77. Ta
et al. [31] curated permeability data by evaluating Caco-2 cell assay conditions, such as the
pH and solvent used, to ensure consistency. Using the curated data, the QSAR models built
with innovative ML-based hierarchical support vector regression (HSVR) achieved a high
correlation (R2 = 0.91). Brocatelli et al. [32] employed MDCK data to build a binary-classifier
model, and the predictive performance based on AUC was 0.84 for partial least-squares
regression (PLSR) and 0.81 for SVMs. Noticeably, the Papp originating from the Caco-2 cell
assay was correlated with that from the MDCK cells, with an R2 of 0.60.

PAMPA is widely utilized for early screening in drug discovery due to its simple mech-
anism, resulting in the development of in silico QSAR models. QSAR models for PAMPA
developed by Nakao et al. [34] and Chi et al. [35] showed similar predictive performances
with an R2 of 0.76 and a Q2 of 0.61–0.88, respectively, despite the small datasets used.
Siramshetty et al. [28] updated PAMPA QSAR models using data generated through an
in-house optimization process, and achieved a balanced accuracy of 71–85%. Additionally,
their group developed a binary-classifier based on a cut-off of 2.5 for Papp using a large
dataset of 16,624 compounds, which achieved a good predictive performance with an AUC-
ROC of 0.85–0.86, sensitivity of 0.83–0.84, and specificity of 0.64–0.78. Similarly, a relatively
large dataset (>6500) for PAMPA was employed by Williams et al. [24], who demonstrated
the usefulness of a GCNN-developed four-classifier model and good correlation between
PAMPA permeability at pH 5 and in vivo oral bioavailability in mice and rats.

4.4. Prediction of Intestinal Absorption

Several attempts have been made to identify the molecular descriptors that are associated
with intestinal absorption as well as membrane permeability in cell-based assays [37–39]. A
review by Stenberg et al. [37] reported a chemical descriptor-based method for prediction
of absorption in humans and found that the polar surface area (PSA) was closely related to
intestinal absorption after the oral administration of drugs in humans, whereas lipophilicity
was a poor descriptor. Refsgaard et al. [39] found that five descriptors (namely, the number
of flexible bonds, number of hydrogen bond acceptors (HBAs) and donors (HBDs), molec-
ular surface area, and PSA) were determinants of permeability in a Caco-2 cell monolayer
model. Another study also reported that the most important properties for absorption and
permeability were the hydrogen bonding capacity and molecular size of the drug rather than
lipophilicity alone [38]. O’Donovan et al. conducted a study using a large in-house dataset
comprising >20,000 compounds [40] and identified the molecular descriptors governing
bioavailability and membrane permeability in the Caco-2 cell assay. Interestingly, neutral
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compounds retained permeability up to an MW limit of 700, whereas stronger acids and bases
were restricted to a MW of 400–500.

Existing in silico predictive models for human intestinal absorption (Fa) are summa-
rized in Table 2. The relationship between the extent of human Fa in humans and Papp in
Caco-2 cells with an R of 0.61 was demonstrated by Kamiya et al. [30]. Newby et al. [27]
created a computational model to predict human intestinal absorption (HIA; %) from Papp
in Caco-2 cells, and when high and low HIA classes were defined based on a cut-off of 30%,
an accuracy of 0.80 was achieved. Various binary classification models have been devel-
oped based on data in the literature and/or FDA-approved drugs. The classification model
employed a cut-off of 30% in many cases. The classification models by Newby et al. [27]
and Shen et al. [41] demonstrated a good predictive performance with sensitivities of 0.741
and 0.998, respectively, and specificities of 0.850 and 85.9–89.7, respectively. In contrast,
Niwa et al. [42] produced QSAR models based on a dataset with 86 compounds using a
GRNN, even though the dataset was limited.

Table 2. In silico prediction models for human intestinal absorption.

Assay
Dataset

Type of Model Algorithms Predictive Performance Ref.
No of cpds Source Parameter

HIA 86 Drugs and
drug-like cpds Fa QSAR GRNN, probabilistic

neutral network RMS = 22.8% for GRNN, [42]

HIA 455 Drugs and
drug-like cpds Fa

QSAR,
Two-classifier

model

Genetic function
approximation,

recursive partitioning
techniques

R = 0.84,
95.9% poorly absorbed
compounds and 96.1%

well-absorbed compounds

[43]

HIA 141

ChEMBL,
research and

serotonin
database

Fa
Two-classifier
model, QSAR

Hierarchical
combination of

classification and
regression

Accuracy = 0.765,
precision = 0.782

R2 = 0.379
[44]

HIA 932
Several research
and FDA drug

databases
Fa

Two-classifier
model

Cart classification
model

Sensitivity = 0.745,
specificity = 0.865 [27]

HIA 578 Hou’s research Fa

Two-
classification

model
SVM Sensitivity = 0.998,

specificity = 0.859–0.897 [41]

HIA 225 Zhao’s research Fa
Classification

models

Gaussian process
classification, RF,

SVM

Gaussian process
classier RF, SVM
κ = 0.42–0.58

[45]

HIA 578 Research HIA
SAR-based
SAR model,

QSAR

Linear SAR and
ensemble

learning-based SAR
modeling

Qualitative SAR > 99%,
QSAR: R2 > 0.91 [46]

5. Distribution
5.1. General Assessment

Predicting the plasma concentration profiles of drugs in humans is important and
can be achieved by integrating in vitro and/or in vivo pharmacokinetic data from the
nonclinical stages. As a simplified approach, the human profile can theoretically be de-
scribed by a steady-state distribution volume (Vdss) in addition to total clearance (CL). The
Vdss can be predicted by either empirical approaches based on the allometry concept or
physiological-based pharmacokinetic (PBPK) models based on the physiological concept.
The PBPK approach generally employs mechanistic tissue composition models that are
essentially represented by the model described by Poulin and Theil; this approach considers
the unbound fractions of the test compound in plasma and tissues. The model described by
Rodgers and Rowland [47] considers electrostatic interactions in addition to both unbound
fractions. An investigation by Harrell et al. [48] provided insights into drug distribution
to the brain and liver; drug distribution to the brain was experimentally determined to be
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lesser than that estimated theoretically based on in silico- and in vitro-associated data. In
contrast, drug distribution to the liver tended to be higher than that predicted by in silico-
and in vitro-associated data. Over-prediction in the brain is attributed to some factors,
including the involvement of efflux transporters. Berry et al. [49] indicated the usefulness
of in vitro nonspecific tissue-binding measurements in predicting Vdss for a wide variety
of drugs (36 drugs) in rats. Their results implied that the predictive performance based
on unbound fractions in plasma and tissues combined with the estimate effect of the pH
partition hypothesis was higher than the performance determined using the methods de-
scribed by Poulin and Theil and Rodger and Rowland [47]. These data highlight the need
for in silico direct models based on tissue binding data, including brain tissue and plasma
protein binding alongside transporters. There is some debate about the predictability of
empirical and in silico approaches for tissue distribution [50], but in any case, it is necessary
to improve the predictability of in silico approaches using the latest technologies.

5.2. Prediction of Tissue Distribution

In silico linear and nonlinear prediction models of Vdss were developed by Berellini
et al. [51]. They achieved a relatively high predictive performance; however, over-prediction
was an issue for non-steroidal anti-inflammatory drugs. Paixão et al. [52] developed a QSAR
model for estimating the tissue-to-blood partition coefficients (Kp,t) in rats by subjecting Kp,t
data corresponding to 1460 specimens to an ANN algorithm; the predictive performance
was estimated to be 0.909 for the training set and 0.896 for the validation set. Similar
models based on QSAR models use multiple linear networks (MLRs). ANNs and SVMs
were constructed by Louis et al. [53], who displayed their best predictor with an R2 of 0.621.
In a unique comparative study—between empirical and in silico predictions of Vdss—by
Fagerfolm et al. [54], no significant difference in predictability was found; 69, 64, and
61% of the prediction within a two-fold error were recognized using rat-to-human scaling,
allometric scaling, and the Rodgers-Lukova method, respectively. These methods might be
options for researchers wanting to select an appropriate method based on confidence level
and/or the costs of running a drug discovery program.

5.3. Prediction of Human Plasma (Serum) Protein Binding

Plasma protein binding is one of the key factors considered when carrying out phar-
macokinetic, pharmacodynamic, and toxicological evaluations of NCEs. Only the unbound
(free) drug is capable of interacting with pharmacological and toxicological targets (recep-
tors, channels, or enzymes), renal glomerular filtration, and hepatic metabolism, and of
diffusing between the plasma and organs/tissues. From a pharmacokinetic viewpoint,
plasma protein binding affects the volume of distribution (Vd) and total clearance (CLtot)
of drugs, which govern their pharmacokinetic profiles [55]. Consequently, for compounds
that exhibit high plasma protein binding, small variations in plasma protein binding leads
to marked differences in their unbound plasma fraction, which is related to their efficacy
and toxicity [56]. Therefore, accurate prediction methods for plasma protein binding are
needed for drug discovery and development.

Binding proteins, such as albumin, α-acid glycoprotein, and lipoprotein, exist in the
plasma and serum. Acidic and basic drugs tend to bind albumin and α-acid glycoprotein,
respectively. However, albumin and α-acid glycoprotein molecules are rarely utilized in
plasma protein binding studies; the exception being in the case of identification studies on
drug binding proteins in the regulatory sciences.

Several in silico prediction models have reportedly been developed (mainly based on
QSAR models) to obtain exact predictions of plasma protein binding (Table 3). The utilized
datasets can be classified as small (approximately 100 compounds) [54,57] or relatively large
(approximately 1000 compounds) [58–60]. Global models utilizing datasets comprising
1008 and 1242 compounds spanning a large chemical space were developed by Votano
et al. [60] and Zhu et al. [58], respectively; they used a variety of ML methods (RF, SVM, and
κ-nearest neighbor [κ-NN]) to predict the bound fraction using the Molconn-Z and Dragon
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software, respectively. Ingle et al. [59] constructed in silico models with molecular operating
environment (MOE) descriptors of 1045 compounds; drugs and environmentally relevant
ToxCast chemicals were used to validate their models. Sun et al. [61] developed global
models using a pool of molecular descriptors of 967 compounds, which were calculated
using PaDEL-descriptors, Schrödinger, and Discovery Studio software. Model performance
was evaluated using multifarious validation sets comprising 242 drugs, 397 industrial
compounds, and 231 newly designed chemicals. The authors pointed out that the predictive
performance of this model was similar to that of high-throughput assays which used
corresponding data.

Table 3. In silico prediction models for plasma protein binding.

Assay
Data Set

Type of Model Algorithms Predictive Performance Ref.
No of cpds Source Parameter

Human
plasma
protein
binding

117 Data from the
literature

Unbound
fraction QSAR PLS Q2 = 0.69 [54]

132 Obach’s database Unbound
fraction QSAR Stepwise linear

regression
R2 = 0.771,
Q2 = 0.737

[57]

1045 Drugs Unbound
fraction QSAR

RF, SVM,
κ-nearest
neighbor

MAE = 0.10–0.18 [59]

1242
Drugs or drug-like

cpds from
DrugBank, etc.

Bound fraction QSAR
RF, SVM,
κ-nearest
neighbor

R2 = 0.67 [58]

967 DrugBank, etc. Bound fraction QSAR
RF, SVM,
κ-NN,

multi-layer NN
MAE = 0.129–0.178 [61]

1008 Experimental data Bound fraction QSAR
MLR, artificial

neural
network, SVM

MAE = 7.6–18.3,
R2 = 0.61–0.90 [60]

Small dataset-derived in silico models were created by Fagerholm et al. [54] and
Zhivkova et al. [57]. The former study aimed to evaluate the variability in human plasma
binding between laboratories for 117 compounds with high plasma binding based on
several published reports. It was emphasized in this study that averaged values should
be used for compounds with multiple data, as more than ten-fold variability was found
for 14 of the 117 compounds. The in silico model developed by PLSR showed a minimum
false discovery rate (Q2) of 0.69, which was similar to the predictive performance achieved
in other studies. The latter study focused on a dataset of 132 diverse acidic drugs with
a wide range of binding capacities. An in silico prediction model for fu,p was developed
using 178 molecular descriptors based on a genetic algorithm with stepwise regression,
and an R2 of 0.771 was achieved. As a guide to assess fu,p for acidic compounds, the
following checklist criteria were developed: log P ≥ 3, ≥2 aromatic nonconjugated rings,
≥1 cyano groups, ≥3 H-bond donors and acceptors separated by four or five skeletal bonds,
≥1 tertiary C atoms, ≥1 four-membered rings, and ≥1 iodine atoms. Different approaches
to optimizing the human serum albumin binding affinity of chemical structures have
been proposed. Zhang et al. attempted an in silico docking analysis [62], and identified
seven potential high-affinity binding sites of alkylphosphocholine analogues to human
serum albumin. The size of the functional groups directly affected the albumin binding and
partitioning. Ciura et al. [63] demonstrated the usefulness of ML models using a retention
factor in micellar electrokinetic chromatography and chemically advanced template search
descriptors based on SMILES, and achieved an R2 of 0.869 for MLR and 0.904 for SVM.
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5.4. Prediction of Brain Distribution
5.4.1. General Assessment of Drug Concentrations in the Brain

The prediction of drug–brain penetration is an essential component when assessing
the in vivo pharmacological activities for drugs targeting the CNS [64,65]; this factor also
influences CNS toxicity. The BBB in the CNS comprises a continuous layer of endothelial
cells joined by tight junctions at the cerebral vasculature. The BBB contains efflux and influx
transporters, including P-gp and breast cancer resistance protein (BCRP), which are active
efflux transporters that function as barriers for the penetration of drugs across the BBB [66].

Drug distribution can generally be defined by the free drug hypothesis, where only
drugs without binding to proteins, lipids, or other tissue components can distribute in
target tissues; unbound drug molecules are thus able to interact with pharmacological
targets [67]. Unbound plasma drug concentrations are generally similar to those in target
tissues, with the exception of certain organs like the brain; therefore, the unbound plasma
drug concentration is considered to be the pharmacologically effective concentration. In the
brain, unbound drug concentrations cannot be deduced from the corresponding plasma
concentrations due to the existence of tight junctions, expression of P-gp, and lysosomal
trapping of basic drugs [68]. Furthermore, measuring free drug concentrations in the brain
is difficult.

Three experimental methods can be used to evaluate drug distribution in the brain,
i.e., microdialysis (MD), brain slice, and brain homogenate. The MD method has been
utilized to determine the concentration of compounds within the interstitial fluid (ISF)
in the brain [69], which enables an estimation of the unbound brain-to-plasma partition
coefficient (Kp,uu,brain) and unbound volume of distribution (Vu,brain, in mL/g of brain
tissue), under the assumption that the unbound drug is in equilibrium between the brain
and ISF [70]. This method has been validated with direct evidence of reliable outcomes for
drug passage to the brain based on continuous direct sampling. However, the MD method
has several issues, i.e., limited utility for lipophilic compounds due to their high adsorption
to the MD instrument [71], the necessity for surgical skill, and animal ethics concerns with
limited sampling.

The in vitro brain-slice method (using rats and mice) can yield Vu,brain values by mea-
suring the amount of drug present in a brain slice when the drug is incubated with a buffer
containing the slice. As the slice maintains the basic structure of the blood and brain tissue,
the results obtained using this method tend to account for the influence of nonspecific binding
and lysosome trapping. However, this method is not readily replicable in all laboratories
because a highly specialized instrument is required for slicing the raw tissue.

The brain-homogenate binding assay estimates the unbound fraction of the drug
in homogenized brain tissue (fu,brain) with a relatively high throughput. As the brain
homogenate contains tissues with ruptured structures, the fu,brain value is likely to be
underestimated (compared to the values obtained using the brain-slice method). This
underestimation can be attributed to additional binding sites of the drug in the collapsed
tissues. fu,brain values are generally evaluated using the brain homogenates of rodents, and
there are no reported species differences in fu,brain values.

5.4.2. Prediction of Brain-to-Plasma Concentration Ratio (BBB Permeability)

Many researchers have conducted in vivo brain exposure studies which have yielded
total brain-to-plasma concentration ratios, denoted by Kp,brain, or log BB (its logarithmic
form). Both parameters represent the extent of the compounds passing through the BBB,
which is formed by the endothelial cells of the capillaries in the brain. As studies using
mice or rats are low throughput due to their labor-intensive and time-consuming nature,
many investigators have constructed qualitative or quantitative computational models
(classification or QSAR models) and adapted the methods used from MLRs and PLSRs to
SVMs and ANNs, following the development of new technologies.

Lipophilicity, MW, and/or topological PSA (TPSA) are critical parameters used to
decide poor or good BBB permeability. A pioneer study by Young et al. [72] demonstrated
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a relationship between log BB and ∆log P (the difference between log P for octanol/water
and log P for cyclohexane/water), which was defined by the hydrogen-binding capacity.
Singh et al. [73] summarized the desired physicochemical properties of CNS drugs as
follows: MW < 450, AlogP of 1.5–2.5, LogD > 0 and <3, PSA of 60–70 Å2, HBAs of <7,
HBDs of <3, and RBs of <3. Several QSAR models have been constructed, some of which
are introduced here (Table 4). Lanevskij et al. [74] and Gupta et al. [75] each employed
three parameters, including log P, pKa, and plasma protein binding; and log P, TPSA, and
dipoles, respectively. The latter constructed qualitative and quantitative models using
ensemble ML. Chen et al. [76] introduced an in silico model generated using three layers of
neural networks with eight descriptors, including high-affinity P-gp substrate probability
and plasma protein binding. Vilar et al. [77] proposed two criteria for their classification
model, i.e., compounds with log BB > 0.3 pass the BBB readily, whereas compounds
with log BB < −1 are poorly distributed to the brain; their respective classifications were
defined by log P, PSA, and/or the sum of the number of acidic or basic atoms. This model
demonstrated a good predictive performance with >80% accuracy.

Table 4. In silico prediction models for evaluating the ratio between brain and plasma concentrations
(BBB permeation).

Assay
Data Set Type of

Model
Algorithm, Descriptors or

Equation of Model
Predictive

Performance Ref.
No of cpds Source

BBB permeation 470

Experimental
data under
steady-state

condition

QSAR
nonlinear least-squares

minimization with logP, pKa,
plasma protein binding

R2 = 0.52 [74]

BBB permeation 362 In vivo data from
some research QSAR Nonlinear model with

XlogP, TPSA, Dipole R2 = 0.926 [75]

BBB permeation 120 In vivo data QSAR Three layered feedforward NN R2 = 0.67 [76]

BBB permeation 307 In vivo data from
some publications QSAR

Model 1: log BB > 0.3
log BB class =

0.5159 × log P(o/w) −
0.0277 × TPSA − 0.3462

Model 2: log BB < −1
log BB =

0.2289 × logP(o/w) −
0.0326 × TPSA −

0.5671 × (a.acid + a.base) + 2.3420

Good classification > 0.80 [77]

BBB permeation 1147
The literature and

world drug
index dataset

Two-
classification

model

RF, MLP, and SMO
(sequential minimal optimization)

Consensus model
Accuracy = 0.88,
selectivity = 0.88,
specificity = 0.88

[73]

BBB permeation 7162 7 studies
Two-

classification
model

Light gradient-boosting machine Selectivity = 0.90,
specificity = 0.94 [78]

BBB permeation 1990 In vivo data from
some research

Two-
classification

model

SVM with molecular
property-based descriptors
including 1D, 2D and 3D

descriptors and fingerprints

Selectivity = 0.962,
specificity = 0.944

and Q2 = 0.957
[79]

BBB permeation 2358 In vivo data from
some research

Two-
classification

model
SVM with MACCS fingerprints Accuracy = 0.966 [80]

BBB permeation 3961 The literature
Two-

classification
model

Relational GCN
Accuracy = 0.872,
sensitivity = 0.919,
specificity = 0.763

[81]

BBB permeation 2342 The literature
Two-

classification
model

Deep-learning-based recurrent
neural network model

Accuracy= 0.965,
selectivity = 0.949,
specificity = 0.981

[82]

BBB permeation 18 PAMPA QSAR Stepwise MLR, PLS, SVM
R2 = 0.86 for MLR,

0.73 for PLS,
0.81 for SVM

[83]
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Shaker et al. [78] pointed out that the use of prediction models for BBB permeability
built on small datasets is usually impractical due to the limited chemical diversity of the
compounds. Recently, various classification models for BBB permeability, which are charac-
terized by a high predictivity, have been constructed with relatively larger datasets. Yuan
et al. [79] developed binary-classifier models using an SVM with molecular property-based
descriptors, including 1D, 2D, and 3D and fragment-based descriptors. A large dataset
comprising 5453 compounds for BBB+ and 1709 compounds for BBB- was introduced into
a model constructed using a light gradient-boosting machine [81]. Wang et al. [80] were
concerned about the imbalance between permeable and non-permeable compounds in
the dataset, and resampling methods such as the Synthetic Minority Oversampling Tech-
nique (SMOTE) were employed. The resampling method using a SMOTE-edited nearest
neighbor effectively solved the imbalanced dataset problem, and a high accuracy of 0.966
was achieved for the external dataset in the final construction of the consensus model; this
indicates the usefulness of the SMOTE when utilizing imbalanced datasets.

Ding et al. [4] reported that a typical ML model is incapable of accounting for the
interactions between compounds and proteins, as typified by P-gp-mediated compound efflux.
To address this issue, relational graph convolutional networks (RGCNs) were introduced
into the construction of in silico models in order to account for these interactions, such as
those mediated by ATP-binding cassettes and solute carrier proteins. The RGCN model,
which achieved an overall accuracy of 0.872, greatly outperformed the light gradient-boosting
machine model. Tong et al. [83] demonstrated the usefulness of uncertainty estimations for
improving the predictability of deep learning models for BBB permeability. An uncertainty
estimation helps not only to design chemical structures in the lead optimization process, but
also to enhance in silico screening for CNS compounds.

5.4.3. Unbound Brain-To-Plasma Partition Coefficient and Brain Homogenate Binding

Based on the free theory concept, the unbound drug concentrations in tissues are
generally similar to those in the plasma due to the rapid equilibrium of compounds;
however, the Kp,uu,brain values in most compounds are not in unity due to the tight junction
and barrier system. Therefore, the Kp,uu,brain is a crucial parameter for investigating the
ability of a drug to penetrate the BBB [84]. Due to the aforementioned limitations of the
MD method and animal welfare concerns, it is difficult to directly obtain large amounts
of experimental data for Kp,uu,brain using in vivo study methods. Several researchers have
collected experimental data for fu,brain and Vu,brain based on estimates using the brain
homogenate and brain-slice methods, respectively. fu,brain and Vu,brain are explainable
parameters for Kp,uu,brain, as evidenced via the validation of 81–1121 compounds from the
literature or in-house databases [85–90]. The in silico models developed for predicting
fu,brain and Kp,uu,brain are described in Table 5.

Fridén et al. [91] demonstrated that the Kp,uu,brain was negatively correlated with
hydrogen binding, such as that to PSA or to HBA or HBD. They successfully built a QSAR
model using PLSR and 16 descriptors, which achieved a Q2 of 0.452. Chen et al. [86]
and Varadharajun et al. [87] utilized RF and SVM, respectively, and generated QSAR
models with relatively high predictive performances (R2 of 0.94–0.96 and Q2 of 0.73–0.80,
respectively).

The determination of Vu,brain from brain slices is one of the approaches for estimating
the Kp,uu,brain via indirect methods, which was built on a physiological model based on lipid
binding and pH partitioning. This model involves the partition of a drug into lipids, ISF,
and intracellular compartments of the brain, and the outcomes are in good agreement with
experimental data [88]. Similar implicative data of brain slices by Fridén et al. [91] indicated
that there were discrepancies between the Vu,brain and fu,brain, which were attributed to the
involvement of pH partitioning in slices with a preserved cellular structure. An indirect
method employed by Chen et al. [86] computationally generated Kp,uu,brain, and achieved
an R2 of 0.94 for RF and 0.90 for SVM.
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Table 5. In silico prediction models for unbound compound fractions in brain homogenates and ratio
of unbound fraction between brain and plasma.

Parameter
Data Set Type of

Model
Algorithm, Descriptors or

Equation of Model
Predictive

Performance Ref.
No of cpds Source

fu,brain 470 Experimental data QSAR
Nonlinear least-squares

minimization with
log P and pKa

R2 = 0.75 [74]

fu,brain 2292 In-house data QSAR SVM R2 = 0.64 [90]

fu,brain 24 Commercial CNS drugs QSAR SVM R2 = 0.782 [92]

Kp,uu,brain
246 for direct model,

173 for indirect model In-house cpds, research QSAR RF, SVM

Indirect model:
R2 = 0.79–0.9,
direct model

R2 = 0.94–0.96

[86]

Kp,uu,brain 346 In-house cpds, research QSAR RF, SVM Q2 = 0.73–0.80 [87]

Kp,uu,brain 43 Selected from 92 drugs QSAR PLS model, 16 descriptors Q2 = 0.452 [91]

Kp,uu,brain 640 In-house cpds QSAR
RF, Conjugate gradient

optimization (GPOPT) or
incorporation of in vitro data

R2 = 0.489 for RF,
0.536 for GPOPT

[93]

Kp,uu,brain 241 Developmental cpds
and marketed drugs

linear
regression

A quantum-mechanics-based
energy of solvation (E-sol), a

linear regression model based
on E-sol vs. Kp,uu,brain linear

Accuracy = 0.79,
R2 = 0.61 [94]

Another approach to evaluating the fu,brain is the brain-homogenate method, which
has a relatively high-throughput potential in drug discovery. An advantage of this binding
assay that no species differences have been observed; the fu,brain showed a one-by-one
correspondence curve between mouse and rat brains [92]. A similar result was reported by
Di et al. [95], with no species difference in the fu,brain found among seven species, including
humans. Thus, the fu,brain in rodents is suggested to be an essential parameter for compu-
tational models for predicting the Kp,uu,brain in humans, in combination with in silico Kp
prediction. Lanevskij et al. [74] developed an in silico model for fu,brain using nonlinear
least-squares minimization with a dataset of 470 compounds, which had a good predictabil-
ity with an R2 of 0.75. Moreover, in silico models for fu,brain were constructed using SVMs
by Wan et al. [92] and Dolgikh et al. [90], both of which demonstrated a relatively high
predictive performance with R2 vales of 0.782 and 0.64, respectively. Interestingly, Kosugi
et al. [93] demonstrated that ML models combined with both in vitro P-gp and BCRP efflux
ratios (ERs) yielded predicted Kp,uu,brain values that correlated well with in vivo data when
compared to ML models.

5.4.4. P-gp-Related Prediction Models

P-gp, which is a member of the ATP-binding cassette transporter family with a broad
substrate specificity, negatively impacts the absorption and distribution of its substrates.
This is because P-gp functions as a barrier against xenobiotics in the body. Particularly,
P-gp is considered to play a central role in the BBB. Whether NCEs are substrates of
P-gp is an important factor when selecting brain-targeting compounds, and some in silico
discrimination models have been developed for P-gp efflux. Desai et al. [96] established
predictive models based on 2000 structurally diverse compounds, and TPSA and pKa
were defined as key criteria for physicochemical property analyses; P-gp substrates with
PSA > 60A2 and basic pKas < 8 had a decreased distribution. Whether NCEs are subject
to P-gp-mediated efflux is generally evaluated using a Caco-2 monolayer or LLC-PK-1
transfected with human P-gp. In the latter case, an ER can be estimated by comparing the
Papp ratio between Basal (B) to Apical (A) and A to B in LLC-PK-1 cell monolayers with or
without over-expressed human P-gp; consequently, P-gp substrates can be defined by net
ER ≥ 2, while non-P-gp substrates are defined by net ER < 2. Gunaydin et al. [97] revealed
that the following attributes are critical when designing low-efflux compounds: <2 HBD,
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TPSA of <70 Å2, and clogP of >3. In addition, QSAR analyses identified a relationship
between net ER (logarithmic scale) and the computationally derived solvation free energy
difference, ∆GH2O−CHCl3. Moreover, Chen et al. [98] developed a QSAR model based on
the relationships between descriptors and ERs using HSVR, which achieved an R2 of 0.96
for the training set (n = 50).

6. Metabolism
6.1. General Assessment

Drug metabolism studies comprise several components, including the identification
enzymes responsible for drug metabolism, the site of metabolism, metabolic inhibition
(a drug–drug interaction), and metabolic stability. Among them, metabolic stability can
be regarded as the most important parameter governing in vivo pharmacokinetics, which
affects in vivo efficacy and toxicity. Thus, the assessment of metabolic stability has been
implemented in high-throughput screening (HTS) processes for identifying and optimizing
lead structures in drug discovery. Technical supports based on in silico models for metabolic
stability have been necessary to reduce the number of screening compounds in HTS with
large compound libraries, and guide the direction of structures synthesized during lead
optimization.

In vitro metabolic stability is evaluated using human liver microsomes or human liver
S9 fractions. Much attention has been paid to the development of robust in silico models to
assess metabolic stability in recent decades. These studies share several common features,
i.e., (1) in-house datasets, (2) the use of either intrinsic clearance (CLint) [99–103] or half-life
(t1/2) [104–106] as the endpoint of metabolic stability, and (3) in silico classification with
mainly binary classifiers of stable or unstable compounds, as shown in Table 6.

Table 6. In silico prediction models for evaluating metabolic stability in human and rat liver
microsomes.

Assay
Dataset Type of

Prediction Models
Algorithms Predictive Performance Ref.

No of cpds Source of cpds Parameter

Human
liver

microsome
14,557

Cpds from
various

laboratories
within company

CLint
Two-classification

model RF, Bayesian Prediction accuracy = 0.80 [99]

Human
liver

microsome
1952 Proprietary cpds CLint

Two-classification
model RF, SVM Sensitivity > 0.9,

specificity > 0.6 [100]

Human
liver

microsome
49,968

Synthesized cpds
by in-house

projects
CLint

Three-classification
model

RF, SVM
C5.0 decision

tree

Sensitivity = 0.57,
specificity = 0.91 [101]

Human
liver

microsome
26,138 Proprietary cpds CLint

Two-classification
model

RF, XGB,
GCN Accuracy = 0.799 [102,103]

Human
liver

microsome
4012 ChEMBL t1/2

QSAR
Classification

model

RF, variable
nearest

neighbor

Sensitivity = 0.78, 0.73,
specificity =0.85, 0.88 [104]

Rat liver
microsome >24,000

Cpds from
>250 projects

at NCATs
t1/2

Two-classification
model

RF, deep
neural

network,
GCNN

Sensitivity = 0.86,
specificity = 0.77 [105]

Human
and rat
Liver

microsome

4771 for humans,
2512 for rats ChEMBL t1/2

Two-classification
model

RF, XGBoost,
neural

network,
κ-nearest
neighbor

AUC = 0.86 for human,
AUC = 0.84 for rat [106]
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6.2. Prediction of Microsomal Metabolic Stability

First, we assessed the prediction models developed by major global pharmaceu-
tical companies. Sakiyama et al. [100] developed a binary-clarification model based
on CLint using an RF or SVM for a relatively large dataset of 1952 proprietary com-
pounds, which achieved a sensitivity of >0.9 and specificity of >0.6. Large dataset-derived
two-classification models were reported by Lee et al. [99] and Gupta et al. [101]. The former
used Bayesian statistics and achieved a prediction accuracy of 80%. The latter used a C5.0
decision tree with CDK descriptors, including a set of Smiles Arbitrary Target Specification
(SMARTS) keys; this model had a good predictability, and an estimated sensitivity and
specificity of 0.57 and 0.91, respectively. These were equivalent to those of models built
using commercial MOE2D and the same set of SMARTS keys (a sensitivity and speci-
ficity of 0.58 and 0.91, respectively). Binary classifiers are useful for quickly filtering HTS
libraries; however, the optimization process may require a moderate category between
stable and unstable to retain compounds that are evaluated in the corresponding in-depth
assay. Gupta et al. [101] developed three-classification models (CLint) that categorized low
(CLint < 9.2 µL/mg/min), moderate (9.2 < CLint < 48), and high (CLint > 48) risk, and had
a high predictive performance shown by RF or SVM.

This relatively high predictability might be due to the use of standardized protocols
that ensure consistent data in each individual laboratory. Sasahara et al. employed an
intriguing prediction strategy [102,103]. Their first approach was to set up the balanced
dataset with stable and unstable compounds (50.9 and 49.1%, respectively). Second, when
the compounds to be predicted were outside the applicability domain (AD) on the in
silico model, the predictive results were unreliable, thereby possibly misleading future
compound design. Therefore, a reliable prediction model to evaluate the AD consistency of
newly designed compounds was developed, which, consequently, resulted in the prediction
accuracy increasing from 0.799 to 0.936.

Many researchers have employed t1/2, which can be directly determined as an end-
point in substrate depletion assays. Liu et al. [104] and Li et al. [106] constructed in silico
models with high predictive performances based on t1/2 using datasets from ChEMBL, an
open database. The models by Liu et al. of human metabolic stability achieved a sensitivity
of 0.73–0.78 and specificity of 0.85–0.88 for the nearest neighbor. The in silico predictive
models by Li et al. yielded an AUC of 0.84 for rat metabolic stability and 0.86 for human
metabolic stability. Furthermore, the National Center for Advancing Translational Sciences
aimed to build global and local models to accommodate for the large and unique dataset of
>24,000 compounds from more than 250 projects that covered a wide range of pharmacolog-
ical targets and biological pathways [105]. The local models were built for projects which
performed poorly on the global model. The global predictive model is freely accessible for
any researcher (https://opendata.ncats.nih.gov/adme (accessed on 6 November 2023)).
However, t1/2-based models have a disadvantage with respect to applicability relative
to CLint-based models. The t1/2 parameter depends on experimental conditions such as
microsomal concentrations and incubation time in metabolic stability studies; in contrast,
CLint is normalized in terms of microsomal concentration and incubation time. Thus,
similar to CLint-based models, the predictive outcomes from t1/2-based in silico models
provide insights into chemical structure design; however, recalculation based on differences
in experimental conditions is required.

6.3. Prediction of Total Clearance

An alternative computational approach is to directly predict total clearance. When
elimination from the body only occurs hepatically, the hepatic clearance is equal to the total
clearance. Berellini et al. [107] developed an in silico PLSR model to predict human plasma
clearance based on a large dataset comprising 754 compounds using physicochemical
descriptors and structural fragments. Validation of this model was performed using the En-
hanced Leave Analog-structural, Therapeutic, Ionization Class Out approach based on ten
therapeutic or structural analog classes. The model gave a percentage of compounds within
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two- and three-fold errors of 59% and 80%, respectively. Another approach based on the
concept that analog compounds display similar pharmacokinetic properties [108] predicted
the total clearance by comparing the known reference compounds of four chemical classes,
including acids, bases, zwitterions, and quaternary ammonium/pyridinium ions using
κ-NN. The prediction accuracy averaged within two-fold errors for all the chemical classes
in the κ-NN model and outperformed two allometric approaches typically used for human
total clearance prediction, even with a limited number of data (18 drugs). In contrast, a
PLSR model achieved a quantitative performance of the total clearance comparable to
that of animal scaling based on the allometric concept [109]. Interestingly, Kosugi and
Hose [110] demonstrated the great usefulness of the ML approach in terms of predicting
total clearance, which is relative to the in vitro–in vivo extrapolation (IVIVE) method based
on a well-stirred model with experimentally obtained CLint. The total clearance values
predicted by the RF and radial basis function models were within two-fold of the observed
values for 67.7 and 71.9% of the test set compounds, respectively; both models also showed
potential for improvement via the incorporation of in vitro parameters such as fu,p and
CLint. It should be noted that the predictability of the in silico approach based on total
clearance leads to the possibility of a paradigm shift occurring with respect to the metabolic
stability-based optimization process in the early stages of drug discovery.

6.4. Molecular Modeling and Simulation

With recent scientific and technological advances, protein structures have been widely
used to predict the binding modes of ligands or designed compounds in docking algorithms
for rational drug design. As shown in Scheme 1, molecular modeling and simulations based
on target protein structures have become an important in silico screening tool for identifying
lead compounds in drug discovery [111]. As the crystal structures of proteins are elucidated,
pharmacokinetic researchers are adopting molecular modeling and simulation methods for
when conventional in silico prediction using ML fails.
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CYP3A4, a major drug-metabolizing enzyme, is involved in the metabolism of 30% of
the drugs in current use [112]; this can be attributed to its binding pocket being larger [113]
and more flexible [114] than that of the other CYPs. Sato et al. elucidated the crystal
structures of several other proteins—similar to CYP3A4—for the pre-training and subse-
quent fine-tuning of a CNN-based model [115]. The effects of different datasets on the
prediction of the binding mode of CYP3A4 were investigated using a three-dimensional
neural network. It was revealed that a dataset with a large median binding pocket size
may be important for the binding model prediction of CYP3A4. Such molecular modeling
approaches have been employed in the characterization of various metabolic profiles [116].
This may help researchers to design NCEs with efficient metabolic profiles for various
classes of therapeutic targets.

7. Renal Excretion
7.1. General Assessment

Renal clearance refers to the excretion of unchanged drugs through the kidneys and
represents the major elimination route for drugs with negligible metabolism and biliary
excretion. Renal excretion is an integrated process that comprises glomerular filtration,
tubular secretion, and reabsorption [117]. Glomerular filtration describes the ultrafiltration
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of approximately 10% of the total renal blood flow at the glomerulus of the nephron,
which leads to an average glomerular filtration rate (GFR) of 125 mL/min in a young man
weighing 70 kg. As only unbound drugs undergo glomerular filtration, glomerular filtration
clearance is theoretically equal to the product of GFR and fu,p [118]. Tubular secretion is
facilitated by several efflux transporters that are predominantly expressed in the proximal
tubule. In contrast, reabsorption mainly involves passive permeability that is dependent on
urine flow, pH, and some influx transporters, which are localized at the proximal tubules.
Thus, net secretion or net reabsorption is apparent when renal clearance is greater or
less than fu,p*GFR; however, both secretory and reabsorption processes sometimes occur
simultaneously to different extents.

Both renal clearance (CLr) and the fraction of compounds excreted in their unchanged
form in the urine (fe) are important predictive indicators for renal drug excretion. CLr
is a governed parameter for pharmacokinetic profiles and is calculated using the propor-
tionality term between the urinary excretion rate and plasma concentration of unchanged
compounds [117]. The fe value of unchanged compounds can theoretically be decided
by the balance between hepatic clearance and CLr; however, estimating these parameters
in humans is difficult. The fe value is experimentally determined through human mass
balance studies after the intravenous administration of radio-labeled drugs during the
clinical stage. To predict CLr, allometric scaling and IVIVE approaches have been exten-
sively utilized. However, allometric scaling, a practical measure, requires in vivo CLr data
in several animal species [119], and acquiring these in vivo data is a labor-intensive and
time-consuming process. IVIVE approaches have been successfully utilized, but in vitro,
permeability data from Caco-2 or LLC-PK1 cells are needed for these models [118]. Ac-
cordingly, the establishment of computational approaches is valuable for estimating both
parameters. Table 7 summarizes the existing in silico prediction models for renal clearance
and urinary excretion.

Table 7. In silico prediction models for renal clearance and urinary excretion.

Parameters
Data Set

Type of Model Algorithms Predictive Performance Ref.
No of cpds Source

CLr 130 Marketed drugs QSAR PLS R2 = 0.844 by Volsurf;
R2 = 0.720 by Molcom-Z

[120]

CLr 250
Drugs and
drug-like

compounds

Two-classify-cation
model (distinguish
GNetR and GNetS)

ANN, classification
tree, κ-nearest

neighbor, RF, SVM
AUC = 0.66–0.68 [121]

CLr 636
Drugs and
drug-like

compounds
Global model MLR and RF R2 = 0.21–0.36 [121]

CLr 265–371
Drugs and
drug-like

compounds

Local model
(GNetS, GNetR) MLR and RF R2 = 0.45–0.54 for GNetS,

R2 = 0.48–0.76 for GNetR
[121]

CLr 382
Drugs and
drug-like

compounds
QSAR StepwiseMLR R2 = 0.79 for

net reabsorption clearance
[122]

Renal elimination 141 (Renal:41) Approved drugs Two-classification
model

Rectangular
approach

(3-dimentional
analysis with fu,p,

MW and log D)

Recall = 0.90 [123]

Renal elimination 141 (Renal:41) Approved drugs Two-classification
model

Rectangular
approach, SVM Recall = 0.71–0.90 [124]

Renal elimination 419 Drugs Two-classification
model

SVM, single-step
approach, two-step

approach with
subset clustering

Recall = 0.85 [125]
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7.2. Prediction of Renal Clearance

Doddareddy et al. [120] developed QSAR models for predicting CLr using the PLSR
algorithm with 130 marketed drugs. The predictive performance achieved an R2 of 0.844
and 0.720 when using Volsurf and Molcom-Z descriptors, respectively. Chen et al. [121]
generated local and global models for predicting CLr. The local models (based on stepwise
multiple linear regression and RF) were generated for their respective compound classes;
namely, compounds exhibiting different ionization states such as acid, bases, and neutral
compounds; or compounds exhibiting the pharmacokinetic behaviors of net reabsorption
and net secretion. Global models based on various approaches, such as ANN, classification
trees, κNN, RF, and SVM, were generated for all investigated compounds. A similar QSAR
model [122] was able to predict net secretion clearance and net reabsorption clearance with
a Q2 of 0.77 and 0.81, respectively. Furthermore, it was pointed out that fu,p was a key
parameter in CLr prediction, which may be explained by the fact that unbound compounds
only undergo filtration and secretion in the kidney.

7.3. Prediction of the Fraction of Urinary Excretion

As reported in the prediction of absorption fraction, the proportion of urinary ex-
cretion is usually discussed qualitatively, leading to the development of classification
approaches based on the excretion fraction criterion. Criteria setting is likely to differ
between researchers. Kusama et al. [123] computationally developed several ADMET
prediction models based on 141 approved drugs and adopted a criterion of 50% for fe;
fe > 50% was regarded to indicate renally excreted compounds. Classification models for fe
were constructed based on the rectangular method with the fu,p, MW, and log D of 41 drugs,
and the predictive performance was estimated to be 90% for recall. Similar investigations
were conducted by Toshimoto et al. [124] and Wakayama et al. [125]. Wakayama et al.
enlarged the chemical space of the compounds by increasing the number of compounds
in the dataset, and employed SVM and a two-step approach with subset clustering; they
reported a similar predictive performance to that of Kusama et al.’s model. Noticeably,
a prediction model generated by Doddareddy et al. [120] utilized a criterion of 20% for
renally excreted compounds. They generated a binary classification model from structural
information calculated using Volsurf and Molconn-Z, with the threshold value of fe set to
0.2 in a dataset containing 130 compounds. This resulted in 65–80% of all test sets being
correctly predicted. Cut-off values, which are important for classification models, should
be set depending on what pharmacokinetic characteristics are identified as being crucial in
the drug discovery strategy.

8. Prediction of Transporter Substrates Involved in ADME

Two major families of transporters, ATP-binding cassette (ABC) transporters and
solute carrier (SLC) transporters, are known to govern the pharmacokinetic profiles of
their substrates. Multidrug-resistance-associated proteins (MRP2/3/4) (in addition to
P-gp and BCRP, which are described in “Section 5.4”) belong to the ABC transporter
family, and organic anion-transporting protein (OATP)1B1/1B3, organic anion transporter
(OAT)1, OAT3, organic cation transporter (OCT)1/2, and multidrug and toxin extrusion
(MATE)1/2-K belong to the SLC transporter family. These transporters are located in
polarized cells in the intestine, liver, kidney, and/or BBB, and significantly affect ADME.
When evaluating development compounds and candidates, it is necessary to examine
whether they are substrates for any of these transporters. This requires in vitro systems
with cells expressing each transporter, and is time-consuming and expensive. Accordingly,
in silico predictive models to determine if a compound is a substrate of these transporters
are desired, however, few in silico models have been created, possibly due to a limited data
available in public databases.

Kusama et al. attempted to perform an in silico prediction of hepatic uptake via
OATPs, and employed rectangular boxes with MW, log D, and fup; they achieved a recall
of approximately 0.67 [123]. Toshimoto et al. performed a similar prediction for hepatic
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uptake via OATPs, with a recall of 0.78, which was higher than that of the rectangular
method [124]. Importantly, Ose et al. developed an SVM-based system to evaluate whether
a given compound is a substrate of seven categories of drug transporters, which included
OATP1B1/1B3, OAT1, OAT3, OCT1/2, MATE1/2-K, P-gp, and BCRP [126]. Four physico-
chemical parameters (MW, log D, fup, and charge) were utilized as basic parameters. Much
effort by the author’s group was made to compile a negative dataset for non-substrates of
each transporter, owing to the paucity of data in public databases. Expert-involved curation
was conducted to generate a dataset of putative non-substrates for each transporter based
on the personal opinions of 11 researchers in the field. The developed model correctly
predicted 111 of 136 compounds as substrates for an external dataset. This information will
be useful for the prediction of renal clearance by in silico models because SCL transporters
are often involved in renal excretion processes.

9. Toxicity

The safety of NCEs in humans must be ensured based on results from various toxico-
logical studies during drug discovery. Recently, ML has become increasingly prominent in
predictive toxicology as toxicological assessments have shifted from in vivo studies to in
silico studies via in vitro studies. Various models have been used to predict toxicological
endpoints. Wang et al. summarized in silico models to predict various toxicity endpoints,
such as cardiotoxicity, hepatotoxicity, genotoxicity, immunotoxicity, acute oral toxicity, and
developmental toxicity via various ML modalities [127]. However, these ML approaches
achieved AUCs of 75% or above, which was lower than expected. Therefore, much effort
is needed to address the main bottleneck facing ML in predicting toxicological events,
which is to ensure the quality and quantity of data in the training datasets. Ogura et al.
indicated that most researchers constructed their datasets from only one database, conse-
quently leading to a limited predictability [128]. An integrated dataset (comprising over
291,000 structurally diverse compounds derived from ChEMBL, GOSTAR, and PubChem)
successfully resulted in an outperforming classification model for hERG inhibition via
the use of a SVM with descriptor selection based on the Non-dominated Sorting Genetic
Algorithm-II.

The importance of curation when creating high-quality training datasets was demon-
strated by Alves et al., who showed that the inclusion of a large number of duplicated data
in data repositories artificially yielded a high predictability in the case of no curation [129].
The curation process is essential for developing robust and reliable predictive in silico
models to evaluate the toxicological profiles of compounds. Imbalances between positive
and negative data in training datasets are a critical issue. Recently, Hu et al. employed a
chemprop model which combined a Directed-Message Passing Neural Network module
for graph-based molecular representation and a feedforward neural network module for
classification or regression [130]. The chemprop models performed best when predict-
ing carcinogenicity, cardiotoxicity, developmental toxicity, hepatotoxicity, nephrotoxicity,
neurotoxicity, and reproductive toxicity endpoints.

The goal in toxicological evaluations has shifted from evaluating toxicity alone to
mechanistically explaining any toxic outcomes, which allows researchers to improve the
safety profiles of drugs [131]. In general, in silico models are developed to predict two major
toxicological events: first, the direct interaction of the compound with cellular organelles
or compartments; and second, the resulting apical endpoint, which is commonly used
for hazard evaluation. The first is termed the molecular initiating event (MIE), and the
second is termed the adverse outcome. A cascade from the MIE to the adverse outcome
via key events is referred to as an adverse outcome pathway (AOP). AOPs can be used for
all compounds which are associated with available mechanistic evidence, and the AOP
framework is a powerful tool for bridging the gaps between in silico disciplines. Currently,
numerous AOPs are under development for a range of complex toxicity endpoints. Based
on AOPs, respective ML models for MIE(s) or key events will help to guide decision making
in drug discovery. Furthermore, following an in silico identification of MIE, toxic outcomes
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for MIE can be extrapolated to potential in vivo toxicity using a PBPK model drawing of
the plasma concentration profile [132]. Given that plasma concentrations can be predicted
by integrated in silico predictive models for ADME, integrated in silico approaches for
ADMET can computationally describe toxicological outcomes.

10. In Silico Prediction Models Applicable to Academic Research

There are several commercial software packages available for predicting ADME pa-
rameters, including ADMET Predictor, BIOVIA Discovery Studio, and SCIQUICK. These
suites are widely used in the pharmaceutical industries during the early stages of research
and development. Furthermore, in silico ADME models constructed by various researchers
have been based on datasets comprising in-house data from institutes or data extracted
from commercially available databases, and the calculation tools of descriptors and algo-
rithms in the commercially available software are utilized. This can be attributed to several
reasons; this increases the predictive performance of in silico models, utilizes reliable soft-
ware (which has been validated) for both calculating the descriptors and producing the
prediction model, and constructs a model using a dataset selected from a chemical space
congruent to its own library.

However, high licensing fees for those packages preclude their use by academic re-
searchers; therefore, the construction of a well-established environment for using such
prediction tools is essential for academic drug discovery. To meet such a demand, freely
available prediction models have been developed, including OChEM [8], SwissADME [9],
pkCSM [10], and ADMETlab 2.0 [133,134]. OchEM is a web-based platform with two major
subsystems, a database of experimental measurements and a modeling framework. Swis-
sADME is a new web tool that allows free access to a pooled robust predictive model for
physicochemical properties, ADME, and drug-likeness with medicinal chemistry friendli-
ness. pkCSM utilizes graph-based signatures to develop predictive models, and its web tool
provides predictive models for ADME and toxicological properties. ADMETlab 2.0, which
is a completely redesigned version of the widely used AMDETlab web server, enables
the prediction of pharmacokinetic and toxicity properties, including 17 physicochemical
properties, 13 medicinal chemistry properties, 23 ADME properties, 27 toxicity endpoints,
and 8 toxicophore rules. The AMED established the iD3-INST with financial support, with
the goal of constructing a drug discovery platform with the components of a high-quality
open-access database including public data and in silico prediction models for ADME,
cardiotoxicity, and a drug-induced liver injury model [11,135].

Our group compiled ADME data from ChEMBL (http://www.ebi.ac.uk/chembl/
(accessed on 6 November 2023)) and manually processed the data by checking the experi-
mental protocols, values, units, and other details. The experimental in-house data for some
parameters were obtained under unified conditions. Moreover, the iD3-INST originally
acquired the experimental data regarding the net ER in P-gp-overexpressed LLC-PK1 cells.
Using integrated publicly available databases, in silico prediction models were developed
for the following nine parameters: solubility, membrane permeability, HIA [136], human
plasma protein binding [137], brain homogenate binding [138], net ER involving P-gp [139],
metabolic stability [140], urinary excretion, and renal clearance [141]. The characteristics of
these models are summarized in Table 8. The prediction models were constructed using
descriptors calculated with free software such as PaDEL, CDK, jCompoundMapper, Rdkit,
and Modred, and algorithms such as RF, LightGBM, SVM, and gradient boosting.

Despite our use of free software and public data, our in silico models appeared
to yield predictive performances comparable to those of the reported models that were
based on in-house databases or commercially available tools. Particularly, some in silico
models were created based on the pharmacokinetic screening aspect of drug discovery. In
general, in silico models for plasma protein binding allow for the prediction of a range
of binding or unbound fractions. However, NCEs tend to be highly lipophilic and often
exhibit a high binding affinity to plasma proteins; therefore, to address this issue, in silico
models have been generated using compounds with unbound fractions (fu,p) less than
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0.1. Furthermore, predicting brain distribution may require in silico models to assess P-gp
efflux against screening compounds. Much effort has been made to obtain data regarding
net ER by comparing Papp in LLC-PK1 cells with and without P-gp overexpression, thereby
successfully allowing for the development of a three-classification model for ER with a
relatively high predictive performance [142]. Consequently, this model allowed us to
develop a mechanistic model for predicting brain penetration, which considers P-gp and
net ER [139]. A series of prediction models and integrated databases have been placed
in a web-based open-access platform: Drug Metabolism and Pharmacokinetics Analysis
Platform (DruMap; https://drumap.nibiohn.go.jp/ (accessed on 6 November 2023)).

Table 8. In silico prediction models constructed by our group for academia drug discovery.

Pharmacokinetic Items Dataset (No of cpds) Type of Models Algorithms Predictive Performance Ref

Solubility 367 Two-classification Linear SVM Accuracy: 0.811,
Kappa: 0.628 [136]

Permeability 3532 Two-classification Linear SVM Accuracy: 0.824,
Kappa: 0.401 [136]

Intestinal absorption 946 Three-classification Linear SVM Accuracy: 0.836,
Kappa: 0.560 [136]

Plasma protein binding 2738 Regression RF R2 = 0.691 [137]

Brain homogenate 253 Regression Gradient
boosting R2 = 0.630 [138]

P-glycoprotein:
net efflux ratio 28–46 Confusion matrix model Gradient

boosting Kapp = 0.45 [139]

Metabolic stability 4685 Three-classification Radial SVM Accuracy: 0.771
Kappa: 0.588 [140]

Urinary excretion 411 Two-classification RF Balanced accuracy: 0.74 [141]

Renal clearance 401

Two-step
prediction system:

three-classification and
regression model

RF
R2 for reabsorption type: 0.47,

intermediate type: 0.68,
secretion type: 0.46

[141]

An informatics public–private partnership (iP3) consortium, comprising public (NIBIOHN
and RIKEN) and private sectors (seven Japanese pharmaceutical companies or divisions) which
hold high-quality data, was organized by the iD3-INST. With the dedicated support of AMED,
discussion at the iP3 consortium has led to an agreement for a blueprint. Based on the blueprint,
the iD3-INST received data on solubility, human plasma protein binding, and metabolic stability
from the private sectors and also obtained data for net ER using compounds provided by the
private sectors [143]. The establishment of the PP database by integrating private data in a public
database led to the creation of seven in silico prediction models for solubility, fu,p in humans,
fu,p in rats, net ER, fu,brain, CLint in humans, and CLint in rats [11]. These in silico models have
been made available for academic drug discovery and incorporated into SCIQUICK to build an
ecosystem that maintains the iD3-INST integrated platform.

In August 2020, iD3 launched the “Development of a Next-generation Drug Discovery
AI (DAIIA) through Industry-Academia Collaboration” initiative, which aims to improve
the efficiency of drug discovery in academia and efficiently create NCEs from drug dis-
covery research in industry. DAIIA aims to develop a next-generation drug discovery AI
platform via industry–academia partnership, and has combined data on the binding affinity
between drug discovery target biomolecules and compounds held by both industry and
academia. Furthermore, empirical knowledge on structural optimization held by drug
discovery chemists in industries and other data from multiple aspects of drug discovery
research have been shared in the partnership. Nearly 18 member industries of the Japan
Pharmaceutical Manufacturers Association Research and Development Committee are
participants in the DAIIA project, and the full-scale operation of the industry–academia
partnership is ongoing. By using leading-edge AI technologies, DAIIA is developing
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predictive models for compound design, binding affinity, and ADMET, which will have
practical applications in the field of drug discovery for both industry and academia.

11. Future Prospective and Conclusions

To address issues regarding the predictability of ADME profiles, many researchers
have improved upon existing computational ADME models with the advent of AI, and,
recently, graph convolutional networks have been equipped with the ability to predict
protein functions by exploiting sequence features extracted from a protein language model
and protein structures [4]. The predictive accuracy of existing in silico models has been
comparatively evaluated, as shown by the statistical values reported in the literature;
however, the datasets utilized in individual studies often differ due to different source
data, including in-house generated data, published data from the literature, or public data
extracted using an origin-curation method. A limited number of studies have performed
comparative assessments based on the same test set to objectively evaluate the predictive
accuracy between in silico models. Except for these cases, at present, the determination of
the superiority or inferiority of specific in silico models remains difficult.

Some research has suggested an alternative evaluation approach for predictive perfor-
mance in in silico prediction models toward relevant in vivo parameters, such as CL and
CLr; outcomes from the in silico prediction are evaluated by comparing the corresponding
data estimated using the allometric and IVIVE methods. These methods are based on the
allometry concept and physiological modeling, respectively. This trend has emerged due to
unsatisfactory results from predictive models for in vivo human parameters, such as CL
and Vdss, via allometric (using relevant animal data) or IVIVE (using in vitro experimental
data) approaches.

Other investigations have suggested that predictions of in vivo pharmacokinetic pro-
files can be assessed by integrating not only various in silico-based parameters, such as
Papp, CLint, and fu,p, but also in vitro experimental data and in silico-derived parameters
in a physiologically based pharmacokinetic model [144,145]. Unique investigations by
Kosugi and Hose [110] demonstrated the usefulness of a combination of in silico descrip-
tors and in vitro ADME properties for predicting in vivo oral exposure, evidenced by the
better predictability of the combination method when compared to the IVIVE or empirical
methods. Similar efforts were made by Miljković et al. [146] toward predicting in vivo
pharmacokinetic parameters. Recent advances in in silico prediction appear to expand
to in vivo pharmacokinetics profiles related to efficacy and toxicity. A unique ML model
that successfully predicted the plasma concentration time profiles after intravenous or oral
dosing in 17 in-house projects was developed [147]. This provides insights into the opti-
mization approaches that can be used in in silico models to generate satisfactory predictive
tools which directly draw on in vivo pharmacokinetic profiles, in addition to predicting
individual in vitro parameters to guide the direction of chemical synthesis. Additionally,
Iwata et al. [148] focused on the fact that there are missing data in nonclinical studies
and, therefore, increased the number of training compounds and nonclinical datasets by
performing missing-value imputation and feature selection on nonclinical data. Novel
models were successfully constructed for CL and Vdss with high prediction accuracies.

This review highlights the innovative technologies that have been incorporated into the
field of in silico ADME prediction. Furthermore, in silico modeling is expanding from the
prediction of individual in vitro parameters in drug discovery to in vivo pharmacokinetic
prediction in nonclinical studies. In silico models are utilized in a wider range of areas than
before, and are becoming a crucial tool in drug research and development. In the future,
sharing pharmacokinetic and toxicological data in clinical trials between industries and
academia will allow academia to develop more useful models for human applications.

Given that academic research occupies a central position in making breakthroughs
in drug discovery, it is important that future models support academic drug discovery.
AMED launched two projects to improve the academic drug discovery environment by
constructing a platform consisting of an open-access database and software package, and
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the models showed acceptable predictive performances. This platform will enable the accel-
eration of the production of NCEs with desirable profiles (including ADME) in academic
drug discovery. Future efforts are required to continue integrating high-quality screening
data from industries and cutting-edge technologies from academia. The expansion of
similar initiatives is expected to strengthen the AI-based environment of computational
ADME prediction in the academic drug discovery field. Finally, the prediction of in vivo
pharmacokinetic profiles rather than individual ADME parameters will become a useful
tool for academic drug discovery researchers who may have limited resources.
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