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Table S1. MLTs and their parameters for grid search.

MLT Parameters

Splitter = ['best', 'random']

max_depth = [None, 4,5,6,7,8]

Decision Tree criterion = ['gini', 'entropy’, 'log_loss']

min_samples leaf =[1,2,3,4,5]

'

max_features = ['auto’, 'sqrt', 'log2']

n_estimators = [2,3,4,5,6,7,8,9,10]

max_features = ['auto’, 'sqrt', 'log2']
Random Forest

max_depth = [4,5,6,7,8]

criterion = ['gini', 'entropy']

max_features = ['auto’, 'sqrt', 'log2']

loss = ['log_loss', 'deviance', 'exponential']

Gradient Boost learning_rate init = [0.1]

n_estimators = [2,3,4,5,6,7,8,9,10]

max_depth = [4,5,6,7,8]

C=1[1,2,3,4,5,6,7,8,9,10]

Logistic Regression penalty = [None, 11, '12', 'elasticnet']

solver = ['lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag',
'saga']

neurons = [1,10,25,50,100]

Multi-layer perceptron activation = ['identity’, 'logistic', 'tanh’, 'relu']

learning_rate init =[0.1, 0.001, 0.00001]

n_neighbors =[1,2,3,4,5,6,7,8,9,10, 12, 15]

k-nearest neighbour weights = ['uniform', 'distance']

algorithm = ['auto', 'ball tree', 'kd tree', 'brute']

C=1[1,2,3,4,5,6,7,8,9,10]

Support Vector Machines kernel = ['tbf, 'linear’, 'poly’, 'sigmoid']

shrinking = [True, False]
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Figure S1. Representative images of tablets following re-sizing.
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Figure S2. Representative images of films following re-sizing.
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Figure S3. MLTs performance for classifying SLA-printed capsules after grayscale transformation, with

image sizes of (A) 25 pixels, (B), 50 pixels, (C) 125 pixels, (D) 256 pixels and (E) 512 pixels.
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Figure S4. MLTs performance for classifying SLA-printed tablets after grayscale transformation, with

image sizes of (A) 25 pixels, (B), 50 pixels, (C) 125 pixels, (D) 256 pixels and (E) 512 pixels.
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Figure S5. MLTs performance for classifying SLA-printed films after grayscale transformation, with

image sizes of (A) 25 pixels, (B), 50 pixels, (C) 125 pixels, (D) 256 pixels and (E) 512 pixels.



